
1 MATLAB Digest www.mathworks.com

Parallel computing techniques can help re-
duce the time it takes to reach a solution. To
derive the full benefits of parallelization, it is
important to choose an approach that is ap-
propriate for the optimization problem.

This article describes two ways to use the
inherent parallelism in optimization prob-
lems to reduce the time to solution. The
first example solves a mathematical prob-
lem using the parallel computing option in
Optimization Toolbox™, and requires no
code modification. The second, a practical
engineering optimization problem, requires
a single-line change in code. Both examples
use Parallel Computing Toolbox™ and
MATLAB Distributed Computing Server™
to automate and manage the parallel com-
puting tasks.

Parallel Optimization with
Optimization Toolbox
In a typical optimization, an iterative
search procedure is used to find a mini-
mum value of a given function —for ex-
ample, using a gradient-based algorithm to

find a minimum value of the peaks func-
tion in MATLAB® (Figure 1).

Gradient estimation is often the most
time-consuming computation during opti-
mization. In a single iteration, the optimi-
zation solver estimates the local gradient of

Engineers, scientists, and financial analysts frequently use optimization

methods to solve computationally expensive problems such as smoothing

the large computational meshes used in fluid dynamic simulations, performing

image registration, or analyzing high-dimensional financial portfolios. How-

ever, computing a solution can take anywhere from hours to days.

Improving Optimization Performance with
Parallel Computing

the function and uses that information to
determine the direction of the search and
the magnitude of the step to the next point
in the search. This process is repeated until

Products Used

■ MATLAB®

■ Simulink®

■ Optimization Toolbox™

■ Statistics Toolbox™

■ Parallel Computing Toolbox™

■ MATLAB Distributed Computing Server™

Figure 1. Using a gradient-based optimization solver to search for a minimum value.

2 MATLAB Digest www.mathworks.com

the solver finds a minimum value or reaches
a predefined time or iteration limit.

The gradient estimation step, which is
often performed using an approximation
method, such as finite differences, requires
several function evaluations near the cur-
rent point. Typically, N function evalua-
tions are required, where N is the number
of variables, or the dimensionality of the
problem. As N increases, so do the number
of function evaluations for each iteration
and the time to solution.

Figure 2 shows how you can perform
computations in parallel to accelerate gra-
dient estimation. The N function evalua-
tion used to estimate the gradient when
performed on a single MATLAB worker
would be executed serially.

Whereas in the serial approach the N
function evaluations occur one after the
other, in the parallel approach the com-
putations are distributed across MATLAB
workers, and several function evaluations
can occur simultaneously. We can speed
up gradient estimation as long as the cost of
distributing the function evaluation across

multiple workers is less than the execution
time of N objective (and constraint) func-
tion evaluations. The actual solution time
depends on the objective/constraint func-
tion execution speed, the computer pro-
cessing speed, available memory, current
load, and network speed.

An ElectroStatics Examplei

This example illustrates how to formu-
late and solve an optimization problem in
MATLAB. Consider N electrons in a con-
ducting body (Figure 3). The electrons ar-
range themselves to minimize their potential
energy subject to the constraint of lying in-
side the conducting body. At the minimum

Serial Approach

Start

Stop

For k = 1 : N

Evaluate model

Parallel Approach

...MATLAB...

...workers...

Evaluate
model

Evaluate
model

Evaluate
model

Evaluate
model

Stop

Start

Figure 2. Serial and parallel approaches to gradient estimation.

Figure 3. Conducting body and electrons.

i Inspired by Dolan, Moré, and Munson, “Benchmarking Optimization Software with COPS 3.0”, Argonne National Laboratory Technical Report.
ANL/MCS-TM-273, February 2004.

3 MATLAB Digest www.mathworks.com

total potential energy, all the electrons lie
on the boundary of the body. Because the
electrons are indistinguishable, there is no
unique minimum for this problem (permut-
ing the electrons in one solution gives another
valid solution).

The optimization goal is to minimize
the total potential energy of the electrons
subject to the constraint that the electrons
remain within the conducting body. The ob-
jective function, potential energy, is the sum
of the inverses of the distances between each
electron pair (i,j = 1, 2, 3,… N):

The constraints that define the boundary
of the conducting body are

As written, the first inequality is a non-
smooth nonlinear constraint because of
the absolute values on x and y. Absolute
values can be linearized to simplify the
optimization problem. This constraint
can be written in linear form as a set
of four constraints for each electron, i.

The indices 1, 2, and 3 refer to the x, y, and
z coordinates, respectively.

This problem can be solved with the
nonlinear constrained solver fmincon in
Optimization Toolbox. Figure 4 shows the
problem formulation in MATLAB. Note
that in defining the objective function,
sumInvDist, the statement pause(t) was
added. This changes the time taken to exe-
cute sumInvDist, letting us determine

how the execution time changes the solu-
tion time.

We execute the optimization problem on
a single MATLAB worker. For convenience,
we define speed-up as the ratio of the time
it takes to solve the problem on 1 worker
relative to the time it takes to solve the same
problem on N workers. Thus, for any prob-
lem running on a single worker, the speed-
up is defined as 1. When the same problem
is run on more than one worker, a speed-up
greater than one denotes a reduction in so-
lution time and a speed-up less than one de-
notes an increase.

To use the parallel computing capabil-
ity in Optimization Toolbox, we change

the ‘UseParallel’ option from the default,
‘Never,’ to ‘Always’, enable the desired num-
ber of compute nodes with the matlabpool
command, and run the optimization solver
as before (Figure 5).

This example runs on two workers and
is 20% slower than the single-worker case.
The evaluation time of N objective and con-
straint functions is on the order of 0.5 milli-
seconds. A single evaluation of the objective
function and the constraint function takes
about 0.5 milliseconds. Because the evalu-
ations take so little time, the overheads as-
sociated with farming out data and compu-
tations outweigh any gains that are realized
by running the code in parallel. As a result,

Figure 4. Problem formulation
in MATLAB.

Figure 5. Running the optimization solver using the parallel computing capability in Optimization Toolbox.

problem.options = optimset(problem.options,’UseParallel’,’Always’);

matlabpool open 2

[x,fval,exitflag,output] = fmincon(problem);

∑< −
=

ji
ji xx

energy 1

yxz −−≤

1)1(222 ≤+++ zyx

0
0
0
0

2,1,3,

2,1,3,

2,1,3,

2,1,3,

≤++

≤−+

≤+−

≤−−

iii

iii

iii

iii

xxx
xxx
xxx
xxx

4 MATLAB Digest www.mathworks.com

distributing computations to run in parallel
is slower than running the problem serially.

This example shows that for optimiza-
tion problems to benefit from running the
computations in parallel, the cost associated
with the function evaluations with gradient
estimation must be greater than the overhead
costs associated with data and code transfer.

To further understand the trade-offs as-
sociated with the objective function execu-
tion time, number of MATLAB workers, and
number of variables (electrons), we ran this
problem with a pause time (t) ranging from 0
to 0.4 seconds, different workers from 1 to 32,
and number of electrons ranging from 8 to
20. Figures 6a and 6b show the results plotted
for t = 0 and 0.1 seconds, respectively.

Figure 6a shows how the number of elec-
trons changes the speed-up. For 8 and 10
electrons, the overhead cost of more work-
ers reduced the speed-up. For 16 electrons,
the overhead cost fell below the function
evaluation cost, and we saw a positive effect
on the speed-up for most workers. The aver-
age time to evaluate one objective function
was on the order of 1 millisecond on a single
worker. The maximum speed-up occurred

at around 8 workers. Increasing the num-
ber of workers increased the communica-
tion overhead and eventually eliminated the
benefit of using parallel computing.

Figure 6b shows how the results change
when the objective function evaluation time
significantly exceeds the overhead costs. A
rapid increase in speed-up is again observed
around 8 workers. Notice that the maximum
reductions in the curve for the 8-electron case
and the 16-electron case are 8 workers and 16
workers, respectively. This increase is a result
of balancing the number of parallel compu-
tations that can be performed with the same
number of workers. For the 8-electron case,

8 workers resulted in the greatest increase. A
similar trend is seen for the 16-electron case.

User-Defined Parallel
Optimization Problem
As we have seen, the time required to
evaluate the objective strongly influences
the solution time. Therefore, one of the ap-
proaches we can take is to look for parallel-
ism within the objective function and the
constraint function—that is, to parallelize
the objective or the constraint function.

We will take this approach by distribut-
ing computations within the objective func-
tion for the problem shown in Figure 7. The

Figure 6b. Results for pause time t = 0.01 seconds.Figure 6a. Results for pause time t = 0 seconds.

Figure 7. Vehicle suspension model and simulation results for an empty vehicle.

5 MATLAB Digest www.mathworks.com

goal of this problem is to design a suspen-
sion system that minimizes the discomfort
the driver would experience when traveling
over a bump in the road. At the same time,
we must account for uncertainty in the mass
of the driver, passengers, and trunk load-
ings. We can modify the four parameters
that define the front and rear suspension
system stiffness and damping rate: kf, kr,
cf, cr. The masses of the driver, passengers,
and trunk loadings are uncertain and have a
normal distribution assigned to them.

A Monte-Carlo simulation is performed to
capture the different vehicle loadings. The
model outputs are angular acceleration about
the center of gravity (thetadotdot, ··θ) and
vertical acceleration (zdotdot, ··z).

The objective function, myCostFcnRR,
contains a Monte-Carlo simulation used to
evaluate the mean and standard deviation
of acceleration that the passengers would
experience (Figure 8). The goal is to mini-
mize the mean and standard deviations.

In a Monte-Carlo simulation, each run
is independent and therefore can benefit
from parallel computation. To convert the
problem from serial to parallel, we sim-
ply replace the for loop construct with
the parfor (parallel for loop) construct
(Figure 9). The objective statements inside
the parfor loop can then run in parallel,

speeding up the objective function evalu-
ation time.

The optimization problem was run for
three different values of nRuns, the num-
ber of points to evaluate in the Monte-
Carlo simulation. The results show that
parallelizing the objective function yielded
substantial performance gains (Figure 10).

Figure 8. Objective function used to run a
Monte-Carlo simulation within the optimi-
zation process.

Figure 9. Objective function modified to execute in parallel.

Figure 10. Results for the suspension system design problem.

Optimizer

Stop

Objective Function

Monte-Carlo Simulation

For k = 1 :N

Evaluate Model

6 MATLAB Digest www.mathworks.com

For More Information

■ Designing for Reliability and Robustness.
MATLAB Digest, January 2008
www.mathworks.com/company/robustdesign

■ Cleve’s Corner: Parallel MATLAB:
Multiple Processors and Multiple Cores,
The MathWorks News and Notes,
June 2007.
www.mathworks.com/company/
parallelmatlab

MATLAB Distributed Computing Server

Computer Setup

8 networked PCs configured with Linux 2.6, 2 dual-core AMD Opeteron 2.59 GHz

processors, 3 GB RAM.

91710v00 03/09

© 2009 The MathWorks, Inc. MATLAB and Simulink
are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional
trademarks. Other product or brand names may be trade-
marks or registered trademarks of their respective holders.

Selecting a Parallelization
Method
As the results show, it is best to select
a parallelization method based upon
where computational expense is encoun-
tered in the optimization problem. The
first example showed that it is possible
to see a reduction in performance even
after distributing computations if the
objective/constraint function execution
time does not exceed the communication
overhead. For the problem and hardware
configuration tested, we would need an
execution time of at least one millisec-
ond to see any benefit from parallelizing
the problem.

The second example showed that the
benefits obtained by performing parallel
computations can depend on the problem
being solved. Using the parallelism within
the objective function—that is, parallel-
ising the objective function itself—result-
ed in better performance than would have
been possible using the parallel comput-
ing option in Optimization Toolbox. In
this example, the execution time of the
objective function was the slowest part of
the optimization problem, and speeding
up the objective function resulted in the
greatest reduction in solution time.

In summary, when selecting a parallel -
i z ation approach it is important to consider
the number of available workers and the
execution time of the objective/constraint
function relative to overheads associated

with distributing computations across
multiple workers The built-in support in
Optimization Toolbox is beneficial for
problems that have objective/constraint
functions with execution times greater
than network overhead. However, parallel-
izing the objective/constraint function it-
self can be a better approach if it is the most
expensive step in the optimization prob-
lem and can be accelerated by parallelizing
the objective function. ■

www.mathworks.com/company/robustdesign
www.mathworks.com/company/parallelmatlab
www.mathworks.com/company/parallelmatlab

