
IEEE Standard unifies arithmetic model

F l oa ting poi n t s

by Cleve Moler

C l e v e ’ s C o r n e r

I
f you look carefully at the definition of fundamental

arithmetic operations like addition and multiplication,

you soon encounter the mathematical abstraction known

as the real numbers. But actual computation with real numbers

is not very practical because it involves limits and infin i t i e s .

Instead, MA T L A B and most other technical computing

environments use flo a t i n g - p o i n t arithmetic, which involves a

finite set of numbers with finite precision. This leads to

phenomena like roundoff error, u n d e r flo w, and o v e r flow. M o s t

of the time, MA T L A B can be effectively used without worrying

about these details, but every once in a while, it pays to know

something about the properties and limitations of flo a t i n g -

point numbers.

Twenty years ago, the situation was far more complicated

than it is today. Each computer had its own flo a t i n g - p o i n t

number system. Some were binary; some were decimal. There

was even a Russian computer that used trinary arithmetic.

Among the binary computers, some used 2 as the base; others

used 8 or 16. And everybody had a different precision.

In 1985, the IEEE Standards Board and the American

National Standards Institute adopted the ANSI/IEEE Standard

754-1985 for Binary Floating-Point Arithmetic. This was the

culmination of almost a decade of work by a 92-person

working group of mathematicians, computer scientists and

engineers from universities, computer manufacturers, and

microprocessor companies.

All computers designed in the last 15 or so years use IEEE

floating-point arithmetic. This doesn’t mean that they all get

exactly the same results, because there is some flexibility within

the standard. But it does mean that we now have a machine-

independent model of how floating-point arithmetic behaves.

MA T L A B uses the IEEE double precision format. There is also a

single precision format which saves space but isn’t much faster

on modern machines. And, there is an extended precision

format, which is optional and therefore is one of the reasons

for lack of uniformity among different machines.

Most floating point numbers are n o r m a l i z e d . This means

they can be expressed as

x = ± (1 + f) • 2e

where f is the f r a c t i o n or mantissa and e is the e x p o n e n t. The

fraction must satisfy

0 ≤ f < 1

and must be representable in binary using at most 52 bits. In

other words, 252f must be an integer in the interval

0 ≤ 252f < 253

The exponent must be an integer in the interval

-1022 ≤ e ≤ 1023

The finiteness of f is a limitation on precision. The

finiteness of e is a limitation on range. Any numbers that

don’t meet these limitations must be approximated by ones

that do.

Double precision floating-numbers can be stored in a

64-bit word, with 52 bits for f , 11 bits for e, and 1 bit for the

sign of the number. The sign of e is accommodated by storing

e+1023, which is between 1 and 21 1-2. The two extreme values

for the exponent field, 0 and 21 1-1, are reserved for exceptional

floating-point numbers, which we will describe later.

The picture above shows the distribution of the positive

numbers in a toy floating-point system with only three bits

each for f and e. Between 2e and 2e+ 1 the numbers are equally

spaced with an increment of 2e- 3. As e increases, the spacing

increases. The spacing of the numbers between 1 and 2 in our

toy system is 2- 3, or 1⁄8. In the full IEEE system, this spacing is

2- 5 2. MA T L A B calls this quantity e p s, which is short for

machine epsilon.

eps = 2^(–52)

What is the
output?

a = 4/3

b = a – 1

c = b + b + b

e = 1 – c

Before the IEEE standard, different machines had different

values of e p s.

The approximate decimal value of e p s is 2.2204 • 10-16.

Either e p s / 2or e p s can be called the roundoff level. The

maximum relative error incurred when the result of a single

arithmetic operation is rounded to the nearest floating-point

number is e p s / 2. The maximum relative spacing between

numbers is eps. In either case, you can say that the roundoff

level is about 16 decimal digits.

A very important example occurs with the simple MATLAB

statement

t = 0.1

The value stored in t is not exactly 0.1 because expressing

the decimal fraction
1⁄1 0 in binary requires an infinite series.

In fact,

1⁄1 0 = 1⁄24 + 1⁄25 + 0⁄26 + 0⁄27 + 1⁄28 +1⁄29 + 0⁄21 0 + 0⁄21 1 + 1⁄21 2 + …

After the first term, the sequence of coefficients 1, 0, 0, 1 is

repeated infinitely often. The floating-point number nearest

0.1 is obtained by rounding this series to 53 terms, including

rounding the last four coefficients to binary 1010. Grouping

the resulting terms together four at a time expresses the

approximation as a base 16, or hexadecimal, series. So the

resulting value of t is actually

t = (1 + 9⁄1 6 + 9⁄1 62 + 9⁄1 63 + … + 9⁄1 61 2 + 1 0⁄1 61 3) • 2-4

The MATLAB command

format hex

causes t to be printed as

3fb999999999999a

The first three characters, 3fb, give the hexadecimal

representation of the biased exponent, e+1023, when e is -4.

The other 13 characters are the hex representation of the

fraction f .

So, the value stored in t is very close to, but not exactly

equal to, 0.1. The distinction is occasionally important. For

example, the quantity

0.3/0.1

is not exactly equal to 3 because the actual numerator is a

little less than 0.3 and the actual denominator is a little greater

than 0.1.

Ten steps of length t are not precisely the same as one step

of length 1. MATLAB is careful to arrange that the last element

of the vector

0:0.1:1

is exactly equal to 1, but if you form this vector yourself by

repeated additions of 0.1, you will miss hitting the final 1

exactly.

Another example is provided by the MATLAB code

segment in the margin on the previous page. With exact

computation, e would be 0. But in floating-point, the

computed e is not 0. It turns out that the only roundoff error

occurs in the first statement. The value stored in a cannot be

exactly
4⁄3, except on that Russian trinary computer. The

value stored in b is close to
1⁄3, but its last bit is 0. The value

stored in c is not exactly equal to 1 because the additions are

done without any error. So the value stored in e is not 0. In

fact, e is equal to eps. Before the IEEE standard, this code was

used as a quick way to estimate the roundoff level on various

computers.

The roundoff level eps is sometimes called “floating-point

zero,” but that’s a misnomer. There are many floating-point

numbers much smaller than eps. The smallest positive

normalized floating-point number has f = 0 and e = -1022.

The largest floating-point number has f a little less than 1 and

e = 1023. MATLAB calls these numbers r e a l m i n and r e a l m a x

Together with eps, they characterize the standard system.

N a m e B i n a r y D e c i m a l

e p s 2 ̂ (- 5 2) 2 . 2 2 0 4 e - 1 6

r e a l m i n 2 ̂ (- 1 0 2 2) 2 . 2 2 5 1 e - 3 0 8

r e a l m a x (2 - e p s) * 2 ̂ 1 0 2 3 1 . 7 9 7 7 e + 3 0 8

When any computation tries to produce a value larger

than realmax, it is said to overflow. The result is an

exceptional floating-point value called I n f, or infinity. It is

represented by taking f = 0 and e = 1024 and satisfies relations

like 1/Inf = 0 and I n f+I n f= I n f.

When any computation tries to produce a value smaller

than r e a l m i n, it is said to underflow. This involves one of the

optional, and controversial, aspects of the IEEE standard.

Many, but not all, machines allow exceptional denormal or

subnormal floating-point numbers in the interval between

r e a l m i n and e p s * r e a l m i n. The smallest positive subnormal

number is about 0.494e-323. Any results smaller than this are

set to zero. On machines without subnormals, any result less

than realmin is set to zero. The subnormal numbers fill in

the gap you can see in our toy system between zero and the

smallest positive number. They do provide an elegant model

for handling underflow, but their practical importance for

C l e v e ’ s C o r n e r (c o n t i n u e d)

Cleve Moler is chairman

and co-founder of

The MathWorks.

His e-mail address is

m o l e r @ m a t h w o r k s . c o m .

MATLAB style computation is very rare.

When any computation tries to produce a value that is

undefined even in the real number system, the result is an

exceptional value known as Not-a-Number, or N a N. Examples

include 0 / 0 and I n f - I n f.

MATLAB uses the floating-point system to handle integers.

Mathematically, the numbers 3 and 3.0 are the same, but

many programming languages would use different

representations for the two. MATLAB does not distinguish

between them. We like to use the term flint to describe a

floating-point number whose value is an integer. Floating-

point operations on flints do not introduce any roundoff

error, as long as the results are not too large. Addition,

subtraction and multiplication of flints produce the exact flint

result, if it is not larger than 2 ̂ 5 3. Division and square root

involving flints also produce a flint when the result is an

integer. For example, s q r t (3 6 3 / 3) produces 1 1, with no

roundoff error.

As an example of how roundoff error effects matrix

computations, consider the two-by-two set of linear equations

1 0x1 + x2 = 11

3x1 + 0 . 3x2 = 3.3

The obvious solution is x1=1 , x2=1. But the MATLAB

statements

A = [10 1; 3 0.3]

b = [11 3.3]'

x = A\b

produce

x =

- 0 . 5 0 0 0

1 6 . 0 0 0 0

Why? Well, the equations are singular. The second

equation is just 0.3 times the first. But the floating-point

representation of the matrix A is not exactly singular because

A (2 , 2) is not exactly 0.3.

Gaussian elimination transforms the equations to the

upper triangular system

U*x = c

where

U (2 , 2)= 0.3 - 3*(0.1)

= -5.5551e-17

and

c (2) = 3.3 - 33*(0.1)

= - 4 . 4 4 09e-16

MATLAB notices the tiny value of U (2 , 2) and prints a

message warning that the matrix is close to singular. It then

computes the ratio of two roundoff errors

x (2) = c(2)/U(2,2)

= 16

This value is substituted back into the first equation to give

x(1) = (11 - x(2))/10

= -0.5

The singular equations are consistent. There are an infinite

number of solutions. The details of the roundoff error

determine which particular solution happens to be computed.

Our final example plots a seventh degree polynomial.

x = 0.988:.0001:1.012;

y = x . ̂ 7 - 7 * x . ̂ 6 + 2 1 * x . ̂ 5 - 3 5 * x . ̂ 4 + 3 5 * x . ̂ 3 -…

2 1 * x . ̂ 2 + 7 * x - 1 ;

p l o t (x , y)

But the resulting plot doesn’t look anything like a polynomial.

It isn’t smooth. You are seeing roundoff error in action. The

y-axis scale factor is tiny, 10-14. The tiny values of y are being

computed by taking sums and differences of numbers as large

as 35 • 1.0124. There is severe subtractive cancellation. The

example was contrived by using the Symbolic Toolbox to

expand (x - 1)7 and carefully choosing the range for the x-axis

to be near x = 1. If the values of y are computed instead by

y = (x-1).^7;

then a smooth (but very flat) plot results. ■

