# hex2num

Convert hexadecimal string to number using `quantizer` object

## Syntax

`x = hex2num(q,h)[x1,x2,...] = hex2num(q,h1,h2,...)`

## Description

`x = hex2num(q,h)` converts hexadecimal character vector `h` to numeric matrix `x`. The attributes of the numbers in `x` are specified by `quantizer` object `q`. When `h` is a cell array, `hex2num` returns `x` as a cell array of the same dimension containing numbers. For fixed-point hexadecimal representations, `hex2num` uses two's complement representation. For floating-point, the representation is IEEE® Standard 754 style.

When there are fewer hexadecimal digits than needed to represent the number, the fixed-point conversion zero-fills on the left. Floating-point conversion zero-fills on the right.

`[x1,x2,...] = hex2num(q,h1,h2,...)` converts hexadecimal representations `h1`, `h2`,... to numeric matrices `x1`, `x2`,....

`hex2num` and `num2hex` are inverses of one another, with the distinction that `num2hex` returns the hexadecimal representations in a column.

## Examples

To create all the 4-bit fixed-point two's complement numbers in fractional form, use the following code.

```q = quantizer([4 3]); h = ['7 3 F B';'6 2 E A';'5 1 D 9';'4 0 C 8']; x = hex2num(q,h) x = 0.8750 0.3750 -0.1250 -0.6250 0.7500 0.2500 -0.2500 -0.7500 0.6250 0.1250 -0.3750 -0.8750 0.5000 0 -0.5000 -1.0000 ```