

Wireless Design with MATLAB

Mandar Gujrathi
Applications Engineer

Mandar.Gujrathi@mathworks.com.au

If you had a choice....

When things get social.....

Evolution of Air Interface Technologies

While this is all true.....

- I would like to simulate my communication system to see the effect of various parameters
- It would be good if there are ready to use channel models
- Our project demands design of antennas, visualise their parameters and test their performance.
- While I do all this I would also like to connect & test this on a hardware

Agenda

- I would like to simulate my communication system to see the effect of various parameters
- It would be good if there are ready to use channel models
- Our project demands design of antennas, visualise their parameters and test their performance.
- While I do all this I would also like to connect & test this on a hardware

Simulate the communication system & tune the parameters

How does a Digital Communication System work?

Channel modeling & propagation scenarios

Challenges in designing and evaluating Mobile Communications (more time, earlier)

- Performance evaluation with realistic channel models
- Transceiver system responding to dynamic channel conditions
- Evaluating the combined effects of
 - Fading channels
 - Interfering signals
 - Non-linearity of front-end receivers
 - Phase noise, Frequency offset, Timing mismatch, IQ imbalance
 - Channel estimation & Equalization
 - Antenna arrays & directional propagation
 - Beamforming & beam steering
 - ...

Telemetry

Why look at MIMO-OFDM systems?

Communications Systems Toolbox

comm.GeneralQAMDemodulator

comm.GeneralQAMModulator

comm.PAMDemodulator

comm.PAMModulator

comm.RectangularQAMDemodulator

comm.RectangularQAMModulator

comm.AWGNChannel

comm.gpu.AWGNChannel

comm.BinarySymmetricChannel

comm.LTEMIMOChannel

comm.MemorylessNonlinearity

comm.MIMOChannel

comm.PhaseFrequencyOffset

comm.PhaseNoise

comm.RayleighChannel

comm.RicianChannel

comm. Thermal Noise

comm.APPDecoder

comm.ConvolutionalEncoder

comm.gpu.ConvolutionalEncoder

comm.TurboDecoder

comm.gpu.TurboDecoder

comm.TurboEncoder

comm. Viterbi Decoder

comm.gpu.ViterbiDecoder

comm.MLSEEqualizer

cma

dfe

equalize

lineareq

lms

mlseeq

normlms

reset (equalizer)

rls

signlms

varlms

comm.AlgebraicDeinterleaver

comm.AlgebraicInterleaver

comm.BlockDeinterleaver

comm.gpu.BlockDeinterleaver

comm.BlockInterleaver

comm.gpu.BlockInterleaver

comm.MatrixDeinterleaver

comm.MatrixHelicalScanDeinterleaver

comm.MatrixHelicalScanInterleaver

comm.MatrixInterleaver

comm.ConvolutionalDeinterleaver

comm.gpu.ConvolutionalDeinterleaver

comm.ConvolutionalInterleaver

comm.gpu.ConvolutionalInterleaver

comm.HelicalDeinterleaver

comm.HelicalInterleaver

comm.MultiplexedDeinterleaver

comm.MultiplexedInterleaver

Baseband demo workflow

Version 1: Baseline - Modulation and Coding

- Start with a SISO transceiver with modulation, coding, scrambling
- Channel modeling (Interferer + path loss)
- No multipath fading yet
- Isotropic (non-directional) antennas (1x1)

MATLAB tools for modeling of adaptive modulation and coding

- Use algorithms in Communications System Toolbox
- Quickly build and run fast & reliable simulations
- Simulate dynamic changes of systems (such as modulation scheme)
- Perform measurements and examine performance metrics during simulation

```
function tx = modulateBitstream(bits, t)
hMod = comm.RectangularQAMModulator(...
  'ModulationOrder',t.modMode,'BitInput',true,'NormalizationMethod','Average power');
hScrambler = comm.Scrambler(2, [1 0 1 1 0 1 0 1], [1 1 1 1 1 1 0]);
hConv = comm.ConvolutionalEncoder(...
  'TrellisStructure',poly2trellis(7, [133 171 165]), 'TerminationMethod', 'Terminated');
% Convolutional Encoder
coded = step(hConv,bits);
% Scramble coded input
bitsS = step(hScrambler, coded);
% Baseband QAM modulation
tx = step(h)
                   OPSK
                                    OAM16
```

QAM64

Agenda

- I would like to simulate my communication system to see the effect of various parameters
- It would be good if there are ready to use channel models
- Our project demands design of antennas, visualise their parameters and test their performance.
- While I do all this I would also like to connect & test this on a hardware

Are there any ready to use channel models?

Supported IEEE 802.11 Standards + heaps other

Standard	Bandwidth (MHz)	MIMO	Designation
802.11ac	20,40,80,160	Up to 8 spatial streams, MU-MIMO	VHT Very High Throughput
802.11n	20,40	Up to 4 spatial streams	HT High Throughput
802.11g	20	N/A	Non-HT
802.11a	5,10,20	N/A	
802.11b	20	N/A	
802.11p	5,10	N/A As of	
802.11j	10	N/A R2016a	

Urban, Rural, Indoor, Outdoor, etc. models in Communications Tbx

Agenda

- I would like to simulate my communication system to see the effect of various parameters
- It would be good if there are ready to use channel models
- Our project demands design of antennas, visualise their parameters and test their performance.
- While I do all this I would also like to connect & test this on a hardware

Design antennas/ arrays, visualise their parameters and test their performance

Antenna and Phase Array System toolbox

- Design, analyse, and visualise of antenna elements and arrays.
- Compute port properties such as impedance, surface properties such as current and charge distribution, and field properties such as the near-field and far-field radiation pattern.
- Integrate antennas and arrays into wireless systems, and use impedance analysis to design matching networks.

Design Antenna and Analyse Performance over Wi-Fi band.

Sensor Array Analyser: Analyse sensor array configurations

Agenda

- I would like to simulate my communication system to see the effect of various parameters
- It would be good if there are ready to use channel models
- Our project demands design of antennas, visualise their parameters and test their performance.
- While I do all this I would also like to connect & test this on a hardware

Connect to Hardware and see it happen!

MathWorks Support of Hardware

http://www.mathworks.com/hardware-support/index.html

How can we help

Software setup: Hardware support packages

Supported hardware for radio connectivity

- RTL-SDR (US\$25)
 - Ultra low-cost, low-bandwidth
 - RX Only
- USRP (\$1800)
 - Customizable RF front-end
- Xilinx FPGA-based radio (\$2500)
 - High bandwidth (~25MHz)
 - Possible FPGA target

Software

Hardware

Example:Over-the-air testing with SDRs & RF instruments

Process original data bits and generate custom digital baseband waveforms in transmitter

Transmit waveform using SDR devices or RF instruments

Capture received samples with SDR devices or RF instruments

Process received samples in receiver.
Decode/recover original data

Supported SDRs & RF instruments

Key takeaways

Design and Verification

Simulate baseband and RF systems Including LTE & WLAN standards

Over-the-air testing

Validate models with SDR, RF instruments and other low-cost hardware

Production

Prototyping and Implementation

Deploy algorithms onto target system

MathWorks Resources

- Resources for Wireless Communications
 - Webinars, White papers, Resource kits, etc.
- Training on Signal Processing, Communications
 - LTE, Communications, DSP, RF Systems, etc.
- Talk to us,
 - Mandar.Gujrathi@mathworks.com.au
 - Jonathan.Koay@mathworks.com.au (Education Account Manager)