
1

Advanced Model-Based-
System Design

Marc Herniter
EE - Rose-Hulman Institute of Technology

Zac Chambers
ME - Rose-Hulman Institute of Technology

Course Outline
• Modeling a series hybrid-electric vehicle

– Introduction to Simulink and SimDriveline
Models for the Driver Battery and Electric

2

– Models for the Driver, Battery, and Electric
Motors.

– Creating and Running Drive Cycles
– Models for Engines.
– Developing the hybrid-electric vehicle

t llcontroller.
– Measuring and predicting vehicle

performance.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Course Outline
• Real-Time Simulations (xPC)

– Stand-Alone Simulations
– Verify logical operation

3

– Give user feel of controls and vehicle operation
– Plant and controller on same target

• Introduction to CAN
– Message IDs
– Scaling and Offset
– Big Endian and Little Endian
– CAN Message Database
– Cabling, isolation, and termination

Course Outline
• Introduction to MotoHawk MotoTune tools.
• HIL Simulations (Real-Time)

– Separate the Plant from the Controller.

4

p
– Controller on real-time target.
– Plant on real-time target.
– V&V Using HIL RT Model

• Set up a standard set of tests for the series controller.
• Run standard set of tests, record and report results, indicate faults.

Verify communications interfaces and A/D inputs and outputs• Verify communications interfaces and A/D inputs and outputs.
• Verify that controller can execute control algorithm in specified time

step.
• Verify Communication data rates.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Advanced Model-Based-System
Design

Building a Large System ModelBuilding a Large System Model

Part 1
• Develop a basic model for a series hybrid

electric vehicle with models for
– Engine

6

– Engine
– Motor/Generator
– Battery
– Driver
– Powertrain

• Develop a controller for the vehicle

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Part 1 Outline
• Powertrain
• Battery Model

7

8

Almost

Final Model

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Electric Vehicle
• We will begin by creating a model for a

rear-wheel vehicle.
• In this model an electric motor is coupled

9

• In this model, an electric motor is coupled
directly to the rear wheels through a
differential.

• The specs of the vehicle are:
– Vehicle Mass: 3600 lbs
– Tire Radius: 16 inches
– Rear-Differential Ratio 3.73

Drive Train
• The drive train we will create is shown

below:

10

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Longitudinal Vehicle Dynamics
• The Longitudinal Vehicle Dynamics block

solves for the speed of the vehicle given:
– An input force Fxr

11

– An input force Fxr.
– A specified road grade (beta) in degrees.

• The calculation includes aerodynamic
drag.

• The block also calculates the normal force
on each wheel of the vehicle, which is
needed by the tire model.

Longitudinal Vehicle Dynamics 12

Input force applied
by the front tires.

Calculated speed of
the vehicle

Input force applied
by the rear tires. Calculated normal

force on the front
tires.

Calculated normal
Road grade in
percent.

Calculated normal
force on the rear
tires.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Longitudinal Vehicle Dynamics
• The Longitudinal Vehicle Dynamics block

is located in the Simscape / SimDriveline
/ Vehicle Components library

13

/ Vehicle Components library.
• Place a block in your model and then

double-click on it to set its parameters.
• We would like to understand how this

block works and what is inside this block.
• Set the parameters as shown next:

• We have set:
– the mass of the vehicle

to 1000 kg.
– The frontal area to

14

zero.
– The drag coefficient to

0.
• With this model, the

model reduces to amodel reduces to a
force accelerating a
mass.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Create the following model 15

Longitudinal Vehicle Dynamics
• All we are doing applying a 100 N force to

a 1000 kg mass.
• The drag was set to zero

16

• The drag was set to zero.
• The road elevation was set to zero.
• Thus, if we divide the applied force by the

vehicle mass and integrate, we should be
able to calculate the vehicle’s speed.able to calculate the vehicle s speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Lecture 1 Exercise 1
• Calculate by hand the speed of the vehicle

after 100 seconds assuming a vehicle mass
of 100 kg and an applied force of 100 N

17

of 100 kg and an applied force of 100 N
• Use basic Simulink blocks to make the same

calculation.
• Compare the vehicle speed using all three

methods:
– Longitudinal Vehicle Dynamics Block_______
– Simulink Basic Blocks _____
– Hand Calculations ____

Demo___________

Longitudinal Vehicle Dynamics
• Next, we would like to look inside the

block. We will do this in two steps:
– First look at the mask to see how parameters

18

– First look at the mask to see how parameters
are passed to the underlying model.

– Second, look under the mask to see the
Simulink used to implement this block.

• Right-click on the Longitudinal Dynamics
Bl k d l t Vi M k f thBlock and select View Mask from the
menu:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

19

20
Icon tab is selected.

The Icon tab is used to create port
labels and add a graphic to the block.labels and add a graphic to the block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

21
Parameters tab is selected.

Variable names used in the
underlying model.

The Parameters tab is used to create
parameters in the block’s dialog box
and associate variables to those
parameters that can be used by the
model.

22

Initialization tab is selected.

Constants used in the
underlying model.

The Initialization tab is used to create constants or make one-
time calculations that can be used by the underlying model.
Here, a number of constants are created. Or example gravity
(g) is set to 9.81.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

23
Documentation tab is selected.

When you click the help button,
this information will be
displayed.

This block is used to specify the documentation for the block.

24

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Longitudinal Vehicle Dynamics
• We will not change the mask, so click the

Cancel button.
• Next right click on the Longitudinal

25

• Next, right-click on the Longitudinal
Dynamics Block and select Look Under
Mask from the menu:

• You will see the underlying Simulink
model:

26

We will examine this model a little moreWe will examine this model a little more
closely. I will make some of the gain
blocks larger so that we can see how
they are defined.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

27
The forces on the front and
rear tires are added
together.

The sine of the road grade times the gravitational force is
the component of force that decelerates the vehicle (or
accelerates the vehicle if the grade is negative).

The gravitational force is subtracted from the two forces
applied by the front and rear tires.

28
Integrator to calculated the
vehicle speed.

The total force is divided by the vehicle mass and then
integrated to calculate the vehicle speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

29
The drag force is proportional to velocity squared times
the vehicle drag coefficient times the vehicle frontal area.

The drag force goes as the velocity of
the vehicle squared.

30

This block calculates the normal force on the frontg and
rear tires. We wont go there.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Subsystems Blocks and Masks
• We kind of understand what is inside the

Longitudinal Vehicle Dynamics block.
• We know how to mask a subsystem

31

• We know how to mask a subsystem.
• We know how to look under a mask.
• Many “blocks” in Simulink are actually

Simulink subsystems that have been
masked.masked.

Drive Train and Solver
• We will now create our the rear drive train and

vehicle solver for our system.
• We will begin creating the system below:

32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Initialization File
• The model that we will be creating will contain

hundreds of blocks.
• Most blocks will have numerical values.

33

• To give these numerical values meanings, we
will define them in a MATLAB scrip file, and add
documentation to the script file.

• We will define a number of MATLAB variables in
this m-file, use the variables to specify the , p y
values of various blocks, and then run the m-file
before every simulation.

• Name the file vehicle_Init_File.m

Vehicle Init File 34

• The numerical values of the blocks are
defined in the following few slides:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

35

Simscape / SimDriveline / Vehicle
Components / Tire

Given the vehicle speed and normal force on a
tire, the tire model converts an input torque to a
force in the x-direction. (This force is in the
direction that accelerates or decelerates the
vehicle.) We will only specify the tire radius. All
other parameters will be left at their default
value.

36

We will only

The normal force on the
rear axle is divided by two.
One half the normal force
on the rear axle goes toy

specify the
vehicle mass.
All other
parameters will
be left at their
default value.

on the rear axle goes to
the left rear tire and the
other half goes to the right
rear tire.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

37

Library Simscape / SimDriveline /Library Simscape / SimDriveline /
Gears / Differential

38

Library Simscape / SimDriveline /
Solver & Inertias/ Inertia

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

39

This drive line represents the half-shaft
that connects the rear differential to the
wheel (tire). The half-shaft is a rotating
element. Every rotating element must
have an inertia specified.

40

Library Simscape / SimDriveline / Solver
& Inertias/ Driveline Environment

You must have one driveline environment
blocked connected to a drive line in your
model. This is required by the solver.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Powertrain and Vehicle Solver
• We have now created a model of a rear-

wheel drive vehicle that requires a torque
input

41

input.
• We will test the system with a “motor” that

outputs a constant torque.
• The motor on the next slide was created

with a Constant and a Torque Actuator
(library Simscape / SimDriveline /
Sensors and Actuators.)

Constant Torque Source Model 42

Constant torque source.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

System Testing
• To verify that all of our models work are

the same, we will simulate the models for
200 seconds

43

200 seconds.
• Calculate the vehicle’s velocity at 200

seconds and generate a plot of the
vehicle’s speed versus time.

• Remember to remove the limitation on the
number of points a scope can display.

• (Continued on next slide…)

Lecture 1 Exercise 2
• System Testing
• Vehicle Terminal Velocity

Pl t f hi l d ti

44

• Plot of vehicle speed versus time.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Lecture 1 Exercise 3
• Most motors and engines have torque

curves.
• Implement a motor that has the following

45

• Implement a motor that has the following
torque curve:
– From 0 to 2000 rpm, the torque is constant at

200 Nm
– From 2000 to 7000 rpm, the torque decreases

li l tlinearly to zero.
• The torque is in Nm and the speed is in

rpm.

Lecture 1 Exercise 3
• You will need to sense the “motor” speed and

convert it to rpm.
• You can do this using a 1-D lookup table.

Pl t th hi l l it d d t i th

46

• Plot the vehicle velocity and determine the
vehicles velocity after 200 seconds.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Model Hierarchy
Battery Model

Model Hierarchy

• Although the model we have developed is
still fairly simple, as we add models for the
b tt i d t th d l ill

48

battery, engine, and motors, the model will
become quite large and cumbersome.

• We will break the model into subsystems
that represent specific vehicle
components.

• Our present model has blocks that
represent the motor, the rear differential,
and body.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

49

Motor

Rear Diff and
BodyBody

Model Hierarchy
• We will make a subsystem out of the

powertrain.
• Select all of the components you wish to

50

• Select all of the components you wish to
place in the subsystem by dragging a
selection box around the components.

• Right-click on the selected components
and select the Create Subsystem menu
selection.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

51

All parts but the “motor”
selected because only the

powertrain model
components will go in the

subsystem.

52

Right –click on one of the
selected components and
select Create Subsystem
from the menufrom the menu.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

53
After creating the subsystem we have the top level block
diagram as shown:

Click on the text “Subsystem” and change the text to “Rear
Diff and Body”

Double-click on the Rear Diff and Body subsystem block to
open it:

54
Scope

was here.

•Clean up the model by rearranging the

SimDriveline
port.

SimDriveline port and deleting the scope
(if it is in your model).

•Rename the SimDriveline port as “Diff
Input.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

55

Rear Diff and Body Subsystem
• This block models the physics in which we

are interested.
• We would like to create a status bus that

56

e ou d e o c ea e a s a us bus a
contains the vehicle speed, and tire
speeds.

• We need to convert the tire speed from r/s
to mph.

• We need to convert the vehicle speed• We need to convert the vehicle speed
from m/s to mph.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

Conversions

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×=

mile
H

smspeedmphSpeed
1609

1
1

sec3600)/()(

57

⎟
⎠

⎜
⎝

⎟
⎠

⎜
⎝ metersHour

ppp
16091

)()(

Linear Speed = angular speed (rad/sec)
times Tire Radius

58

The constant Tire_Radius is
defined in the init file.

Gain blocks are shown
enlarged on the next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

59

Rear Diff and Body Diagnostics
• The last thing we need to do is create the

diagnostics bus for this block.
• Use the bus creator part

60

• Use the bus creator part
(Simulink/Commonly Used Blocks)

• Add the following signals
– Passenger_Tire_Speed_mph
– Driver Tire Speed mph_ _ p _ p
– Vehicle_Speed_mph

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

61

Double-click here.

Change to 3.

Bus creator after making
change.

62

An enlargement of the changes are shown on the next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

63

Diagnostic Bus
• We need to make the information available

on this diagnostic bus available outside
this block

64

this block.
• Add an “Out1” port

(Simulink/Commonly Used Blocks) to
the diagram and label it as “Powertrain
Diagnostics.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

65

When we close this subsystem and return to the top level, we
see the following model:

• We will be developing a new motor model, so we
can remove the simple constant torque source
that we initially used for the motor.

• The top level block diagram will only contain one
subsystem after deleting the motor:

66

• Next, we will create a model for the battery.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

Battery Model

• We will now create a battery model that
calculates the battery terminal voltage and

67

y g
battery state of charge (SOC).

• The inputs to the model are the two motor
currents that we will have in the vehicle.
(You can also add an input for the vehicle
hotel loads.))

• The outputs of this block are the battery
voltage and a diagnostic bus that contains
battery signals of interest.

Battery Terminal Voltage
• We will use the first order model below:

68

RSeries

IBAT

VOC

Series

+

VBAT

-
VBAT = VOC + IBAT*RSeries

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

Battery Terminal Voltage 69

I
+

RSeries

C t i d fi d iti i t th b tt

IBAT

VOC

-

VBAT

• Current is defined as positive into the battery.
• Positive current charges the battery and

increases the battery SOC.

Battery Model

• For now, the open circuit voltage (VOC) and the
battery series resistance (RSeries) are a constant.

70

• As our understanding of the model increases,
we can make the battery model less ideal by:
– Making VOC a function of SOC and Temperature
– Making RSeries a function of the SOC and temperature.
– Having a different charge and discharge series

resistances.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

Battery Model
• We will now create a subsystem and

implement the equation for the battery
voltage

71

voltage.
• Place a Subsystem block in the top level

of your model (Simulink\Commonly
Used Blocks)

72

Highlight the text “Subsystem” and change it to
“Battery.” This will name the subsystem.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

73
Double-click

here.

Subsystem name
changed.

Next, double-click on the subsystem to
open it.

74

•This subsystem has a single input and a single output.

•The output is just equal to the input.

•Delete the connection between the input and output.
(Click on the wire and press the delete key.)

•Duplicate In1 by

•Holding down the control key and then dragging In1•Holding down the control key and then dragging In1
to a new location.

•Right-click on In1 and drag it to a new location.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

75

•In1 and In2 will be the motor and generator currents. The
total battery current will be the sum of these two inputs.total battery current will be the sum of these two inputs.

•Click on the text In1 and change it to Motor_Current_A.

•Click on the text In2 and change it to Generator_Current_A.

76

•Next, we would like to form the battery current as the sum of the motor
and generator currents.
• Place the sum part (Simulink/Commonly Used Blocks) in your model
and connect the two inputs as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

77

•We would like to use the battery current in a few places
so we will add a “Goto” part to our model. This part is
located in the Simulink/Signal Routing library.

D bl li k th G t t t h th l b l

Double-click
here.

•Double-click on the Goto part to change the label.

78

Si th t t “A” i hi hli ht d j t t i t f th• Since the text “A” is highlighted, we can just type in a new tag for the
Goto part.

• Enter the text, “Battery_Current_A” and click the OK button.

• You may need to change the size of the Goto part to see the label.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

79

Right-click on the Battery_Current_A Goto part and select Format/Hide
Name from the menus to hide the text “Goto.”

Right-click here.

Battery Model
• Next, we will calculate the battery terminal

voltage as VBAT = VOC + IBAT*RSeries
• VOC and RSeries are constants defined with

80

OC a d Series a e co s a s de ed
the init file and read from the workspace.

• Create the model shown next.
• Use Parts:

– Constant (Simulink/Commonly Used Blocks)
Sum (Simulink/Commonly Used Blocks)– Sum (Simulink/Commonly Used Blocks)

– Product (Simulink/Commonly Used Blocks)
– From (Simulink/Signal Routing)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

81

• Right click on all of the components and
select Format/Hide Name to clean up the
model.

82

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

Battery Constants
• The battery open circuit voltage and series

resistance are defined in the init file that
will be run before every simulation

83

will be run before every simulation.
• The numerical values for these constants

should be documented by your battery
manufacturer.

• We will use typical values for a 336 V
NiMH battery pack.

84

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

Battery State of Charge
• The unit of an Amp-Hour is an amount of

charge in coulombs.
• 1 Amp = 1 coulomb / 1 second

85

• 1 Amp = 1 coulomb / 1 second.
• 1 Hour = 3600 seconds.
• 1 Amp-Hour = 1 amp * 1 Hour = 3600

coulombs.

Battery State of Charge (SOC)
• The battery amp-hour rating is a measure

of how much charge the battery stores.
• The battery SOC is a measure in percent

86

• The battery SOC is a measure in percent
(0% to 100%, or 0 to 1)of how much
charge is stored in the battery relative to
the full AH rating.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

Battery SOC
• To calculate the SOC, we need to know

the initial SOC and then calculate how
much charge has been added or removed

87

from the battery.
• The charge added or removed is

calculated by integrating the battery
current.

• We then divide the battery charge by theWe then divide the battery charge by the
amp-hour rating of the battery to obtain the
SOC.

Battery SOC
• The initial SOC is a constant defined in the

vehicle model init file, and read from the
workspace.

88

• Use an integrator to integrate the
battery current. (Simulink/Commonly
Used Blocks)

• Scale the integrated current by 3600 to
convert charge to amp-hours. (Use theconvert charge to amp hours. (Use the
gain block. Simulink/Commonly Used
Blocks)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

45

89

Amps
Amp-Seconds Amp-Hours

(Added or Removed)

•Next, divide the Amp-Hours added or removed by the battery Amp-
Hour Rating to calculate the SOC added or removed.

•Use the Divide part (Simulink/Math Operations).

•The battery Amp-Hour rating is a constant defined in the init file.

90

N t dd th SOC dd d d t th b tt

SOC
(Added or
Removed)

We could also
do this with a
gain block.

•Next, we add the SOC added or removed to the battery
initial SOC to calculate the battery’s current SOC.

•Use the Sum part (Simulink/Commonly Used Blocks).

•The battery initial SOC is a constant defined in the init file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

46

91

•The battery SOC will not be used by other components in
the model but it will be used by our supervisory controller.the model but it will be used by our supervisory controller.

•We do not need an output port for this parameter.

•We will add a Goto port to this parameter.

•Later, we will add this signal to our status bus.

92

•We will clean up the model slightly.

•The entire model is shown on the next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

47

93

Battery Diagnostics
• The last thing we need to do is create the

battery diagnostics bus.
• Use the bus creator part

94

• Use the bus creator part
(Simulink/Commonly Used Blocks)

• Add the following signals
– Battery Voltage
– Battery Currenty
– Battery SOC

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

48

95

Double-click here.

Change to 3.

Bus creator after making
change.

96Complete the model as shown below.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

49

Initialization File Changes
97

When we go to the top level block diagram,
th b tt b t h ld h ththe battery subsystem should show the
inputs and outputs that we defined.

Top Level Block Diagram
• The top level block diagram now contains

two blocks.

98

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

50

Lecture 1 Exercise 4
• Show your completed Battery and Rear Diff

and Body subsystems.
• Run a simulation that shows that your

99

• Run a simulation that shows that your
Battery:
– Produces the correct output voltage for a given

input current.
– Calculates the correct battery state of charge for

i i t ta given input current.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 2: Motor Model andLecture 2: Motor Model and
Display Subsystem

Electric Motor Model
• Create an ideal motor that converts

electrical power to mechanical power with
100 percent efficiency

2

100 percent efficiency.
• This model will work for both regen and

motoring modes. The conversion equation
is:

MotorMotorBatteryMotorVI ωτ=−

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Electric Motor Model

• The battery voltage is always positive.
• When the motor torque is in the same

3

When the motor torque is in the same
direction as the motor shaft velocity, the
motor accelerates the vehicle. (Motoring
mode.)

• In this mode, the motor will draw current
f h b Thfrom the battery. The motor current
should be negative to discharge the
battery.

MotorMotorBatteryMotorVI ωτ=−

Electric Motor Model

• When the motor torque is in the opposite
di ti f th t h ft l it th

4

direction of the motor shaft velocity, the
motor is decelerating the vehicle.
(Regenerative braking mode).

• In this mode, the motor will force current
into the battery. The motor currentinto the battery. The motor current
should be positive to charge the battery.

MotorMotorBatteryMotorVI ωτ=−

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Electric Motor Model
• This motor model has a flat torque curve.
• The motor has the same available torque

at any rpm

5

at any rpm.
• The motor is 100% efficient.
• This is a simple model to get started. We

can always make the model more
complicated as our understanding of thecomplicated as our understanding of the
system increases.

Electric Motor Model
• Model Inputs (Simulink):

– Battery Voltage
– Torque Request (-1 to 1);

M d l O (Si li k Si l)

6

• Model Outputs (Simulink Signals):
– Motor Current
– Motor Diagnostics

• Motor rpm
• Motor Torque
• Motor Current

M d l O t t (Si D i li)• Model Outputs (SimDriveline):
– Motor Torque

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

7

Place a new subsystem part (Simulink/Commonly
Used Blocks) in your circuit and change the name
to “Electric_Motor.”

Double-click on the subsystem block to open it:

Motor Model
• We have two Simulink inputs and two

Simulink outputs.
– Delete the line between the input and output

8

p p
ports.

– Duplicate the input and output ports
– Rename the ports:

• Battery_Voltage
• Torque_Request

M t C t• Motor_Current
• Motor_Diagnostics

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

9

We also have one SimDriveline connection port
(SimDriveline/Utilities).

Place this part in your model and rename it as
“Motor_Port.”

10

We now have all of the input and output ports forWe now have all of the input and output ports for
our motor model. All that is left is for us to build
the actual model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

11

•We will assume that the motor output torque can
range from 0 to the maximum output torque.

•The maximum torque is a constant defined in the
init file.

•Remember that the torque request signal is a
number from -1 to 1.

•The Torque Actuator part is located in the
SimDriveline/Sensors & Actuators library.

•The inertia part is located in the
SimDriveline/Solver & Inertias library.

12

The inertia part specifies the inertia for all rotating parts of the motor. We
will define this inertia in the init file. Double-click on the inertia part and
change the value to “Motor_Inertia.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

13
We should find the inertia from the motor specifications or
measure the inertia. Once a value is obtained, we will specify
it in the init file:

Next, we can calculate the motor current as

Battery

MotorMotor
Motor V

I ωτ
−=

Use a Motion Sensor (SimDriveline/Sensors &
Actuators) to measure the motor shaft speed in r/s.

14

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Motor Diagnostics
• The last thing we need to do is create the

motor diagnostics bus.
• Use the BUS Creator part

15

• Use the BUS Creator part
(Simulink/Commonly Used Blocks)

• Add the following signals
– Motor_rpm
– Motor torque Nm_ q _
– Motor_Current_A

Motor Diagnostics
• The Motor torque and motor current are

already available.
• Motor speed is available but is in radians

16

• Motor speed is available, but is in radians
per second. To convert r/s to rpm, multiply
by 60/(2*pi).

• To change the number of bus inputs,
double-click on the bus creator part and
change the number from 2 to 3.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

17

Double-click here.

Change to 3.

Bus creator after making
change.

18

Complete the model as shown below.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Vehicle Model
• When you close the motor model, the

motor model subsystem should have the
input and outputs as shown:

19

input and outputs as shown:

Top Level Block Diagram 20

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Vehicle System
• We now have enough subsystem

components to create a simple vehicle.
We will create the beginning of a series

21

We will create the beginning of a series
hybrid electric vehicle by using
– The electric motor drive the rear diff.
– The electric motor draw power from the

battery.
• Connect the blocks as shown:

22

The motor port is not in a convenient location to connect it to the rear
diff. We can fix this problem by:

•Double-clicking on the Electric_Motor subsystem to open it.

•Double-clicking on the “Motor_Port” part to open its dialog box.

You will see the dialog box shown next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

23
Double-click here.

Change this to right.

After making this change, we can easily connect the motor and rear diff.

24

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Vehicle System Diagnostic Bus
• Before continuing, we would like to create

the system diagnostic bus that contains
every diagnostic signal in the model.

25

• Each subsystem block already has its own
diagnostic bus.

• Creating the vehicle system diagnostic bus
is just a matter of merging the individual
busses using the bus creator partbusses using the bus creator part
(Simulink/Commonly Used Blocks).

26

First, use the Goto part (Simulink/Signal Routing)
to make connections to the subsystem busses.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

27

Create the Vehicle System Diagnostic Bus using the
From part (Simulink/Signal Routing) and the Bus
Creator part (Simulink/Commonly Used Blocks)

28

Top Level Block Diagram

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Vehicle Driver Block
• This block allows us to follow a drive cycle.
• The input to this block is the vehicle’s present

29

p p
speed.

• The output is a torque request (-1 to +1) that
tells the car to speed up or slow down.

• Note that the driver block is not part of the
physical system. It is for simulation purposesphysical system. It is for simulation purposes
only and generates a torque request that would
normally come from the vehicle’s accelerator
and brake pedals.

Vehicle Driver Block
• This is a classic feedback system where:

– we compare the desired speed to the actual
speed

30

– create an error signal
– amplify the error signal,
– pass that signal to the plant (which is our

vehicle).
• The desired speed will be stored in a

variable.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Vehicle Driver Block

• Create a subsystem with one input and
one output by placing the Subsystem
bl k i t l l bl k di

31

block in your top level block diagram.
• The input to this block will be the Vehicle

System Diagnostics bus which will contain
the speed of the vehicle.

• Rename the subsystem “Driver ”• Rename the subsystem Driver.

Driver Block
• Open the driver block.
• Rename the input port to

“Vehicle System Diagnostics ”

32

Vehicle_System_Diagnostics.
• Use the Bus Selector part

(Simulink/Commonly Used Blocks) to
extract the Vehicle_Speed_mph signal.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Driver Block
• We will now create the feedback system

that compares the actual vehicle speed to
the desired speed and creates an error

33

the desired speed and creates an error
signal.

• For the moment, the desired speed will be
a constant of 60 mph.

Driver Block
• The output of the error amplifier

determines the torque.
• Depending on the gain and how far off the

34

• Depending on the gain and how far off the
speed is, the torque signal can be from
–(big number) to +(big number).

• We would like to limit the torque signal to
±1.

• Use the Saturation part located in the
Simulink/Commonly Used Blocks
library.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

• A driver torque request of -1 means full braking.
• A driver torque request of +1 means full

acceleration.
• Specify the limits of the saturation part as +1

and 1

35

and -1.
• Rename the output terminal to “Driver Torque

Request.”

• The saturation limits are specified as
shown:

36

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Driver Block
• The top-level view of the driver block looks

as shown:

37

as shown:

Top Level Block Diagram 38

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Display Subsystem
• We are now ready to run a simulation.
• The current driver block uses a constant

for the vehicle speed so the vehicle

39

for the vehicle speed, so the vehicle
should accelerate up to a constant speed
of 60 mph and hold the speed constant.

• For diagnostic purposes, we may want to
create several plots to display various
signals in different configurations.

• We will also use this subsystem to log
data.

Display and Logging Subsystem
• We will create a subsystem with a single

input (the vehicle system diagnostic bus)
and no outputs:

40

and no outputs:

• We will show two methods of creating a
display The first method will use a Scopedisplay. The first method will use a Scope
block. The seconds will be shown later
and use the Signal and Scope Manager.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Display Subsystem
• Inside the display subsystem, we will use

the Bus Selector part
(Simulink/Commonly Used Blocks) and

41

the Scope (Simulink/Commonly Used
Blocks) to create a display of the
important signals.

Display Subsystem
• Creating the previous model took several

steps.
• When you place the bus selector and

42

• When you place the bus selector and
scope parts, the two parts do not have the
desired number of inputs and outputs:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Creating the Display
• Double-click on the Bus Selector part

43

Creating the Display
• Remove the signals ??? Signal1 and ???

Signal2.

44

• Click on the +• Click on the +
signs in the
“Signals in the
Bus” window
to view the

il blavailable
signals.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Creating the Display
• Select the signal you want to extract and

then click the Select button.
• Select the signals in the order you want

45

Select the signals in the order you want
them to appear on the bus extractor.

Creating the Display
• Click the OK button and resize the Bus

Selector part.

46

• Next, double-click on the Scope part:
Double-click here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

47

Click on this button.

• Click on the Parameters button

Change this to 5.

48

Click on the Data history
Tab.

Click here to uncheck this
box. Deselecting this boxbox. Deselecting this box
will display all data in our
simulation.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

49

Box unchecked.

Click the OK Button.

Close the scope
window and returnwindow and return

to the model.
Resize the scope
part and connect

the signals.

50

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

Running a Simulation
• We are now ready to set up and run a

simulation.
• Select Simulation and then Configuration

P t f th Si li k

51

Parameters from the Simulink menus.
• Specify the Stop time as 60 (seconds).
• Specify ode23tb as the Solver.

52

Set to 60.

Select ode23tb

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

Simulation Diagnostics
• We would like to enable some diagnostics

to help us identify potential errors or
problems in our model

53

problems in our model.
• Select Diagnostics and specify Algebraic

Loops to generate an error.

54

Diagnostics selected.

Set to error.

Set to error.

• These selections will highlight an algebraic
if one is detected.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

Running the Simulation
• Click the OK button.
• Select Simulation and then Start from the

Simulink menus or click the play button

55

Simulink menus or click the play button.
• It appears that we have an error.

Algebraic Loop
• The top-level block diagram shows that

there is an algebraic loop formed between
two of our subsystems The Algebraic loop

56

two of our subsystems. The Algebraic loop
is highlighted in red:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

Algebraic Loop
• If you look inside the Electric_Motor Subsystem, you

will see the offending components in that subsystem:

57

In order for Simulink to calculate the motor current, it
needs to know the battery voltage.

Algebraic Loop
• If you look inside the Battery Subsystem, you will see

the offending components in that subsystem:

58

In order to calculate the battery voltage, Simulink
needs to know the motor current?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

Algebraic Loop – The Loop
• In the motor model, to calculate the motor

current, Simulink needs to know the
battery voltage.

59

• In the battery model, to calculate the
battery voltage, Simulink needs to know
the motor current?

• Thus, Simulink does not have the
information it needs to make thisinformation it needs to make this
calculation.

Aglebraic Loop
• We can break this loop by adding a

Memory part (Simulink/Discrete)
to

60

to

either the Battery model or the motor
model.

• We will add it to the Electric Motor modelWe will add it to the Electric_ Motor model
as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

61

•The memory block is a one time step delay. In the division
calculation, Simulink will use the battery voltage from the
previous time step. Thus the battery voltage is know, and
Simulink can calculate the motor current.

•Rerun the simulation and see if this fixes the problem.

• The problem is fixed, but we get another
error.

62

• Click on the link to jump to the error.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

63

According to the error
message, this signal mustmessage, this signal must

be Infinite, or Nan.

Error
• How can the battery current become

Infinite?
• Looking at the motor model we calculate

64

• Looking at the motor model, we calculate
the motor current (which becomes the
battery current) as the requested motor
power divided by the battery voltage.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

65

For the first time step what is the input to the Divide block?•For the first time step, what is the input to the Divide block?

•The Memory block outputs the value from the previous time step.

•For the first time step, what is the previous value.

•If the block outputs a 0, we get a divide by zero, and the Divide block either outputs
Inf or Nan.

•We need to move the Memory block somewhere else to eliminate the algebraic loop.

66

Memory block removed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

67

Memory block added to the
battery model.

Rerun the Simulation 68

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

Lecture 2 Exercise 1
• The Simulation Runs!
• There appear to be some problems with

our physical model

69

our physical model.
• Demonstrate the operation of your model.
• The Speed Approaches 60 mph, but there

are problems in the rpm signal.

Demo___________

Advanced Model-Based-System
Design

Debugging the ModelDebugging the Model

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

Debugging the Model
• The previous slide had a problem with the

motor rpm, battery voltage, and battery

71

current:

72

Vehicle speed
OK.

Motor rpm spikeMotor rpm spike.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

Model Debugging
• With a direct drive system, how can the

vehicle speed follow a different curve than
the motor speed?

73

the motor speed?
• The wheels must be skidding.
• We will verify this with another plot which

we will add to the Display subsystem.

74

•If there is no skidding, the tire speeds should be the same as the vehicle
speed.

•Run the simulation

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

75

Zoom in here.

76

Tire speed same
as vehicle speed.

Tire speed
different than
vehicle speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

Debugging the Model
• Lets look at the torque request coming

from the driver request block.
• Open the driver block and add a scope to

77

• Open the driver block and add a scope to
the driver torque request signal.

Rerun the simulation and view the scope.

78

Max torque (1).

Tire skidding
happens here.

Vehicle cruising g
at 60 mph here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

Model Debugging
• It looks like the tire skidding occurs when

we have a large change in the driver
torque request

79

torque request.
• We can fix this by adding a Rate Limiter

to the driver torque request.
(Simulink/Discontinuities)

80

•The rate limiter places a limit on how fast
a signal can increase or decrease.

•The default rising and falling rates are
1/second.

•We will use the default values.

•Since the driver torque request signal is
between -1 and +1

•Our motor will go from no torque (0)•Our motor will go from no torque (0)
to full torque (1) in one second.

•Our motor will go from full forward
torque (1) to full reverse torque (-1) in
two seconds.

Run a simulation with the rate limiter.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

81

Things are
worse!

82

Motor rpm going
negative.

What do you
notice about
this?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

Model Debugging
• Let’s remove the rate limiter since it made

things worse.
• Let’s plot the motor torque using a scope

83

• Let s plot the motor torque using a scope.

Rate limiter
removed.

84

Scope added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

85

Tire skidding
h hhappens here.
Zoom in on this
section.

86

Traces in nature
are very rarely
straight. Usually
things are curved.

Zoom in someZoom in some
more.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

87

Simulation point.
Simulation point.

p

Looks like a
t i ht listraight line

connecting two
simulation points.

Model Debugging
• Another hint comes from the MATLAB

command window.

88

What is this?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

45

89

Warning: Using a default value of 1.2 for maximum
step size. The simulation step size will be equal
to or less than this value.
You can disable this diagnostic by setting
'Automatic solver parameter selection' diagnostic
to 'none' in the Diagnostics page of

•It looks like Simulink can take a step size as large as 1.2 seconds between
simulation points.

•This is a large time step for our simulation. From the previous slides, it looked
like we had a step of 0.35 seconds that was too large.

g p g
the configuration parameters dialog.

p g

•Let’s try a smaller step size.

•Select Simulation and then Configuration Parameters from the Simulink
menus.

•Change the Max Step size from Auto to 0.01 (seconds)

90

Changed to 0.01.

•This parameter specifies that the maximum time
between simulation points will be 0 01 seconds (Itbetween simulation points will be 0.01 seconds. (It
can be smaller if necessary.)

•Rerun the simulation with this change.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

46

91

Model Debugging
• Everything looks great.
• Our error was numerical rather than

something nonphysical or too ideal in our

92

something nonphysical or too ideal in our
model.

• Later we will have problems because our
system is too ideal, such as torque spikes
and negative battery voltages.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

47

Lecture 2 Exercise 2
• We would like our vehicle to be able to

accelerate from 0 to 60 mph in 9 seconds.
• Determine:

93

• Determine:
– Required motor torque________ (Nm)
– Required battery current __________ (A)
– The peak motor power __________ (kW)

• How does our model breakdown if the
motor current is too large?

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 2: Drive Cycles andLecture 2: Drive Cycles and
Advanced Models

Following a Drive Cycle
• Next, we will have the vehicle follow a

simple drive cycle.
W ill t ll d F

2

• We will use a part called From
Workspace (Simulink/Sources) to read in a
2-D variable.

• Using the init file, define a variable called
Sch Cycle. This is two dimensional matrix. _ y

• The first column contains the time values
and the second column contains the
speed values:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Following a Drive Cycle
• Sch_Cycle =

• 0 0
• 10 0

3

10 0
• 15 30
• 20 30
• 30 40
• 40 40
• 55 70
• 70 70
• 80 30

90 30• 90 30
• 100 0
• 120 0

• >> Your init file should look like the following:

Following a Drive Cycle 4

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Following a Drive Cycle
• Run the init file to load the variables into

memory.
• In the Driver block add the From

5

• In the Driver block, add the From
Workspace part which is located in the
Simulink/Sources library.

6

Constant block replaced p
with From Workspace
block.

Double-click on
the From
Workspace block
and modify as
shown:

Changed to Sch_Cycle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Following a Drive Cycle
• Click the OK button to save the changes.
• Set the simulation time to run for 120

seconds

7

seconds.
• Run the simulation and view the plot:

8

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Following a Drive Cycle
• We see that the vehicle does follow the

specified profile.
• Since there are no mechanical brakes, the

9

S ce e e a e o ec a ca b a es, e
motor is responsible for slowing the
vehicle. Regen braking is working.

• We see the battery discharge as the
vehicle accelerates.

• We see the battery charge as the vehicle• We see the battery charge as the vehicle
decelerates.

Following a Drive Cycle
• One question we have is how close does

the vehicle follow the drive cycle.
• We need to add a diagnostic output to the

10

e eed o add a d ag os c ou pu o e
driver block to display the Sch_Cycle
signal.

• We need to add this signal to the Vehicle
System Diagnostic bus.

• We need to display this signal on the• We need to display this signal on the
same plot as the vehicle speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Modified Driver Block 11

Top Level Block Diagram 12

This part added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Top Level – Vehicle System
Diagnostic Bus

13

This part added.

Display Modifications 14

When we run the simulation, we see that the
vehicle has a little trouble following the drive
cycle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

15

Advanced Model-Based-System
Design

Reading Drive Cycles in ExcelReading Drive Cycles in Excel

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Drive Cycles
• Drive Cycles are available from several

sources and in several different formats.
• We will use Excel to store our drive cycles

17

• We will use Excel to store our drive cycles
since Excel can be used to easily modify
the cycles.

Drive Cycles
• Create a directory called Drive_Cycles in

your current working directory.
f

18

• We will keep all of our drive cycles in this
directory.

• Copy the drive cycles that were provided
for this class to this directory

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

AVL Drive Cycle
19

The Sch_Cycle tab contains the time
and speed coordinates for the cycle.

Sch Cycle Tab.

TimeTime
(seconds) Speed

(mph)

Drive Cycles
• The speed in the Sch_Cycle worksheet is

in mph.
• For the moment all we will use is the

20

• For the moment, all we will use is the
Sch_Cycle information for vehicle speed.

• The Excel file contains information for the
brake pedal, gear selection, grade, and
key on.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Drive Cycles
• As your model progresses, you may use

some of the other signals.
• For now we will read in all of the

21

• For now, we will read in all of the
information, but we will only use the
vehicle speed information.

• We will place the following code in our init
file to read in the excel drive cycle file and
store it in MATLAB variables.

22

%Read a drive cycle contained in an excel spreadsheet.
if (exist('fn') == 0)|(fn==0)

fn='Drive_Cycles\sch_fu505.xls';
else

fn=['Drive_Cycles\',fn];
end
[fn,pn]=uigetfile('Drive_Cycles\sch*.xls','Specify an Excel Schedule File Name',fn);
name=[pn,fn];
Sch_Cycle = xlsread(name, 'Sch Cycle');
Sch_Brake_on = xlsread(name, 'Sch Brake On');
Sch Gear on = xlsread(name 'Sch Gear On');Sch_Gear_on = xlsread(name, Sch Gear On);
Sch_Grade = xlsread(name, 'Sch Grade');
Sch_Key_on = xlsread(name, 'Sch Key On');
%Convert the grade from percent to radians.
Sch_Grade(:,2)=atan(Sch_Grade(:,2)/100);

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

23

if (exist('fn') == 0)|(fn==0)
fn='Drive_Cycles\sch_fu505.xls';

else
fn=['Drive_Cycles\',fn];

endend

If variable fn exists (the file name was
previous selected), use the old name as the
default file name.

If variable fn has not yet been defined, use
file name sch_fu505.xls as the default file
name.

24

[fn,pn]=uigetfile('Drive_Cycles\sch*.xls','Specify an Excel
Schedule File Name',fn);
name=[pn,fn];

Open a Windows style file name selection
box. This function returns the file name and
the path.

Concatenate the path and file name into one
string.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

25
Sch_Cycle = xlsread(name, 'Sch Cycle');
Sch_Brake_on = xlsread(name, 'Sch Brake On');
Sch_Gear_on = xlsread(name,'Sch Gear On');
Sch_Grade = xlsread(name, 'Sch Grade');
Sch_Key_on = xlsread(name, 'Sch Key On');

Read individual worksheets into separate
variables.

Drive Cycles
• Run this section of code.
• Select the AVL drive cycle.

Di l t t f i bl S h C l

26

• Display contents of variable Sch_Cycle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

27

Contents of Variable Sch_Cycle
28

>> Sch_Cycle

Sch_Cycle =

0 0
5 0
15 25
35 25
37 18
57 18
72 46
92 46

107 56
127 56
148 32
167 0
180 0

>>

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Drive Cycles
• If you remember, the Driver block uses the

contents of variable Sch_Cycle as the
drive cycle

29

drive cycle.
• We can now easily run predefined drive

cycles.

Drive Cycles
• Let’s plot the drive cycles to see what they

look like.
• Use the code below to plot the drive cycle

30

• Use the code below to plot the drive cycle.

plot(Sch_Cycle(:,1),Sch_Cycle(:,2));
l b l('Ti ()')xlabel('Time(s)');

ylabel('Speed (mph)');

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

AVL Drive Cycle
31

FU505 Drive Cycle
32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Consumer Reports City
33

Drive Cycles
• Each cycle runs for a different length of

time.
• We would like to automatically specify that

34

• We would like to automatically specify that
a simulation runs for the length of the
cycle.

• Use the command below to obtain the last
time point in the cycle:

Sch_Cycle(end,1);

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Drive Cycles
• This command can be used as the stop

time in the Configuration Parameters
dialog box

35

dialog box.
• Select Simulation and then

Configuration Parameters from the
menus, and enter the command as shown:

36

The last time point in the drive
cycle will be used as the ending
time for the simulation.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Automatically Run Init File
• We want to run the init file every time we

run our model.
• We can do this in Simulink using a Call

37

• We can do this in Simulink using a Call
Back function.

• Open the model and right-click on some
empty space in the model and select
Model Properties from the menu:

38

In the dialog box that
appears, select the
Callbacks tab and
select InitFcn:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

39

Enter the name of
the initialization
file here and then
click the OK
button

With this setting, our init file will run each
time we run a simulation.

Running a Simulation
• When we run a simulation, it will

automatically run the init file which will
– Define all of our model parameters

40

– Define all of our model parameters.
– Read in a drive cycle.

• Run a simulation and make sure that
everything works

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

AVL Drive Cycle Results 41

FU505 Drive Cycle Results 42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Lecture 3 Exercise 1
• You may notice that it takes a long time to

read Excel files.
• To shorten the time it takes to run the

43

• To shorten the time it takes to run the
initialization file, we would like to store and
read drive cycles as MATLAB .mat files.

• Part 1
– Write an .m file that asks the user to select an

excel drive cycle, reads the variables from
that file, and saves the variables in a .mat file
with the same name.

Lecture 3 Exercise 1
• Part 1: Write an .m file that:

– Clears all variables from the MATLAB workspace.
– Asks the user to select an excel drive cycle and reads

44

information in the file and stores the data with the
same names as used when reading drive cycles with
Excel.

– Clears variables fn and pn from the workspace.
– Saves the drive cycle variables in a .mat file with the

same name as the excel file except with a .mat p
extension..

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Lecture 3 Exercise 1
• Part 2:

– Create a new init file that is the same as the original
init file except that the drive cycle is read as a .mat file

th th l fil

45

rather than an excel file.
– Using drive cycle “sch_fu505 ten times.xls”, compare

the time it takes MATLAB to complete each of your
init files.

– Use the tic and toc functions to see how long it haves
to run each script file.

Demo___________

Vehicle Modeling
• At this point we have

– An electric vehicle model.
The structure to make a more complicated

46

– The structure to make a more complicated,
detailed, and accurate model.

• We could head off in several directions
– Add an engine.
– Charge the battery.
– Other

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Model Based Design
• The important thing is to add detail slowly

and verify the accuracy of our models as
we add detail

47

we add detail.
• We will do the following:

– Add detail to the motor model.
– Add detail to the battery model.

Electric Motor
• Add a torque curve.
• Make the motor less than 100% efficient.

48

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Torque Curve
• Obtain the torque versus rpm curve for

your motor from the manufacturer or use
measured data

49

measured data.
• Place the data in an excel file.
• Read the excel files into the MATLAB

workspace.
• Use a table lookup to use the data in yourUse a table lookup to use the data in your

model.

Vendor Supplied Torque Curve
Rpm Torque (Nm)
0 370
1200 361
1400 319

50

1600 260
1700 242
2000 190
2200 170
2400 128
2600 120
3000 793000 79
3500 60
4000 51
4500 40
5000 30
6000 10
7000 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

Component Data

• We will place this data in an excel file and
read it using the xlsread function.

51

read it using the xlsread function.
• We will place all component data files in a

directory called “Component Data.”

Motor rpm Data
• We will place the rpm data and the torque

data in separate worksheets.
• This is not required It just makes it easier

52

• This is not required. It just makes it easier
to split up the two parts of the table.

• The two worksheets are shown next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

53

Rpm data. This worksheet was named Max_Torque_rpm_Axis.

Torque data. This worksheet was named Max_Torque.

We will read this data using the xlsread function in the init file.

Add the following lines to you init file.

Motor_Name = 'Fantasy Motor_Data.xls';
Motor_PN = ['Component Data\',Motor_Name];
motor_max_torque = xlsread(Motor_PN,'Max_Torque');
motor_max_torque_rpm_axis =xlsread(Motor_PN,'Max_Torque_rpm_Axis');

54

You can plot the torque curve using the command

plot(motor_max_torque_rpm_axis, motor_max_torque)

Generate this plot
to verify that youto verify that you
can read your
excel file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

Motor Model
• Now that we have our motor torque curve

available as workspace variables, we can
use that data in our model

55

use that data in our model.
• We will use a 1-D look up table.
• Our motor model presently has a constant

torque curve:

56

Replace this constant with a lookup table
(Simulink/Lookup Tables).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

57

Double-click on the lookup table and specify
the parameters as shown:

58

•The output of the part (Table data) is the motor torque.

•The input to this part is the motor rpm. We already
calculate the rpm in the model, so the connection is easy to
make.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

59

Lecture 3 Exercise 2
• The motor model has a problem in that the

effective torque we request changes as the
available torque goes down. The effectively
changes the loop gain of our system and the

60

changes the loop gain of our system and the
motor rpm changes.

• We want to modify the model so that the torque
request is always the maximum motor torque
times the driver torque request. If the available
motor torque is less than the torque requestmotor torque is less than the torque request,
then the available motor torque is used. If the
available motor torque is greater than the torque
request, then the torque requested is used.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 4: Advanced ModelsLecture 4: Advanced Models

Vehicle Modeling
• At this point we have

– An electric vehicle model.
The structure to make a more complicated

2

– The structure to make a more complicated,
detailed, and accurate model.

• We could head off in several directions
– Add an engine.
– Charge the battery.
– Other

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Model Based Design
• The important thing is to add detail slowly

and verify the accuracy of our models as
we add detail

3

we add detail.
• We will do the following:

– Add detail to the motor model.
– Add detail to the battery model.

Electric Motor
• Add a torque curve.
• Make the motor less than 100% efficient.

4

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Torque Curve
• Obtain the torque versus rpm curve for

your motor from the manufacturer or use
measured data

5

measured data.
• Place the data in an excel file.
• Read the excel files into the MATLAB

workspace.
• Use a table lookup to use the data in yourUse a table lookup to use the data in your

model.

Vendor Supplied Torque Curve
Rpm Torque (Nm)
0 370
1200 361
1400 319

6

1600 260
1700 242
2000 190
2200 170
2400 128
2600 120
3000 793000 79
3500 60
4000 51
4500 40
5000 30
6000 10
7000 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Component Data

• We will place this data in an excel file and
read it using the xlsread function.

7

read it using the xlsread function.
• We will place all component data files in a

directory called “Component Data.”

Motor rpm Data
• We will place the rpm data and the torque

data in separate worksheets.
• This is not required It just makes it easier

8

• This is not required. It just makes it easier
to split up the two parts of the table.

• The two worksheets are shown next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

9

Rpm data. This worksheet was named Max_Torque_rpm_Axis.

Torque data. This worksheet was named Max_Torque.

We will read this data using the xlsread function in the init file.

Add the following lines to you init file.

Motor_Name = 'Fantasy Motor_Data.xls';
Motor_PN = ['Component Data\',Motor_Name];
motor_max_torque = xlsread(Motor_PN,'Max_Torque');
motor_max_torque_rpm_axis =xlsread(Motor_PN,'Max_Torque_rpm_Axis');

10

You can plot the torque curve using the command

plot(motor_max_torque_rpm_axis, motor_max_torque)

Generate this plot
to verify that youto verify that you
can read your
excel file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Motor Model
• Now that we have our motor torque curve

available as workspace variables, we can
use that data in our model

11

use that data in our model.
• We will use a 1-D look up table.
• Our motor model presently has a constant

torque curve:

12

Replace this constant with a lookup table
(Simulink/Lookup Tables)(Simulink/Lookup Tables).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

13

Double-click on the lookup table and specify
the parameters as shown:

14

•The output of the part (Table data) is the motor torque.

•The input to this part is the motor rpm. We already
calculate the rpm in the model, so the connection is easy to
make.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

15

Lecture 4 Exercise 1
• The motor model has a problem in that the

effective torque we request changes as the
available torque goes down. The effectively
changes the loop gain of our system and the

16

changes the loop gain of our system and the
motor rpm changes.

• We want to modify the model so that the torque
request is always the maximum motor torque
times the driver torque request. If the available
motor torque is less than the torque requestmotor torque is less than the torque request,
then the available motor torque is used. If the
available motor torque is greater than the torque
request, then the torque requested is used.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Lecture 4 Exercise 2
• This motor has other problems:

– What happens if the motor rpm is negative? Surely
we want to use the vehicle in reverse.

17

– What happens if the motor rpm exceeds the max rpm
specified in the table?

• Fix the model so that the model works for
negative values of rpm and that nothing
catastrophic happens if the input rpm exceeds
the ma specified in the data filethe max specified in the data file.

• You are not allowed to modify the data in
the Excel file. Demo___________

Motor Efficiency
• Next we will add efficiency to the motor.
• When acting as a motor, the mechanical power

output is less than the electrical power input.

18

p p p
• When acting as a generator, the electrical power

output is less than the mechanical power input.
• In our implementation, the output torque will be

specified, and the corresponding electrical
power will be calculated including efficiency.p g y

• We will start with a constant efficiency of 85%.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

19

• The part of the model that was modified to
add the efficiency is shown enlarged below.

20

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Model Verification
• To see that this model behaves the way

we think it should, we need to add a few
diagnostic signals

21

diagnostic signals.
• Create signals for the mechanical and

electrical power. These two signals should
be related by the efficiency.

• Add the electrical and mechanical power
signals to the diagnostic bus.

• Modify the model as shown.

22

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Model Verification

• Run a simulation and plot
– Vehicle Speed

23

– Mechanical Power
– Electrical Power

• Verify that when
– The vehicle speeds up, the mechanical power

is less than the electrical power.
– When the vehicle slows down, the electrical

power is less than the mechanical power.
– We will create this plot using the signal and

scope manager.

Scope
• We need to create a viewer and attach the

signals we wish to display.
• We want the vehicle speed to be displayed

24

e a e e c e speed o be d sp ayed
on the top plot.

• Open the driver block and right click on the
“Desired_Vehicle_Speed” signal line:

• Right click on the Desired_rpm signal line.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Scope 25

Scope
• Select Create & Connect Viewer,

Simulink, and then Scope from the
menus:

26

menus:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Scope
• A scope will be created with a single plot:

27

Scope
• Now we need to display the actual rpm on

the same scope and on the same axis.
• Right click on the Vehicle Speed mph

28

• Right click on the Vehicle_Speed_mph
signal line:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Scope
• Select Connect to Existing Viewer, then

select Scope, then select Axis1.

29

Scope
• You will notice little glasses on your

model.
• These glasses indicate that the associated

30

• These glasses indicate that the associated
signal is being display on a scope.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Scope
• If you hover the mouse pointer over the

glasses, a box will appear and display the
name of the viewer and the axis to which

31

name of the viewer and the axis to which
the signal is connected:

• In this case, the name of the viewer is
“Scope.”

Scope
• Next, we want to display two plots on the

scope window.
• Left click on the Parameters button in

32

• Left-click on the Parameters button in
the scope menus:

Click here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Scope 33

Change this to 2 to
display 2 plots in the
Scope window.

Scope
• Typically a scope will only display the last

7500 points of a simulation.
• We are not sure how many points our

34

• We are not sure how many points our
simulation will have, so we will change this
setting.

• Select the History tab and uncheck the
option as shown.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Scope 35

History tab selected.

Option not selected.

Click OK when done.

Scope
• Next, we would like to name this scope.
• From the Simulink menus, select Tools

and then Signal and Scope Manager:

36

and then Signal and Scope Manager:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Signal & Scope Manager
• The Signal and Scope Manager allows us to:

– Rename scopes
Change the number of plots on a scope

37

– Change the number of plots on a scope.
– Add and delete signals displayed on a scope.
– Delete Scopes

• Right-click on the text Scope to see the options
you have in manipulating scopes

38

• Open parameters – opens the scope window.

Right-click here!

• Edit signal connects allows you to select
signals to display on the scope.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Signals & Scope Manager
• We just want to rename the scope, so

select Rename and change the name to
“Power and Efficiency ”

39

Power and Efficiency.

• This is all we
will do wit the
Signal and
Scope
MManager, so
click the Close
button.

Scope
• Next, we want to display the electrical and mechanical

power signals from the motor.
• Open the Electric Motor subsystem.

40

Right-click here.

p _ y
• Right-click on the Motor_Mechanical_Power signal:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Scope
• Select Connect to Existing Viewer, then

Power and Efficency, and then Axis 2:

41

Scope
• The Motor_Mechanical_Power will now be

displayed on the second plot in the Power
and Efficiency viewer

42

and Efficiency viewer.
• Repeat the process to display the

Electrical power on the same axis as the
mechanical power.

• Run the FU505 drive cycle and display the
results.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

43

44

During accel, mechanical
power input is greater than
electrical power output

During accel, electrical
power input is greater than
mechanical power output.

electrical power output.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Lecture 4 Exercise 3
• In our plot, we see that the label for the

electrical and mechanical power are not
displayed in the Scope window

45

displayed in the Scope window.
• Fix this problem.

Demo___________

Model Verification
• The model appears to behave correctly for

motoring and regen.
• Next instead of having a constant

46

• Next, instead of having a constant
efficiency, we will make the efficiency a
function of motor rpm and motor current.

• We will do this with a 2-D look up table.
• First, obtain the efficiency data from theFirst, obtain the efficiency data from the

manufacturer or measure the efficiency.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Manufacturer Supplied Efficiency Data
Current (Amps)

6 50 94 138 182 226 270 314 358 402

0 0.86 0.91 0.88 0.85 0.82 0.79 0.76 0.74 0.72 0.69

500 0.86 0.91 0.88 0.85 0.82 0.79 0.76 0.74 0.72 0.69

1000 0.82 0.92 0.91 0.89 0.88 0.86 0.84 0.83 0.81 0.80

47

r
p
m

1000 0.82 0.92 0.91 0.89 0.88 0.86 0.84 0.83 0.81 0.80

1500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

2000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

2500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

3000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

3500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

4000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

4500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

5000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

5500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

6000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

6500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

7000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

7500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

8000 0.74 0.92 0.92 0.92 0.91 0.90 0.89 0.88 0.87 0.86

8500 0.71 0.92 0.92 0.92 0.91 0.90 0.90 0.89 0.88 0.87

9000 0.68 0.92 0.92 0.92 0.91 0.91 0.90 0.89 0.88 0.88

9500 0.65 0.91 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.88

10000 0.63 0.91 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.88

Save Data in Excel
• One worksheet for the rpm axis.
• One worksheet for the current axis.

O k h t f th ffi i t bl

48

• One worksheet for the efficiency table.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

49

Worksheet named
“Motor_RPM_Axis.”

50

Worksheet named
“Current_Axis.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

51

Worksheet named
“Eff_Data.”

Excel
• Next, we will read this data using the xlsread

function in MATLAB. Place these commands in
your init file.

52

motor_eff_map = xlsread(Motor_PN,'Eff_Data');
motor_eff_rpm_axis = xlsread(Motor_PN,'Motor_RPM_Axis');
motor_eff_current_axis = xlsread(Motor_PN,'Current_Axis');

• In our motor model, we will replace the constant
efficiency with a Lookup Table (2-D) y p ()
(Simulink/Lookup Tables)

• Before continuing, run your init file to read in the
table data.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

53
Constant block
replaced with 2-D
lookup table.

D bl li k h l k bl d fillDouble-click on the lookup table and fill
in the parameters as shown:

54

If o ran the init file and the data for thisIf you ran the init file, and the data for this
table is loaded into the MATLAB workspace,
we can view the table by clicking the Edit
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

55

This editor shows us that we have defined the table
correctly.

56
If you select Plot and then Mesh from the menus, you can view a plot of the table.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

57

This text description is
important!

This dialog box also tells us:

•That the top input on the icon is the rpm axis

•The bottom input is the current axis.

Click the OK button and connect the part as shown:

58

Note that the motor current depends on the efficiency, and the efficiency depends on
the motor current, so we probably have an algebraic loop.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

59
When we run the simulation, we are told that we do indeed
have an algebraic loop.

Eliminate the algebraic loop by adding a memory part
(Simulink/Discrete) to the model as shown.

60

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

Run the FU505 Cycle
61

Drive cycle OK.

Voltage spikes.

Current spikes.

62

Voltage spike.

Current spike.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

Problems
• What causes the voltage spike?
• Look at the battery model:

63

IBAT

+

VBAT

-

BAT

VBAT = VOC + IBAT*RSeries

Problems
• From our model, we realize that current

spikes cause the battery voltage spikes.
• If we can control the current we can

64

• If we can control the current, we can
control the voltage fluctuations.

• Future needs:
– Current limits (hard).
– Over/under voltage detection.g

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

What Caused The Current Spikes? 65

Basic Math
• If we divide by a small number, we get a

big number.
• When we calculate the current in our

66

When we calculate the current in our
model, we divide in two places.

Divide by battery
voltage here.

Divide by
efficiency here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

Problems

• The only time the battery voltage will become
small is when there is a large current spike.

67

• So the current spike causes the low battery
voltage.

• Without the current spike, the battery voltage
would remain high, and would not cause the
current spike.

• This sounds like an algebraic loop of reasoning.

Problems
• Focus on the other division.

68

Look at this
division.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

Can the Efficiency Ever Become 0?
69

Can the Efficiency Ever Become 0? 70

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

Table-Lookup
• What happens when the current is zero?
• What happens when the current is greater

than 402 A?

71

than 402 A?
• What happens when the rpm is greater

than 10000?
• We specify this in the lookup table

dialog box:dialog box:

72

• So, what happens when the index is outside of the range of the
table?

• I’m not sure, but you better make sure that you know, or limit the
inputs to be within a specific range defined in the table.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

Lookup Tables
• To fix one problem, select Interpolation – Use End

Values as the Lookup method.
• With this method, when we go outside of the range of

73

, g g
data specified in the table, the values at the ends are
used.

Interpolation – Use End
V l l dValues selected.

Problem
• Looking at the table of data reminds me of

a problem.
• Hmm I remember something a while

74

• Hmm. I remember something a while
ago…

• Can’t remember exactly what it was, but
something I saw before doesn't quite jive
with the table data…

• What was it.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

75

•The battery current is negative.

Battery current
negative.

•Is this OK? Yes – our motor normally acts as a motor or as
a generator during regen braking.

•Our table is only defined for positive currents, but we are
using it for both motoring and regen modes.

•The table does apply when the motor is used as a
t b t did t t f th ti tgenerator, but we did not account for the negative current

values in our model.

•Also note that the table applies for both positive and
negative motor speed.

•Add the abs part (Simulink/Math Operators) as shown.

76

•Rerunning the simulation shows that the
problem has been fixed.

•Question – How would you limit the table inputs
to be within specified limits?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

77

78
Look at the efficiency plot to verify our model. How can we
improve this plot to make it more useful?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

Motor Model
• We could add much more detail to the

model, and you should as you make it
more realistic We could add:

79

more realistic. We could add:
– Different regen and motoring efficiencies.
– Add separate current limits for regenerative

braking and motoring. These limits are usually
different due to battery limits.
Add a torque map that is based on battery– Add a torque map that is based on battery
voltage and motor rpm.

Lecture 4 Exercise 4
• Demo of model working with motor

efficiency and motor torque curve.

80

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

Lecture 4 Exercise 5
Battery Model Improvements
• Different charge and discharge

81

Different charge and discharge
resistances.

• Resistance a function of battery SOC and
temperature.

• Battery open circuit voltage is a function of

Demo___________

y p g
battery SOC and temperature.

• Data contained in file “Battery Data.xls.”

82

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 5: Engine ModelingLecture 5: Engine Modeling

Outline
• Reasons for an IC Engine
• Intro to SimDriveline Engine Block

F l C ti

2

• Fuel Consumption
• Torque Curve
• Defueling
• Braking Torque

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

The Need

• Thus far our vehicle has been able to
follow various drive cycles using the motor

3

follow various drive cycles using the motor
and battery

• The battery SOC has decreased, but
never too much

The Need
• Eventually, however, the battery will reach

a SOC where it needs to be recharged.
• There is also a critical low SOC which, if

4

e e s a so a c ca o SOC c ,
exceeded, will decrease the battery
lifetime or cause unsafe operation.

• We can pull the vehicle over and plug it in
– Or

• Have an on board power generation• Have an on-board power generation
system using an internal combustion
engine and a generator.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

The Need
• For this module we will develop our own

model of a Diesel engine.
• First let’s see take a look at the

5

First, let s see take a look at the
SimDriveline Diesel engine.

• Open a new empty model and place a
Diesel Engine block in your model (library
Simscape / SimDriveline / Vehicle
Components).

The Need 6

Right-click on the
Diesel Engine
block.

Select Look Under
Mask.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

SimDriveline Engine 7

What does this
do?

What happens
here?

What does this
do? What does this

do?

Lecture 5 Exercise 1
• What is the purpose of the switch?

8

Answers___________

• What is the purpose of the compare to
constant block?

• What is the value of speed max and

Answers___________

p _
where does it come from?

Answers___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

SimDriveline Engine
• Question

– Does an engine produce torque at RPMs
BELOW idle?

9

BELOW idle?
• Problem

– Double-click on the Peak torque lookup table.

Click This

SimDriveline Engine

• The model
d t

10

• This model has some problems…

produces torque
below idle and
at zero rpm.

• What happens
above 4500 rpm
and below 0and below 0
rpm?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

SimDriveline Engine 11

• Looking at the model we notice a few other
things are missing that we need for our model.

SimDriveline Model
• We see that the model does not have an

inertia for the engine.
• The model does not calculate fuel

12

consumption. (Necessary since we are
building a hybrid vehicle and our main
motivation is reduced petroleum
consumption.)

• The SimDriveline engine gives us insight as• The SimDriveline engine gives us insight as
to how to build our own model. We shall use
it as a starting point and then enhance the
model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Fuel Curve
• At a given RPM we can inject various

amounts of fuel, resulting at various
consumption rates

13

consumption rates
• Check out the FantasyEngine_Data.xls file

for the engine RPM and “throttle” axes as
well as the fuel consumption data

• Using the skill gained with the motor,
update the Vehicle_Init file accordingly

Engine Model
• We will create our own model.
• We will start by looking at the fuel

consumption of a Diesel engine

14

consumption of a Diesel engine.
• We will assume that you have measured

or obtained the fuel map for your engine.
• Fuel consumption and torque maps for our

fictitious engine have been measured andfictitious engine have been measured and
saved in an excel file in the Component
Data directory.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Fuel Curve
• We can read this data with the xlsread

function

15

Fuel Curve

• Create a new
model and

16

model and
add a 2-D
look up table.

• Awesome!

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Torque Curve
• By burning fuel, a Diesel engine produces

torque.
• The torque is a function of RPM and

17

• The torque is a function of RPM and
throttle.

• Read in the torque data from the
FantasyEngine_Data.xls file
– call it engine_torque_datag _ q _

Torque Curve

• Pretty Cool!

18

• At a given
RPM we
can adjust
the throttle
to get ato get a
desired
torque

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Engine Model
• Create the model below with the following parts:

– Constant, Saturation, Transfer Fnc, Torque Actuator,
Driveline Environment, Inertia

19

Engine Model
• The Laplace (continuous) transfer function

delays the engine response with a time constant
of 100 ms
Th li it th t ti t 0 d 1

20

• The limits on the saturation part are 0 and 1.
• The engine inertia is specified in the init file as

“engine_inertia.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Engine Model
• Now add an RPM feedback loop to the

data table

21

Why is this not an
algebraic loop?

Engine Model

• Next we will add fuel consumption to the
model

22

model.
• First, we will clean up the model by adding

some signal routing From and Goto parts.
• Note that in our model, the fuel

consumption data is in grams of fuel p g
consumed per second.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Engine Model 23

Engine Model - Defuel
• Next, we will build an emergency defuel if

we exceed the max engine speed
• This sets the throttle to zero shuts off fuel

24

• This sets the throttle to zero, shuts off fuel
and kills the torque

• Add the constant engine_max_rpm
• = 4500 to the init file
• Use a switch to set the throttle to zero if• Use a switch to set the throttle to zero if

the engine speed exceeds 4500 rpm

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Engine Model - Defuel 25

Engine Model - Jake
• If the engine throttle is zero, engine

braking will occur until idle is reached
• A constant torque will be applied opposite

26

• A constant torque will be applied opposite
the direction of crankshaft rotation

• We’ll estimate the engine braking torque to
be 10 Nm – add this to the init file
– engine_brake_torqueg _ _ q

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Engine Model - Jake

• Now, we could do some fancy stuff with switches
in our model

27

– Or
• Modify our torque data by changing the zero

throttle column from 0 Nm to -10 Nm for rows
two through the last one

• Uncomment the last line in the engine section ofUncomment the last line in the engine section of
the init file

Engine Model - Jake 28

This line
uncommented.

When the throttle is zero, the torque will be equal to
–engine_brake_torque.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Engine Model - Jake
• The torque

definitely goes
negative

29

negative
• The output

torque will be
zero for a
throttle slightly
greater than 0.g

Engine Model - Testing
• Let’s test our model by forcing the engine to spin

using a motion actuator.

30

• Add in a
– Motion actuator
– Ramp
– Gain
– Constant

• Put scopes on the rpm, fuel consumption rate
and the torque output from the look-up table

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Engine Model - Testing
31

We will use a ramp to sweep
the rpm signal from 0 to
5000 rpm.

With the acceleration set to zero, we are
specifying that the engine shaft spins at the
speed specified by the ramp signal.

Engine Model - Testing
• The properties of the

ramp specify a slope
of 1

32

of 1.
• If we run the

simulation for 5000
seconds, the rpm will
ramp from 0 to 5000.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Engine Model - Testing
• Since we are asking for maximum torque,

and the rpm is swept from 0 to 5000, we
can generate a plot of maximum torque

33

can generate a plot of maximum torque
versus rpm.

Throttle specified a 1. We are asking for
maximum torque.

Engine Model - Testing
• We will generate plots of the fuel rate and

the torque output:

34

This signal plotted on the
top plot of the window.

This signal plotted on the
bottom plot of the window.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Engine Model - Testing
• Run the model for 5000 seconds of

simulation time.

35

Engine Testing 36

Torque goes to zero atTorque goes to zero at
850 rpm and below. This
engine produces no
torque at idle.

Torque goes to -10 Nm at
4500 rpm because at over
speed we cut the fuel and p
apply the engine braking
torque.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Engine Testing 37

Fuel consumption goes to
zero at 4500 rpm because

In the fuel consumption
table is 0.4 g/s when the
throttle is 1 and the rpm is
850 or less.

zero at 4500 rpm because
we cut the fuel.

Engine Testing
• We see that the fuel consumption is non

zero even when the engine rpm is less
than 800

38

than 800.
• We will need to fix this later when we

make an engine starting algorithm.
• We will have an engine on signal that

turns on or off fuel consumption below 800
rpm when the engine is off and at low rpm.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Engine Testing
• Next, we will generate the same plot with

the throttle set to 0 rather than 1:

39

Engine Testing 40

When the throttle is 0, the engine
provides a negative braking torque.

The fuel consumption is
always zero.For low rpm, no braking torque is

applied.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Engine Testing
• We do notice a few issues that we need to fix

later.
• The engine uses no fuel when the throttle is

41

zero. This is because we are spinning the
engine with an external source. Normally to spin
the engine at this speed, a throttle will be
required, and fuel will be consumed. Also, we
may add in an idle controller that holds the
throttle slightly above zero to keep the enginethrottle slightly above zero to keep the engine
moving.

Engine Testing
• We also notice that the for an engine rpm

less than 850, the torque is zero.
• We assume that the engine is off for this

42

• We assume that the engine is off for this
range of rpm.

• Later, when we add an engine on signal,
we will also add an engine off torque, that
will oppose the starter when we need to
start the engine.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Lecture 5 Demo 1
• Engine demo at full throttle.

43

• Engine demo at zero throttle.

Demo___________

Demo___________

Engine Model
• We now wish to make a subsystem model

out of our engine
• Add in an engine diagnostics bus and

44

• Add in an engine diagnostics bus and
connect it to an output port.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Engine Model
• Get rid of the Env block. (We already have

an Env block in our vehicle model. We
only need one.)

45

y)
• Replace the motion actuator, and

associated ramp, constant, and gain block
with an SimDriveline Connection Port.

• Replace the constant block used to specify
the throttle with an inport:

Engine Model 46

Connection port

Env part removed.

Connection port
added here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Engine Model 47

In port added here.

Complete Engine Model 48

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Engine Subsystem Model
• Type ctrl-A to select all of the components.
• Right-click on one of the components and

select Create Subsystem from the menus

49

select Create Subsystem from the menus.
• Go up one level to view the subsystem:

Engine Subsystem Model
• Delete all of the ports and rename the

subsystem as “Engine.”

50

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

Lecture 5 Exercise 1
Engine Model Improvements
• Add an “Engine on” signal to the engine model.

Wh th i i th f l t d th

51

When the engine is on, the fuel rate and the
torque are determined by the lookup tables of
the throttle cutoff.

• When the engine if off, the fuel rate is zero and
the engine torque is a negative constant equal to

15 Nm Demo– 15 Nm.
• Prove that your design works.
• Abrupt step changes in the output torque is not

allowed.

Demo___________

Advanced Model-Based-System
Design

Elementary Control usingElementary Control using
Stateflow

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

Presentation Outline
• Simple charging logic
• Introduction to Stateflow

C l ti th d l

53

• Completing the model

The Need

• Thus far our vehicle has been able to
follow various drive cycles using the motor

54

follow various drive cycles using the motor
and battery.

• The battery SOC has decreased, but
never too much.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

The Need
• Lets follow the 505 cycle a few times and

see what happens.

55

pp
Negative battery
state of charge.
Either we need a
larger battery of we
need a was to put
charge into the
battery.

The Need
• We need some way to recharge the

battery and some logic to determine when
we do it

56

we do it.
• Our battery block has two motor ports –

one for the motor and one for a generator.
• The motor does charge the battery, but

since we have aerodynamic drag and the
motor is less that 100% efficient, charging
through the motor only delays the time at
whicg the battery will run out of energy.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

Simple Model
• Eventually we will create a “genset” where an

engine will drive a generator that charges the
battery.

57

• For now, we will model the “genset” as a current
source that charges the battery.

• Open your latest vehicle model and rename it
Lecture5_Model1.

Vehicle Model 58

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

Simple Model

• We want to keep the SOC in a specified
range.

59

– No over-charging.
– No over-discharging.

• This will require some logic to switch
between a “No_Charge” state and a
“Charge” state.

• We’ll build a Stateflow Controller in a new
subsystem called “Controller.”

Controller Subsystem
• We will add a new block to our Model

called “Controller.”
• Eventually all of the functions contained in

60

• Eventually, all of the functions contained in
the Controller subsystem will be
implemented on a real-time target.

• This target will be the supervisory
controller for our vehicle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

Controller Subsystem
• Inputs to the control subsystem are status

signals from the various vehicle
subsystems (motor battery engine

61

subsystems (motor, battery, engine,
vehicle body, etc.)

• Outputs of the control subsystem tell each
subsystem what to do.

• Inputs come over the vehicle system
diagnostics bus (which will be the CAN
bus in a vehicle).

Control Subsystem
• Add a subsystem to your model called

“Controller.”
• The input to this system is the vehicle

62

• The input to this system is the vehicle
system diagnostics bus.

• Hint: You may want to copy and paste the
Display subsystem and rename it
“Controller.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

Controller Subsystem
• Inside the Controller subsystem, use a

Bus Selector to extract battery SOC signal
on the Vehicle System Diagnostic bus

63

on the Vehicle System Diagnostic bus.
• (If you copied the Display subsystem, you

already have a head start.)
• The contents of the Controller subsystem

are:

Introduction to Stateflow
• We will add a Stateflow chart to the

Controller subsystem.
• This chart will be used to turn on and off

64

• This chart will be used to turn on and off
charging current for our system.

• Initially, the Controller output will be a
fictitious current that magically charges the
battery.

• Later, the controller output will turn on an
Engine/Generator genset that charges the
battery.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

Stateflow 65

From the Stateflow library,
drag in a Chart.

Then double click on it to
open.

Stateflow 66

Click on the State
button to add a new
state that we will call the

“No_Charge” state.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

Stateflow 67

Click here to enter
text.

Stateflow 68

The first line is the name of the
state. Name it “No_Charge”.
Note that no spaces are allowed
in the name.

This is going to be a Simulink
output of the Stateflow chart.
This output will specify the
charging current for the battery.

The “en:” means that upon entering
this state, execute the following
command. In this case, when we
enter this state, simulink output
charge_current will be set to zero.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

Stateflow
69

Add in the “Charge”
state . Set Simulink

t toutput
charge_current to

15 amps upon
entering the state.

Stateflow 70
Click and hold the left mouse
button here.

To create the transition

This is called a
i i

To create the transition,
drag the mouse pointer
here and then release the
mouse button when you are
at the edge of this state.

state transition.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

Stateflow
• We need to specify the “guard” for the

transition. Click the left mouse button on
the transition:

71

the transition:

Click here! A
i k h ldquestion mark should

appear and the
transition should turn
red.

Stateflow 72

Click on the ? To edit the
guard. The ? will be replaced
by a cursor. Enter the text
“[SOC< SOC_Charge_On]”

Transition selected.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

Stateflow 73
SOC is a Simulink input to the

chart. SOC_Charge_On is
called a parameter and must
be defined in the MATLAB

workspace.

Stateflow 74
Add the guard and transition
to turn off charging when the
state of charge becomes high

enough.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

Stateflow
• The last thing we need to do is to specify

in which state the chart wakes up when we
first start the model

75

first start the model.
• This is done by clicking on the Default

Transition button and connecting the
transition to the desired initial state.

• When you place the Default Transition
part, it will be connected to a circle.

• Delete the circuit and connect the
transition to the No_Charge state:

Stateflow 76

Default transition
added here.

Click here to
place the default

transition.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

Stateflow
• Next, we need to specify SOC as an input from

Simulink
• Select Add, Data, and then Input from

Simulink from the Stateflow menus

77

Simulink from the Stateflow menus
Name of the data is
“SOC.”

SOC specified as a
Simulink input.

Stateflow
• We need to specify charge_current as a

Simulink output
• Select Add, Data, and then Output to

78

Simulink from the Stateflow menus:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

Stateflow
• We need to specify SOC_Charge_On and

SOC_Charge_Off as parameters (which will
be read in from the MATLAB workspace).

79

• Select Add, Data, Parameter from the
Simulink menus twice:

Stateflow
• Use the Model Explorer to check your work:

80

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

Stateflow
• Stateflow will only check guards and follow

transitions when an event occurs.
• We will use the zero-crossing of a sinec

81

g
wave source as the event and call it a
“Clock.”

• Select Add, Event, Input From Simulink
from the Stateflow menus to add an event
i t t h tinput to your chart.

• This input will come from Simulink.

Stateflow
• Name the event clock:

82

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

Stateflow
• When you close the chart, you will see the

Simulink inputs and outputs that we
specified

83

specified.

Input.

Clock.
Output.

Stateflow 84
Use a sine wave for the clock with an

amplitude of 1 and a frequency of
100*(2*pi) to get a 10 ms frequency.

Tie into the
Battery_SOC signal. Create an Out Port.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

Stateflow 85

Connect the charge_current to
the Generator_Current port.

Stateflow

• Update the Init file with the guard values of
0 6 to start charging and 0 7 to stop

86

0.6 to start charging and 0.7 to stop.

• Run the FU505 five times:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

87

Lecture 5 Demo 2
• Demo of Stateflow controller charging the

battery.

88

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 6: Creating a Genset andLecture 6: Creating a Genset and
Building a Formal Controller

Building a Formal Controller
• Create a Engine/Generator “genset” to

charge the battery.

2

charge the battery.
• Add engine speed control.
• Engine starting and stopping.
• Start with the previous model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Complete Model
• Copy the electric motor model and rename

it “Generator.”
• We will use the same model for the motor

3

• We will use the same model for the motor
and generator.

• If we want different properties for the
motor and generator, we can use the
same “motor” block but use different
lookup tables to give the motor different
properties.

Complete Model
• Copy the engine model subsystem we

created earlier and place it in the model.
• Make connections as shown

4

• Make connections as shown.
• Connect the drive lines with the shared

environment block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

5

Modify the Generator Subsystem
• Change the names of ports from “Motor” to

“Generator.”
C f

6

• Change the name of signals on the bus
from “Motor” to “Generator.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

7

Changed.

Changed.

Changed.

Changed.

Model Connections
• Connect the Generator to the Battery

voltage.
• Connect “Generator” current on the

8

• Connect Generator current on the
Battery to the Generator Current

• Connect the Engine and Generator
Diagnostic Ports to the
Vehicle_System_Diagnostics bus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

9
Model Connections

10

Vehicle System
Bus Changes

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Control System Design
• We now have the system to a point where

we can start to build our control system.
• The electric motor drives the vehicle

11

• The electric motor drives the vehicle.
• When necessary, the engine can be

started with the generator and then charge
the battery.

Engine Speed Control
• We will first develop a method to start the engine

and control the engine speed.
• We have a generator directly connected to the

12

g y
engine. This generator can act either as a motor
or as a generator.

• We can use motor/generator to spin up the
engine to start the engine.

• We can use the motor/generator to apply a g pp y
torque in the opposite direction to the engine
torque to regulate the engine speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Engine Speed Control
• We will use classical feedback control with

proportional feedback.
• The engine throttle will be held constant

13

• The engine throttle will be held constant.
• Monitor the engine speed.

– If the engine speed is to slow, reduce the
opposing M/G torque.

– If the engine speed is too high, increase the
opposing M/G torque.

Engine Speed Control

• This is a classical feedback system.

14

• In our case, the plant is the system
comprised of the Engine coupled to the
Motor/Generator.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Engine Speed Control
• Modify the controller as shown next.
• For the moment, we will not use the

Stateflow chart.

15

S a e o c a
• Note that our torque request to the M/G is

constrained between -1 and +1.
• We will pick an arbitrary value for the

engine throttle.
Charging Engine rpm is a constant• Charging_Engine_rpm is a constant
defined in the init file and is 1800 rpm.

16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Engine Speed Control – Top Level
• Modify the top level block diagram as

shown.

17

Engine Speed Control
• When we run a simulation

– The engine should speed up to 1800 rpm
immediately and as fast as possible.

18

y p
– The generator should charge the battery at some

current determined by the engine throttle.

• Run a simulation
and plot the engine
speed and M/Gspeed and M/G
current.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

19

Battery Current
M l P i iMostly Positive.

SOC Increasing.

RPM constant at
~1860.

Engine Speed Control
• We see that the feedback loop does

control the engine rpm very well, and that
the generator charges that battery

20

the generator charges that battery.
• If we zoon in on the engine rpm at the

beginning of the simulation, we see that
the rpm ramps up from 0 to 1800 rpm very
quickly.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

21

Here the generator acts as
a motor. Energy is

removed from the battery
to overcome compression
and spin up the engine.

Engine rpm goes from 0 to
1800 in about 140 ms. This

isquite fast.

p p g

Engine Speed Control
• There are a few issues with the controller

that we must fix.
• We need to modify our control scheme to:

22

• We need to modify our control scheme to:
– Turn on the engine only when necessary.
– Ramp up engine speed in a controlled ramp.
– Turn on the engine when it reaches the

appropriate speed.
– Ramp down the engine when we no longer

need to charge.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Stateflow Engine Control
• Read Charging_Engine_rpm from the

workspace. From Stateflow select Add,
Data and then Parameter

23

Data, and then Parameter

Stateflow Engine Control
• We will need to know the measured

Engine rpm from the Simulink model.
From Stateflow select Add Data and

24

From Stateflow select Add, Data, and
then Input from Simulink

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Stateflow Engine Control
• Stateflow will need to output the Engine

Throttle and Desired Engine rpm to our
Simulink controller From Stateflow select

25

Simulink controller. From Stateflow, select
Add, Data, and then Output to Simulink

Stateflow Engine Control
• Next, modify the Stateflow chart.
• When we need to charge

– Enable Motor/Generator.

26

– Change the Desired Engine rpm to the value of
constant Charging_Engine_rpm.

– When the engine reaches this rpm, change the
throttle from 0 to a specified value.

• When we need to stop charging
– Change the throttle to 0.
– Change the Desired Engine rpm to 0.
– When rpm reaches 10 rpm, disable motor/generator.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Stateflow Engine Control

• Oops, we need another output to enable the
Motor/Generator. From Stateflow select Add,
D t d th O t t t Si li k

27

Data, and then Output to Simulink.

Create The Stateflow Chart Below
28

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Controller Modifications
29

Rate Limiter
• The rate limiter in the previous slide is used to

generate a ramp from the stepped signal coming
from Stateflow.

• A rate limiter specifies the maximum positive and

30

• A rate limiter specifies the maximum positive and
maximum negative rates at which a signal can
change.

• Specifying rates of ±900 will cause the engine
rpm to ramp up from 0 to 1800 or down from
1800 to zero in 2 seconds1800 to zero in 2 seconds.

• Our engine turn-on time will be 2 seconds.
• Part located in the Simulink/Discontinuities

library.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Rate Limiter Settings 31

Don’t forget this.

•Run a simulation first for the AVL drive cycle, then the FU505.

•Plot both the Engine rpm and the M/G current.

32

Zoom in here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

33

Engine is up to speed,
but the generator is

using power, not Here, the generator is g p ,
generating power.
The generator is not
charging the battery.

g
charging the battery.

Engine appears to be
up to speed here.

Lecture 6 Exercise 1
• The generator appears to spin up the

engine to the appropriate speed, the
generator does not immediately start

34
Demo___________

generator does not immediately start
charging the battery. Instead there is a
long delay before charging starts. This is
an error.

• Fix the error so that charging starts as
soon as the generators is up to speed.

• Your fixed model should have a plot as
shown next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

35

Zoom in here.

36

Generator current
charges battery.

Negative current
speeds up

engine while off.

Controlled start. Controlled stop.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

37

Throttle turns off before
ramp down.

Throttle turns on
after engine

reaches speed.

Lecture 6 Demo 1
• Demo the working controller.

38

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 7: Multi Loop ControlLecture 7: Multi-Loop Control
Post Processing

2
Results from previous model.

Generator current not controlled
and changes with battery

voltage (which changed with
motor torque request).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

More Control Fun
• Form the last simulation, we notice that the

generator current is whatever it is, and it
changes as the battery voltage changes.

3

• Let’s add another feedback loop to control the
current.

• Note that the throttle increases or decreases the
engine power.

• More engine power produces more generator g p p g
current.

• Less engine power produces less generator
current.

Classic Feedback - Again
• We can think of the result of the system

created in lecture 6 as a plant where the
input signal is the engine throttle and the

4

input signal is the engine throttle and the
output is the generator current.

• By changing the throttle signal, we can
control the generator current.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Charging Current Control
5

• Modify the Stateflow chart as shown next.
• Note that the Engine Throttle output has

been deleted from Stateflow.
T d l t St t fl t t ill d• To delete a Stateflow output, you will need
to use the Model Explorer. (Tools and
then Explore from the Stateflow menus.)

6

Line added.

Line added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

7

Engine Off – No charge

Start engine.

Line added.

Start charging when the
engine has reached the

appropriate speed.

Controller Modifications
• Modifications to the Simulink portion controller

are shown on the next slide.
• Note that we are keeping the proportional

8

p g p p
feedback loop that holds the engine speed
constant at 1800 rpm.

• We are adding a second proportional feedback
loop that holds the generator current constant.

• This second loop assumes that the two loops p p
are independent and that the first loop does hold
the engine speed constant.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

9
Enlargements of various
parts are shown on the
next two slides.

10

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

11

Charging Current
• The signal for the charging current coming out of the

Stateflow chart is a step function.
• To produce a controlled rate of change, the desired

current signal is passed through a rate limiter that

12

current signal is passed through a rate limiter that
has a slew rate ±50.

• The signal out of Stateflow is a steep that goes from
0 to 50 A.

• The signal out of the rate limiter is a signal that goes
from 0 to 50 A in 1 secondfrom 0 to 50 A in 1 second.

• We will use the rate limiter to control the rate at
which the desired charging current changes.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Saturation Block
• The output of the error amplifier can be a

large signal and either positive or
negative

13

negative.
• We have defined our throttle signal to be

between 0 (no throttle) and 1 (full throttle).
• The saturation block is used to limit the

throttle signal to appropriate values.
• The properties of the saturation and rate

limiter block are shown on the next slide.

Component Settings 14

• Run the simulation and observe the
throttle and generator current signals.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

15

Constant charging
current.

Constant engine
rpm.

Oscillation in
throttle control.

Current Control
• We see a lot of problems with the engine throttle

signal.
• We will address them one at a time and see if

16

we can fix the problems, or if a change is
required in the design of the physical system.

• First, we will address problems in the throttle
signal. The generator current is constant, but we
notice noise and oscillations on the engine
throttle signal.

• We will reduce the gain of the current control
feedback loop.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Reduce the Gain 17

Changed to 0.1.
(Just guessing.)

18

What is going on
here?

Oscillation
reduced.

here?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Current Control
• We have reduced the oscillations in the

throttle signal a little bit. We will call it good
for now and fix a few other problems first

19

for now and fix a few other problems first.
• If the problem still persists, we will address

it later.
• We will zoom in on the spike in the throttle

signal that occurs when we first start the
engine and commence charging.

20

The current ramps
up after the engine
speed has reached

1800. This is
correct.

The throttle is wrong
here. There should

t b th ttl i l

Want the throttle to
ramp up here, after the
engine has reached a

certain speed.

not be a throttle signal
when the engine rpm
is too low.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

21

(3) Since actual current
is less than desired
current of zero the

(2) Generator current is
negative because it

uses battery power to
speed up and start the

engine.

current of zero, the
control loop increases

the throttle.

(1) During this time,
Stateflow sets the

desired current to zero.

Charging Current Control
• We see that the desired generator current is zero but

the actual generator current is negative.
• Because the actual current is less than desired, the

22

,
current control feedback loop increases the throttle.
This is incorrect because the engine is not yet on.

• We need to disable the throttle until the engine
reaches the desired speed.

• Create another Stateflow output called p
Throttle_Enable.

• Modify the Stateflow diagram as shown next.
• Modify the Controller as shown next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

23

Line added.

Line added. Disable the
feedback when we want

to stop chargingto stop charging.

Line added. Enable the feedback
loop once the engine has reached

the desired operating speed.

24

Modified.

Modified.

Modified.

Modified.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

25

Big spike.
This can’t be

good.

Zoom in.

26

The problem where the
throttle was non-zero

before the engine was up
to speed has been fixed.

This big spike is a
new problem. Zoom

in further.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

27

Lots of
problems!

(2) The generator current is negative
because it is the generator was
using battery energy to keep the

engine at 1790 rpm (the throttle is
not yet non-zero).

(3) Because the gen
current is less than the
desired current and the
feedback loop is
enabled, the throttle
signal goes to the max
limit.

(1) Speed huts 1790 rpm
so current feedback

loop is enabled.

Current Control
• Since the generator uses power to speed

up the engine, when we close the loop the
throttle signal maxes out because it tries to

28

throttle signal maxes out because it tries to
change the generator current from a
negative current to the desired current,
which is zero or positive.

• We can fix this problem by using the
throttle to assist the generator in speeding
up the engine.

• We are not yet using the engine on signal.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Current Control
• We will modify the control to do the following.
• For engine speeds below 800 rpm, the engine is

off.

29

• When the engine speed hits 800 rpm, turn on
the engine.

• Apply a constant throttle to speed up the engine.
• We will determine this constant experimentally.
• We will need to add “Engine On” and• We will need to add Engine_On and

“Throttle_Offset” Signals to the Stateflow chart.
• Modify the Stateflow chart as shown:

30

(1) Initialize Values.

(4) We do not have an
idle circuit yet.
However, with no
external throttle
applied the speed will

(3) When we disable
the current feedback

applied, the speed will
return to the idle speed.
Turn off the engine
once it is just slightly
above the idle speed.

(2) When the engine speed reaches 800
rpm, turn on the engine and apply a
throttle of 0.2.

the current feedback
loop, remove the
offset to allow the
engine to slow down
to idle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Controller Modifications
• The current feedback loop has been

modified as shown:

31

Controller Modifications
• The Stateflow chart has been modified as

shown:

32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Top-Level Model Changes
• The opt level model has been modified to add

the connection for the Engine_On signal.

33

34

Looks good. Zoom
in here.

Still a bit of hash.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

35

What is this spike? p
Look at this later.

Looks good. Zoom
in here.

• This looks good and is acceptable. But
there are a few interesting glitches that we
wish to understand or examine.

36

Zoom in here

Step change in
throttle. May want to
slow this down. Step
changes break things.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

37
(1) Because the throttle is
too big, the engine speed
is larger than needed, so
the generator applies a
negative torque to slow it
down. The result is a small
amount of charging. Note
th t th i d l

(2) What is this? This
is where the current
feedback loop kicks in.

that the engine speed loop
is closed here.

(3) Do not understand this.
Future work.

• The engine turnoff transient is shown below.
• There is a slight bump in charging current when

we turn off the engine.

38

What is this bump? Let’s
Zoom in.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

39

Not sure what this bump
is in generator current.

40

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Controller
• Overall the current feedback and engine speed

lops are working well.
• There are a few things that we do not

41

• There are a few things that we do not
understand, and need to understand.

• Even though this is appears to be a fairly simple
system, we see that it does require a bit of
attention to control even a simple system.

• We will add more later in the course.

Controller
• The last thing we will do is add a rate

limiter to the throttle signal.
• At the moment this does not appear to

42

• At the moment, this does not appear to
cause a problem. However, step changes
ion any power or energy source can cause
problems, in this case a torque spike.

• So, we will eliminate this step change with
a rate limiter.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Current Control Problems
• Add a rate limiter to the throttle signal.
• This will add delay to our current control

43

y
circuit that may cause an instability.

• Specify the rate as ±1 per second. (Guess)
• Too fast of a slew rate will pass the spike.
• Too slow of a rate will cause instabilities.

44

Looks
Good!

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

45

Engine
Turn On

This used to be aThis used to be a
step.

This used to be a
step.

46

Engine
Turn Off

This bump is still
here.

This used to be a
step.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Run Simulations and Verify
• You might want to use the accelerator or

rapid accelerator to speed up the longer runs.

47

This is where we
specify using an
accelerator or not.

Run Simulations and Verify
• For simulations with long runs and short

sample times, the scope plots will display a
large amount of data and on occasion

48

large amount of data, and on occasion,
MATLAB will run out of memory.

• To prevent this problem, we can add a sample
time to the scopes.

• Note that this will not work for scopes set up
with Signal & Scope Manager.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Sample Time
• In the Init File, define a variable

49

• Open a scope and click on the parameters icon:

Click here.

Sample Time
• Set the Sample Time to variable Sample_Time

as shown:

50

Specify sample
time here.

Enter variable
Sample_Time here,
which we define in
the init file as 0.1
secondsseconds.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

Sample Time
• By setting the sample time to 0.1 seconds, we

greatly limit the amount of data required to
display a plot

51

display a plot.
• Without this setting, the plot will use a huge

amount of data, especially if step sizes
become very small.

• Set the sample time for all scopes in your
system.

Lecture 7 Demo 1
• Demo of System running the FU505 drive

cycle five times

52

Demo___________

• Demo of model running the Consumer
Reports drive cycle

• Demo of model running the Trip EPA

Demo___________

• Demo of model running the Trip EPA
Combined drive cycle.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

53

FU505 Five Times

54

Voltage
S ik

Voltage

Consumer
Reports

City

Spike
g

Spike

y

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

55

Trip EPA Combined

Lecture 7 Exercise 1
• In the consumer reports drive cycle, we noticed

large voltage spikes. The spikes we observed in
the previous Consumer Reports slide are
reduced because we used a large sample time
and since the spikes were so fast.

• The next slide sets the Sample_Time to 0.01,
and we see huge voltage spikes.

• Figure out the reason for the battery voltage
spikes and update the model to prevent the
problem, and show the drive cycle with the
problem eliminated. Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

57

Consumer
Reports

Voltage
Spike

150,000 V

p
City

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 8: Post ProcessingLecture 8: Post Processing

Post Processing
• Now that we have a model for the entire

car, and a simple controller, we would like
to make some efficiency calculations for

2

to make some efficiency calculations for
the vehicle.

• These calculations will be done after the
model runs.

• We will need to collect data from the
simulation, and then use MATLAB to
perform calculations on the data.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Post Processing
• We would like to calculate the fuel efficiency of

our vehicle.
• If our engine used gas, this would be easy:

3

g g , y
efficiency (mile per gallon) is the distance
travelled divided by the amount of fuel used in
gallons.

• You might then ask, what about the electrical
energy used to move the car? If we ran off the
battery only, does the car get an infinite value of
efficiency (mpg) since no gas is used?

Post Processing
• Furthermore, we will be using a fuel other than

gasoline.
• In the future, vehicles will run off of a variety of

diff t f l d ld lik t b bl t

4

different fuels, and we would like to be able to
compare the efficiency of all of these vehicle in an
apples-to-apples comparison.

• We will use a method called miles per gallon, gas
equivalent (mpgge) where the mileage of our vehicle
is converted to the equivalent miles per gallon hadis converted to the equivalent miles per gallon had
reformulated gasoline (RFG) been the fuel stock.

• We will also use state of charge correction to include
the energy used from the battery.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Post Processing
• For our vehicle, we will assume that we are using

20% biodiesel fuel (B-20).
• This is 20 percent biodiesel, 80 percent petroleum

5

p , p p
diesel.

• We will first calculate conventional mpg for B-20.
• This is easy: mpg = distance travelled divided by

the amount of B-20 fuel consumed (in gallons)
– We already know the amount of fuel consumed in grams.We already know the amount of fuel consumed in grams.
– We do not know how far the vehicle has travelled in

miles.

Post Processing
• We can have the model calculate the

distance travelled by integrating the
vehicle speed

6

vehicle speed.
• We will convert the fuel consumed in

grams to fuel consumed in gallons in the
post processing file.

• Add an integrator and gain block to the
Rear Diff and Body subsystem as shown.

• Add the distance signal to the diagnostics
bus as shown.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Post Processing
• To convert from meters to miles per hour,

divide meters by 1609.34.

7

Post Processing
• We are already calculating fuel consumed in

the model, so we do not need to add a signal
for that

8

for that.
• In order to use the data calculated during the

simulation in a MATLAB file, we need to save
the calculated data in the MATLAB workspace.

• This is done with the MATLAB To Workspace
part (Simulink / Sinks library).

• We will place the To Workspace parts in the
Display_and_Logging subsystem:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Display_and_Logging Subsystem
• For the moment, we will only place two To Workspace

parts.
– One will be used to log the vehicle speed, and simulation

9

time.
– The second will only be used to log vehicle distance.
– The second one will be copied for all of the other signals we

want to log.

Speed and Time
• Double-Click on the To Workspace block

for the Vehicle_Speed_mph signal. Fill in
the parameters as shown:

10

The data will be saved in
the MATLAB workspace
with the variable name
Vehicle_Speed_mph_str.

Date for the entire
simulation will be savedsimulation will be saved
in the structure.

No decimation. Every
data point will be saved.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Speed and Time 11

To reduce the amount of data we save in
the workspace, we will use the sample
time to specify that we only save a data at
a fixed and specified sample rate. Variable
Sample_Time was specified previously in
the init file as 0 1 seconds Since all ofthe init file as 0.1 seconds. Since all of
our scopes and To Workspace blocks will
use the Sample_Time variable, we can
change the data collection sample rate for
all of our blocks at the same time.

We will save this variable as a structure
with time. This will save both the data for
the signal and the time vector at which
the data points were collected.

Although we will not be using the time
vector in the mpgge calculation, we will
use it later for more involved post
processing.

Post Processing File
• We can extract the time and the vehicle

speed data from the structure by using the
lines below in the post processing file:

12

• Note that the post processing file is just an p p g j
m-file that we run after the simulation has
been completed.

• Save the file as Vehicle_Post_File.m

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Distance_Miles
• The Distance_Miles signal will be saved

as an array:

13

• Notice that we are usingNotice that we are using
the Sample_Time variable
to reduce the size of the
array.

• The format is specified as
an array. A 1-dimensional y
array will be created that
contains only the data for
the specified signal.

To Workspace
• When you close the dialog boxes, you will notice

that the To Workspace blocks no display the
variable name under which the data will be saved in

14

the MATLAB workspace.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Post Processing
• Eventually we will add To Workspace blocks for

all sigals in our model.
• For the MPGGE calculation, we need the

15

,
following signals:
– Battery_SOC
– Battery_Voltage_V
– Battery_Current_A
– Engine_Fuel_Consumed_g

• Copy the Distance_Miles To Workspace block
for all of the other signals (they all will be saved
as an array and use the Sample_Time).

Display and Logging Subsystem 16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Post Processing File
• We will now create the post processing file

for our model.
• The first thing we will do is define a few

17

• The first thing we will do is define a few
constants for the conversion:

Constants
• Fuel heating values are the amount of energy

contained in the fuel. Note that a gallon of
diesel fuel contains more energy than a

18

diesel fuel contains more energy than a
gallon of reformulated gasoline. This is one of
the reasons why diesel costs more that
gasoline.

• The heating values are in BTU/gal. (Sorry
)about that…)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Constants
• Remember that our battery model was a

voltage source (referred to as the open
circuit voltage) in series with a resistor:

19

IBAT

VOC

RSeries

+

VBAT

-
VBAT = VOC + IBAT*RSeries

Constants
• To calculate the energy stored in the battery or

the energy supplied by the battery, we need to
know the battery open circuit voltage.
I d l th i it lt i

20

• In our model, the open circuit voltage is a
function of the battery state of charge, which
changes during the simulation.

• Later we will calculate the battery open circuit
voltage from an V-I plot generated from the
modelmodel.

• For now, we will assume that the open circuit
voltage is constant equal to 366 V.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Constants
• We cannot just take energy from the battery and

assume that it is free.
• Any energy take from the battery must be replaced

21

y gy y p
or the battery will eventually become discharged.

• If we do use some of the energy from the battery
to move the vehicle, we need to know the amount
of fuel that it will take replace that energy.

• A conversion efficiency of fuel energy to electrical y gy
energy of 25% is assumed. (Later on, we may run
simulations to verify this calculation).

Fuel and Distance
• The amount of B20 fuel consumed for the entire simulation is

the last value saved in the Engine_Fuel_Consumed_g array.
• The fuel consumed is converted from grams to gallons by

dividing by 3215. This conversion constant was provided by

22

g y p y
Argonne National Labs for a specific type of B-20 used in the
Challenge X competitions.

• The total distance travelled in the simulation is the last value
saved in the Distance_Miles array.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Battery State of Charge (SOC)
• If we remove energy from the battery

during the drive cycle, we must calculate
the additional amount of fuel required to

23

the additional amount of fuel required to
replace it.

• If we added energy to the battery, we must
calculate the amount of fuel required to
produce that energy and subtract the fuel
ffrom our total.

Battery State of Charge (SOC)
• The amount of charge added or removed from

the battery is equal to the change in battery SOC
times the battery amp-hour rating.

24

• We will assume that the ending battery SOC is
less that the initial SOC, so that charge has
been removed from the battery.

• Thus, we will call this amount,
Amp_Hours_Consumed:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Battery State of Charge (SOC)
• The energy removed from the battery is equal to

the Amp-hours consumed times the battery open
circuit voltage. (Note that Amp-Hours times volts is

25

equal to Watt-Hours.)
• Note that in our battery model, the open-circuit

voltage source is the energy storage portion of the
model. The series resistance accounts for battery
losses.

Battery State of Charge (SOC)
• We now know how much electrical energy was

used in moving the vehicle. To calculate the
amount of fuel the vehicle would use to replace

26

that energy, we divide by the the
Conversion_Efficiency.

• Finally, we will be using BTUs as the unit of
energy for all post processing MPGGE
calculations. To convert Watt-Hours to BTUs,

lti l b 3 412multiply by 3.412.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Battery State of Charge (SOC)
• Note that if, at the end of a simulation, the battery final SOC

is less that the battery initial SOC, electrical energy will have
been removed from the battery.

• In our calculation this will result in a negative value for the

27

In our calculation, this will result in a negative value for the
Electrical_Energy_BTU.

• Since this energy was removed from the battery and used to
move the vehicle, we need to add this amount of energy to
the actual amount of fuel consumed by the vehicle.

• Since energy removed from the battery is calculated as
negative energy we have to subtract this amount of energynegative energy, we have to subtract this amount of energy
from the fuel consumed energy so that the two actually
add.(This is done later when we calculate the total energy
consumed.)

Fuel Energy
• Next we calculate the amount of energy contained

in the fuel that was consumed by the vehicle.
• We will assume B-20. If we are using a different

28

g
value, we use the fuel heating value for that fuel.

• We know the amount of fuel consumed in gallons.
• The fuel heating value is the amount of energy in

BTUs a fuel contains in BTU per gallon:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Total Energy
• The total energy is the electrical energy

consumed plus the fuel energy consumed.
• As mentioned earlier if electrical energy is

29

• As mentioned earlier, if electrical energy is
consumed, it is calculated as a negative
quantity, so to add it to the total fuel
consumed, we need to subtract:

RFG Consumed
• We now know the total energy consumed by the

vehicle for it to complete the drive cycle.
• Next, calculate the amount of reformulated

30

,
gasoline (RFG) that would be required to supply
the same amount of energy.

• Divide the total energy consumed (in BTS) by the
fuel heating value of RFG in BTU per gallon:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

MPGGE
• Finally, to calculate the efficiency, divide the

distance travelled by the amount of RFG
consumed:

31

• Note that this is “gas equivalent” because we
converted the energy into the amount of RFG
required.

• The number is state of charge corrected because
we included the amount of energy removed from
the battery.

MPGGE
• Step 4 – Fuel Energy BTU

– Fuel_Energy_BTU = Fuel_Consumed_Gallons*
133393 1102

32

133393.1102
• Step 5 – Total Energy BTU

– Total_Energy_BTU = Electrical_Energy_BTU +
Fuel_Energy_BTU

• 133393.1102 BTU/Gal is the fuel heating value
of B-20.of B 20.

• Awesome – We now know the total energy
consumed by our vehicle over the drive cycle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Vehicle_Post_File.m File 33

Vehicle_Post_File.m File 34

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Msgbox
• The last thing we need to do is create a

spiffy display for our calculations:

35

Post Processing File
• If you would like this file to run after every

simulation, we can specify it as a callback
that runs when the model stops..

36

• Right click on the model and
– Select Model Properties
– Select the Callbacks Tab
– Select StopFnc
– Enter the name of theEnter the name of the

post processing file
without the .m.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Simulation Results 37

Demo___________

Open Circuit Voltage
• In our previous calculation, we assumed a

value for the open circuit voltage.
• This value can be calculated from the

38

• This value can be calculated from the
battery voltage and current data collected
during the simulation.

• If you remember, our model for the
battery, the terminal voltage is equal to the
open circuit voltage plus the battery
current times the series resistance:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

39

IBAT

VOC

RSeries

+

V

Battery Model

• The battery terminal voltage is a linear function

VOC

-

VBAT

VBAT = VOC + IBAT*RSeries

The battery terminal voltage is a linear function
of the battery current.

• The equation is a straight line where the y-
intercept is the battery open-circuit voltage.

Battery Open-Circuit Voltage
• We can determine the battery open-circuit

voltage by plotting the battery voltage
versus battery current (a V-I plot)

40

versus battery current (a V I plot).
• We can fit a first order polynomial to the

measured data.
• The y-intercept of the fitted curve is the

battery open-circuit voltage.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Battery Open-Circuit Voltage
• The lines below plot the battery V-I curve:

41

Battery Open-Circuit Voltage
• The measured V-I curve for the FU505 drive cycle is:

42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Battery Open-Circuit Voltage
• We could eye-ball the curve and estimate that

the open-circuit voltage is around 320 V.
• Instead we will use a first order polynomial

43

• Instead, we will use a first-order polynomial
curve fit to the measured data.

• We will use the MATLAB polyfit command:

Polyfit
• The polyfit function calculates a polynomial fit to the

measured data.
• The value is returned in a polymomial.

Si k d f fi d fi h l i l i i h

44

• Since we asked for a first order fit, the polynomial is in the
form poly= [a1 a2].

• The 1st order polynomial equation would be in the form y =
a1*x + a2.

• Thus, the second coefficient of the returned polynomial is
the y-intercept, and in this example, the battery open circuit
voltage.

• For the FU505 drive cycle, the open circuit voltage is
calculated as 318.441. A bit off from our estimate of 366 V.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Updated MPGGE Results
• With the updated Battery SOC, the

MPGGE calculations are as shown:

45

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 9: Improving Simulation SpeedLecture 9: Improving Simulation Speed
Brake Models

Simulation Speed
• By now you should have noticed that our model

has the annoying problem that at zero speed,
the simulation becomes exceedingly slow.

2

• This is bothersome because:
– It takes so long to run.
– The simulation appears to run slowly when the

desired vehicle speed is zero. (For some reason, this
seems wrong. We expect the simulation to require
more computation when the vehicle is performingmore computation when the vehicle is performing
maneuvers rater than sitting still and not moving.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Simulation Speed
• The problem becomes obvious when we

run the Consumer Reports City drive cycle
which has high acceleration and

3

which has high acceleration and
deceleration portions, and several portions
at zero speed.

• The simulation runs fast during the
acceleration and deceleration portions of
the drive cycle, but slows to a crawl when
the vehicle is at zero speed.

Simulation Speed
• We have been dealing with this problem with several

different vehicle models for a long time.
• The method presented here to discover the problem may

not present a method of how the solution to the problem

4

not present a method of how the solution to the problem
was discovered.

• The solution was discovered as a result of the model
used in this course, however, the realization of the
solution took several models and several years (yes, we
are slow).
W t th d t di th f th• We suggest a method to discover the reason for the
problem, but the method presented to discover the
solution may not really describe the troubleshooting
method that uncovered the solution.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Simulation speed
• If we run the simulation with the Consumer

Reports City Cycle (not the whole thing, it
takes too long) and plot the

5

takes too long) and plot the
– Desired and actual vehicle speed
– Driver torque request
– Motor torque

• We might get some insight into the
problem (or maybe not).

6Simulation runs
very slow here,
even in accelerator
mode.

Driver torque requestDriver torque request
appears to be zero,
as it should be. We
will zoom in here.

Driver torque q
appears to be zero,
as it should be. We
will zoom in here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

7

Vehicle speed is
zero

Tiny oscillations in the driver
torque request around zero.

Tiny oscillations in the motor
torque around zero.

Simulation Speed
• We see that there are small oscillations (10-30

size oscillations) around zero.
• We conclude that in order to keep the vehicle

8

p
speed at zero, the proportional feedback system
(the driver block feedback loop) gives the
vehicle a small negative torque bump to slow the
vehicle down.

• This bump, however causes the vehicle speed to
become slightly negative. The feedback
controller detects this and gives the motor a
small positive torque bump to correct this.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Simulation Speed
• The vehicle speed has tiny oscillations around

zero speed, and the system and the system
feedback system and motor use tiny positive and
negative torque pulses to push the vehicle

9

negative torque pulses to push the vehicle
speed slightly positive or slightly negative.

• Because there is no damping, the vehicle never
settles down to zero.

• Tiny time steps are required because the
MATLAB solver tries to get close to zero within aMATLAB solver tries to get close to zero within a
specified tolerance.

• These tiny time steps make the simulation run
slowly.

Simulation Speed
• You might ask, if this is a proportional feedback

system, why do we not see the same problem
when the vehicle attempts to maintain a constant

10

speed at say 30 mph?
• A possible explanation is that the vehicle model

has aerodynamic drag built into the vehicle solver.
• Drag increases as the square of the velocity. At 30

mph the amount of drag is significant.
• To increase speed, a torque bump from the motor

is necessary. If the vehicle speed is too high, aero
drag will slow it down.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Simulation Speed
• Thus, to maintain a constant speed only

positive motor torque requests are
needed Drag ends up decreasing vehicle

11

needed. Drag ends up decreasing vehicle
speed.

• Thus, the torque request signal will not
oscillate around some bias.

Solution 1
• So, we think we know the reason for the

simulation to slow down when the vehicle
speed is zero

12

speed is zero.
• A solution to this problem is to never allow

the vehicle to reach zero.
• We will add a small constant offset to the

desired speed in the driver block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Solution 1
• We see that we have added a 0.3 mph constant

offset to the desired speed signal.

13

• With this modification, the simulation now runs very
fast:

14

Speed never goes to
zero, as designed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Solution 1 – Speed Offset
• Te simulation now take about a minute to run,

where it used to take about 9 minutes.
• We do notice the offset as we see that the vehicle

15

speed never reaches 0.
• The solution is acceptable, but could cause

problems when we add a shifter to our system
and have the vehicle go forward and reverse.

• The solution does support our hypothesis that the pp yp
driver feedback loop may be the cause of the
problem.

Solution 2
• Since we are hypothesizing that the driver

block is emitting small positive and negative
torque requests to keep the vehicle at zero

16

torque requests to keep the vehicle at zero
speed, we come up with a new idea:
– Since tiny torque requests will not significantly

move the vehicle, why not just prevent torque
requests below a certain threshold from being
emitted by the controlleremitted by the controller.

– We can do this with a dead zone block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Solution 2: Dead Zone Clipper
• Remove the offset we added previously.
• Add a Dead Zone block (Simulink /

Discontinuities) to the controller as

17

Discontinuities) to the controller as
shown.

Solution 2: Dead Zone Clipper
• The properties of the Dead Zone Clipper are:

18

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Solution 2: Dead Zone Clipper
• The Dead Zone clipper is set to eliminate any

torque requests between -0.001 and +0.001.
• These limits were chosen as a first guess

19

• These limits were chosen as a first guess.
• The values are small enough to not

significantly affect the torque request.
• However, ting torque requests will be

blocked, and hopefully solve the problem.blocked, and hopefully solve the problem.
• When we run this solution, the model appears

to run as fast as the first solution.

20

Speed offset now gone.
Simulation runs fast.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Solution 2 – Dead Zone Clipper
• The Dead Zone solution fixes the simulation speed

problem, and does not give the vehicle speed an
arbitrary constant offset.

21

• Simulation speed tests were run using the Consumer
Reports City cycle. The time to complete the
simulation for the various methods were:
– No Solution – Original Model: 529 Seconds
– Constant 0.3 mph Offset: 70 Seconds
– Dead Zone Clipper: 67 Seconds

• We will use the Dead Zone Solution because it does
not ad an arbitrary offset to the vehicle speed.

Brake Models

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Brake Models
• At this point the only method of slowing the

vehicle is to use the motor to apply a negative
torque to the rear wheels.

23

• The benefit is that we recapture all of the
possible regenerative braking energy available.

• There are two problems with this method, one
fairly obvious, the other a bit subtle.

• The first problem is that if the motor, motor p ,
controller, or powertrain fail, there is no way to
slow the vehicle. Thus, we need a backup.

Brake Models
• The second, less obvious problem, is that the

motor slows the vehicle by applying a negative
torque to the powertrain. This raises two issues:

24

– If a tire breaks free, the wheel will actually spin at high
speed in the opposite direction of vehicle movement.
(With mechanical friction brakes, when there is too
much braking torque, the wheel just locks).

– At low vehicle speeds, since braking applies a
negative torque, if we are not careful, pressing the g q p g
brake could cause the vehicle to move backwards.
(To prevent this problem, we do not allow
regenerative braking below certain vehicle speeds.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Braking Methods
• We will show two brake models:

– The first method uses a torque actuator and
applies a torque to the half shaft in the

25

applies a torque to the half shaft in the
opposite direction of tire rotational velocity.
(This method has the problem of causing the
tire to spin backwards during hard braking).

– The second method uses a friction clutch to
apply a torque between the half shaft and an pp y q
immovable object. (This method locks the
wheel during hard braking.)

Braking Methods
• Both methods will cause problems around

vehicle speed.
– This causes the simulation to run slowly just as

26

– This causes the simulation to run slowly just as
it did with the problem in the driver feedback
loop around zero vehicle speed.

– We will employ a similar solution to mitigate this
problem.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Method 1 – Opposing Torque
• The first model will sense the direction of

rotation and apply a torque in the opposite
direction The basic model is shown below:

27

direction. The basic model is shown below:

SimDriveline motion
sensor used to
measure rotational
velocity.

1-D Lookup
table.

Method 1 – Opposing Torque
• The 1-D lookup table is used to output the direction of

rotation.
• If the rotational velocity is negative, the table outputs

a 1 If the rotational velocity is positive the table

28

a -1. If the rotational velocity is positive, the table
outputs a +1.

• This lookup table is used to switch the direction of
applied torque based on the direction of shaft
rotation.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

29
Torque actuator
applies braking torque
to the shaft.

Maximum available
braking torque.Braking input signal, expected to

be between 0 and 1.

Method 1 – Opposing Torque
• There are some issues with this model, some of

which might be obvious.
• First, when the shaft is near zero speed, we can

30

, p ,
foresee the output of the motion detector
flipping back and forth around zero. As it flips,
the output of the lookup table will flip causing
the braking torque to flip in the opporite
direction.

• We should expect that the braking torque will
oscillate rapidly between positive and negative
torques as the tire speed reaches zero.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Method 1 – Opposing Torque
• To prevent wild oscillations, we will slow down

the output of the lookup table with a rate limiter.

31

Method 1 – Opposing Torque
• The rate limiter has positive and negative slew

rates of 10 per second.
• Since the output of the lookup table flips

32

p p p
between -1 and +1, the brake can swing from
full positive torque to full negative torque (or
vise versa) in 0.2 seconds (2/10).

• This reduce slew rate prevents wild oscillations
in the applied braking torque when the tire
speed is zero.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Method 1 – Opposing Torque
• Next, we need to limit the controlling input signal to be

between 0 and 1.
• We expect this range of inputs, but we will add a

saturation block just in case the user of the brake

33

saturation block just in case the user of the brake
subsystem makes a mistake:

Saturation block added.

Method 1 – Opposing Torque
• If the user slams on the brakes, we do not

want to apply a step change in torque to
the brakes

34

the brakes.
• Large step changes in torque brake shafts.
• To prevent this, we will add a rate limiter

that reduces the rate at which we can
apply torque with the brake.

• We will use a positive slew rate of 4 and a
negative slew rate of -10.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Method 1 – Opposing Torque
• The control signal goes from 0 to 1. Having a

positive slew rate of 4 means that the signal will
travel from 0 to 1 in ¼ seconds, or 250 ms.
Th t i d t th t h i t t

35

• The auto industry says that humans interpret a
response time of 250 ms as instantaneous.

• Thus a slew rate of +4 on the brake signal will not
appear to have a delay to a human operator.

• A negative going slew rate of 10 was chosen so
h h b k l i kl hi ithat the brake releases quickly, as this is not a

change in torque that will break a shaft. (Re
removal of torque rather than applying a step
increase in torque.)

Method 1 – Opposing Torque
• The rate limiter is added as shown below:

36

Rate limiter block
added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Method 1 – Opposing Torque
• The last problem we need to address is the same

problem we observed with the driver feedback loop.
• When the vehicle speed is zero, the previously

h b k d l ld th i l ti t

37

shown brake model would cause the simulation to
run extremely slowly.

• The cause is the same. The brake would attempt to
hold the vehicle at zero speed by applying a torque
to the shaft that would oscillate between positive to
negative valuesnegative values.

• The solution is the same. We will use a lookup
table to reduce the torque to zero when the vehicle
speed is zero.

38

Absolute value block.

1-D lookup table.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Method 1 – Opposing Torque
• The 1-D lookup table reduces the braking torque to

zero at low speeds.
– For speeds 3 mph and higher, the output of the table is 1

and the braking torque is the torque requested by the

39

and the braking torque is the torque requested by the
driver.

– As the vehicle speed drops from 3 mph to 1 mph, the
braking torque is linearly reduced to zero.

Method 1 – Opposing Torque
• We will place the brake model within a subsystem

so that we can use it several times within the same
model.

40

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Brake Testing
• We will test the brake with the testing harness

shown below:

41

Brake Testing
• The basic idea is to give a large inertia an initial

velocity with the IC block and then use the brake
to slow the speed down to zero.

42

• We will also do a lot of testing with the brakes in
the vehicle model. However, it will take a lot of
work to incorporate the brake into our model, so
we will use the testing harness as a preliminary
test.

• The blocks have the values shown on the next
slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

43

Brake Testing
• For an Initial condition of -1000 rad/sec, the plot

of the speed is shown below:

44

We see that the speed
decreases (in absolute
value) and eventually the
shaft locks at 0.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Brake Testing
• For an Initial condition of +1000 rad/sec, the plot

of the speed is shown below:

45

We see that the speed
decreases and eventually
the shaft locks at 0.

Demo___________

Brake Model – Method 2
• The second method uses many of the same

components as the first method except that we use a
clutch rather than a torque actuator:

46

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Method 2
• This model uses a friction clutch to apply

torque in the form of friction between the
rotating shaft (input port of the brake) and

47

rotating shaft (input port of the brake) and
an immovable object (in this case the
housing).

• The housing can be thought of an in
infinite inertia. It takes in infinite amount of
toque to make it spin.

• The properties of the friction clutch are
shown on the next slide.

Brake Method 2
• The applied torque is

equal to the normal
force times the times
the radius of the

48

the radius of the
friction surface times
the number of friction
surfaces. In our case
the peak torque we
can apply is 6000 Nm,
the same as in
method 1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Clutch Model
• The clutch has a pressure input (P).
• Allowable values are 0 to 1.

A th i l f 0 t 1

49

• As the pressure signal goes from 0 to 1,
the applied frictional torque goes from 0 to
6000 Nm (for our settings).

• Next, we will test this brake using the
same harness we developed earlier.

Brake Testing – Method 2
• We will test the brake with the testing harness

shown below:

50

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

51

Brake Testing
• For an Initial condition of -1000 rad/sec, the plot

of the speed is shown below:

52

We see that the speed
decreases (in absolute
value) and eventually the
shaft locks at 0.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

Brakes
• The two models appear to behave in a

similar fashion.
• We will use the clutch model in the

53

• We will use the clutch model in the
vehicle.

• Don’t ask why…..

Brake Testing
• For an Initial condition of +1000 rad/sec, the plot

of the speed is shown below:

54

We see that the speed
decreases and eventually
the shaft locks at 0.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 9:Lecture 9:
Brakes Part 2: Brake Controller

Incorporating the Brake Model
• Now that we have a mechanical friction brake

model, we need to incorporate the brake mdoel
into our vehicle. This will require three steps:

2

– Connecting the brakes to the half-shafts
– Modifying the driver model to emit acceleration and

braking signals.
– Designing a brake controller so choose between the

foundation brakes (mechanical friction brakes) and
the regen braking (the electric motor).the regen braking (the electric motor).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Connecting the Brakes
• The brakes are connected to the rear half-

shafts (the shafts between the rear
differential and the wheels

3

differential and the wheels.
• We will start with model Lectue9_Model3

that we modified in Lecture 9 and
improved the simulation speed.

• Save this mode as Lecture10_Model1.
• Add the mechanical brakes as shown:

4

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Connecting the Brakes
• The brake model has:

– Been resized to fit in a small space.
– Two Inports that are labeled as “1”:

5

p

Inport 1.

Inport 1.

Inports
• We notice that both Inports are labeled as

port 1.
– This means that the ports are the same port

6

– This means that the ports are the same port.
The Rear Diff and Body subsystem will

only have a single Simulink (not two).
– We can use these duplicated Inports instead

of using From and Goto blocks.
– The duplicated port was created using the– The duplicated port was created using the

following procedure.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Inports
• Place a single Inport in your drawing:

7

Inport 1
added here.added here.

Inport 1 not
added here.

Inports
• Right-click and drag the Inport you want to

duplicate:

8

Right-click on thisRight click on this
Inport and drag it
somewhere.

Dragged Inport:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Inports
• Drag the port

next to the lower
brake

9

subsystem and
release the
mouse button.

• Simulink will ask
if you want to
C fCopy of
Duplicate the
port.

Inports
• Selecting Copy will create a new port (number 2

in this case) and will name it with the same
name as the original port and append a 1 to the

10

name.
• Selecting Duplicate Inport will create a port with

the same number (1 in this case) and will name
it with the same name as the original port and
append a 1 to the name.

• Duplicating a port does not create a new port. It
creates a connection to an existing port without
using From and Goto blocks.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Inports
• Select Duplicate Inport and connect the

port as shown:

11

Inports
• When we go top-level block diagram, we will see

that the Rear Diff and Body subsystem only has
a single Brake_Request input:

12

Single Simulink
input.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Driver Model
• We now need to update the driver subsystem.
• The driver block knows what the desired and actual

vehicle speeds are and emits the driver torque

13

p q
request to try to make the actual vehicle speed
equal the desired speed:
– The emitted driver torque request is a number between -1

and +1.
– If the vehicle speed is too slow, the driver block emits a

positive signal to accelerate the vehiclepositive signal to accelerate the vehicle.
– If the vehicle speed is too high, the driver block emits a

negative signal to decelerate the vehicle.

Driver Model
• Thus, we see that positive driver torque

requests are acceleration requests and
negative torque requests are braking requests

14

negative torque requests are braking requests.
• We can easily split the driver torque request

into two separate signals:
– The driver accelerator request which are the

positive values of the driver torque request signal.
– Driver brake request which are the negative values

of the driver torque request.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Driver Model
• We will use saturation blocks to split the signal in

half. The Driver_Accel_Request is the positive
portions of the driver torque request signal.

15

Driver torque request signal. It has
both positive and negative values.

Driver_Accel_Requests are always positive.
The sat block passes only the positive
portions of the driver torque request.

Driver Model
• The Driver_Brake_Request signal is the negative

portions of the driver torque request signal.

16

Driver_Brake_Requests are always
positive. The sat block passes only the
negative portions of the driver torque
request and then we multiply by -1 because
the brake model requires a positive signal
as well.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Driver Signals
• Note that:

– A positive value in the Driver_Brake_Request
means slow down the vehicle.

17

means slow down the vehicle.
– A positive value in the Driver_Accel_Request

means speed up the vehicle.
• These two signals are one step in preparing

our model for the Hardware-in-the-Loop (HIL)
i l ti ill d l t h th tsimulations we will do later where these two

inputs will come from actual brake and
acceleration pedals.

Driver Block
• Also note that our driver block now has a

single output.
– The Driver Accel Request and

18

– The Driver_Accel_Request and
Driver_Brake_Request signals are not
contained in the Vehicle_System_Diagnostics
bus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Brake Controller
• The meat of this section is the development of a

brake controller.
• We have both regen brakes (using the electric

19

g (g
motor to slow down the vehicle) and foundation
brakes (mechanical friction brakes).

• Foundation brakes result in 100% energy loss
all of the braking energy goes into generating
heat.

• Regen braking allows you to recapture some of
the vehicles kinetic energy and store it in the
battery.

Brake Controller
• Several different concerns will be included in our

braking control strategy:
– Fuel efficiency – We will create a strategy that uses

regen braking before foundation brakes so that we

20

maximize the energy we recapture.
– Safety

• Both regen and foundation brakes are required in case one
method fails.

• We need to prohibit regen barking when the battery state of
charge is too high (When the battery is charged, it cannot
accept charge)accept charge).

– Driver feel – We will be switching between regen and
foundation brakes as the vehicle changes speed. We
do not want the driver to notice a difference as we
switch between the two methods.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Brake Controller
• We will add a new subsystem to the

Controller called
Acceleration and Braking

21

Acceleration_and_Braking
• The input to this subsystem will be the

Vehicle_System_Daignostic bus.
• The Outputs of the system will be:

– Motor_Torque_Request (responsible for _ q _ q (p
acceleration and regen braking).

– Brake_Request (foundation brake signal)
• The Controller is shown on the next slide:

22

Added subsystem.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Accel and Brake Controller
• An enlargement is shown below.
• Note that the outputs of the

Acceleration_and_Braking subsystem are also the
t t f th C t ll b t

23

outputs of the Controller subsystem.

Accel and Brake Controller
• Before we build the subsystem, we note that the

motor is responsible for both acceleration and
regenerative braking.

24

• Thus, the motor torque request signal is a
combination of the acceleration request and the
braking request.
– A positive acceleration request will be passed to the

motor as a positive torque request.
A iti b ki t ill b d t th t– A positive braking request will be passed to the motor
as a negative torque request.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Acceleration Signal
• We will first look at extracting the appropriate signals from the

bus and forming the Motor Torque Request Signal. The
model is shown below:

25

• The Driver_Accel_Trequest is passed directly on to the motor
as the motor is the only component responsible for
accelerating the vehicle. Thus, we will not modify the signal
(yet… Later we may do some signal conditioning on the
signal to prevent damage to the vehicle to do driver
enthusiasm…)

Acceleration Signal 26

• Note that we can add the accel request to the brakeNote that we can add the accel request to the brake
request because when there is a brake request the accel
request is zero, and when there is an accel request the
brake request is zero.

• Even though motor accel requests are positive and
motor regen requests are negative, they wioll not cancel
when we add them because because one is alwayswhen we add them because because one is always
zero.

• Thus, we can form the complete motor torque request
signal by adding together acceleration and braking
requests.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Braking Method
• We will now create a simple braking metho to

increase energy recovery.
– When the driver braking request goes from 0 to 50%

27

pedal position, the regen braking request will go from
0 to 100%. That is, we will ask for full regen braking
when the brake pedal is 50% depressed.

– When the driver braking request goes from 0 to 25%
pedal position, No Mechanical brake request will be
generated.

– When the driver braking request goes from 25 to
100% pedal position, the foundation braking request
will go from 0 to 100%.

Braking Method
• This method:

– Allows us to use 100% regenerative braking
for light braking requests.(No foundation

28

for light braking requests.(No foundation
brakes.)

– Uses both the foundation and regen brakes
for safety through the use of both braking
systems at the same time.

– Creates a dead spot in the brake pedal withCreates a dead spot in the brake pedal with
no braking regen braking is disabled (whill wil
happen quite frequently. Need to fix this.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Braking Method
• We will use look-up tables to implement

this method. The Simulink block diagram
is shown below:

29

Braking Method
• The parameters for the two look-up tables are:

30

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Braking Method
• Note that a negative brake request is

passed to the motor as a negative torque
request

31

request.
• We have now created a simple braking

controller.
• The last thing we need to do is connect

the Brake_Request and
Motor_Torque_Request signals at the top-
level block diagram:

32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Brake Model Test
• To test the braking method we will run the FU505

model and plot:
– Vehicle, Passenger Tire, and Driver Tire Speeds

33

– The Driver_Accel_Request and Driver_Brake_Request
– Battery Voltage
– Motor and Generator Currents
– Battery SOC
– Regen Brake Request and Foundation Brake Request

• Show tat your model uses both regen abd
foundation braking.

Lecture 10 Demo 1 34Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Braking Results
• Note the following from the results of the

previous simulation:
– We successfully split the driver torque request

35

– We successfully split the driver torque request
into acceleration and Braking requests.

– For the FU505, most of the braking is done
through regen braking (which suggests that a
25% pedal throw is only needed for this drive
cycle.cycle.

• Just for fun, run the Consumer Reports
City cycle and observe the amount of
regen and foundation braking:

Braking Results
• The Consumer Reports Drive Cycle has

instances of much harder acceleration
and braking than does the FU505

36

and braking than does the FU505.
• The simulation crashes after a while due

to too many zero crossings, which
suggests that the solver is having trouble
simulating the system.

• We do see that there are more foundation
braking requests than in the FU505 cycle
because of the heavier braking.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

37

More foundation
braking.

Braking Problem
• We do notice a problem with the simulation now.
• We see this hash that we did no see earlier.

38

What is this.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Lecture 10 Exercise 1
• What is the “hash” that you are seeing in

the previous slide?
• What is the cause of the problem?

39

• What is the cause of the problem?
• Determine a way to fix the problem and

demo the Consumer Reposts City drive
cycle showing that the problem has been
eliminated.

Demo___________

Lecture 10 Exercise 2
• In Lecture 8 we calculated the fuel efficiency of a

model that used only regen braking to slow the
vehicle.

40

• In this lecture, we have now added foundation
brakes, which can only reduce the efficiency of
our vehicle.

• Compare the efficiency of your vehicle from
lecture 8 to the efficiency of this vehicle using of
the FU505 and Consumer Reports City drive
cycles.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Regen Braking and SOC
• As the battery SOC increases, the battery’s capability

of accepting charge decreases. (A fully charged
battery cannot accept charge.)

41

• There are two things we need to consider:
– Our control strategy needs to be designed (optimized) so

that the battery remains somewhat discharged so that we
can always take advantage of regen braking (we will not
address this here).

– If the battery SOC becomes too high, we need to disableIf the battery SOC becomes too high, we need to disable
regen braking.

• We will now reduce and, if necessary, disable regen
braking if the Battery SOC becomes too high.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 11:Lecture 11:
Partitioning the System

High-Level Control

Incorporating the Brake Model
• We now have a fairly large and complex system.
• We would like to arrange it more like a classical

control system and also arrange it to easily
facilitate deploying the models on our Hardware

2

facilitate deploying the models on our Hardware-
In-the-Loop (HIL) system.

• We would like to set up the system in the form of
a controller and a plant. In this case the plant is
everything in our vehicle model except for the
controller and driver blockcontroller and driver block.

• The controller receives commands from the
driver block and coordinates the subsystem
compoonents inside theplant.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Partitioning the System
• We would like to set up a classic-looking control

system.
• We will have the driver subsystem interface to

3

y
the controller, and then the controller interface to
the plant which contains all of the other
subsystem components of the vehicle except the
logging and visualization subsystem.

• We will start with the last model developed in
Lecture 10 and rename it as Lecture11_Model1.

• This model is shown next:

4

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Partitioning the System
• Separate the subsystem components as shown:

5

Partitioning the System
• We want to make a subsystem out of the

Diagnostic bus, Battery, Electric Motor,
Rear Diff and Body Generator Engine

6

Rear Diff and Body, Generator, Engine
subsystems.

• Select all of these components and then
right-click on one of the selected
components and select Create
SSubsystem:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

7

Partitioning the System
• When you select Create Subsystem, all of

the selected subsystems will be grouped
into a single subsystem

8

into a single subsystem.
• Rename that subsystem “Vehicle_Plant.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Partitioning the System
• We now need to do a fair amount of

reorganization and rerouting of some
control signals

9

control signals.

• We will start with the driver. The output
signals will be grouped together in what
we will now call the “Driver_Controls_Bus.”

• The model does not need to be modified,
but is shown next:

Driver Block
• Note that the only reason the driver block needs the

Vehicle_System_Diagnostiocs is because the feedback
system that tracks a drive cycle needs to know the vehicle
speed In a future lecture the driver block will have only

10

speed. In a future lecture, the driver block will have only
outputs unless we implement a cruise control.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Controller Modifications
• The Driver_Diagnostics will no longer be part of

the Vehicle_System_Diagnostics bus.
• Instead, the driver control signal go directly to

11

, g g y
the controller, and the controller issues the
appropriate commands to the subsystem
components based on the inputs provided.

• Modify the controller as shown next. The only
change on the top level of the Controller is that
the driver controls connect to the controller
through a separate port.

Controller Top Level Changes
• The changes to the top level of the

controller are shown next:

12

Ports replaced by Goto blocks.
These signals will be placed in the
Control Signals bus.Goto and From blocks

added.

Driver_Cojntrol_Signals is now an input and goes
directly to the Acceleration and Braking subsystem.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Controller Top-Level Changes 13

Goto and From blocks
added.

“Control_Signals”
bus added.

Top Level Changes
• On the top level, we need to connect the

Driver Controls Bus

14

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Vehicle_Plant Chaqnges
• We now need to make some changes in the

plant.
• The only input to the Plant is the

15

y p
Vehicle_Control_Signals bus.

• We will leave this signal as a bus because it will
go to every subsystem in the Vehicle_Plant.

• Plus, we will be adding many more control
signals in the future. Using the Control Signalsg g _ g
but will clean things up a bit.

• The Vehicle_Plant has been modified as shown
next:

Vehicle_Plant
• Note that we are immediately assign a Goto block to the

Control_Signal input.
• Note that we have also removed the Driver_Diagnostics

from the Vehicle System Diagnostics bus

16

from the Vehicle_System_Diagnostics bus.

• We will be adding additional signals to theWe will be adding additional signals to the
Control_Signals bus, so we will leave it as a bus and
then it will be an input to all subsystem blocks in the
plant.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Vehicle Plant – Battery Subsystem
• We will modify one plant subsystem at a time.
• At the moment, the battery has now control

signals. This will change when we do our wake-

17

g g
up sequence for the vehicle.

• For now, we will add that Control_Signals bus as
an input to the battery, and then terminate that
signal inside the battery subsystem. This way,
the control signals will be ready to use within the
subsystem once the appropriate logic has been
discovered.

Battery Model
• The battery has been modified by adding a new

port to connect the Control_Signals but to:

18

• At the plant level, we connect the control signal
bus to the battery Controls_Singal input:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Plant Mods – Electric Motor
• The Torque Request for the electric motor

will come from the Motor_Torque_Request
bus

19

bus.
• We will change the input of the

Torque_Request port to a Control_Signals
port. Inside the model, we will need to
extract the motor torque from the Bus.

• Inside the electric motor, we need to extract the
Motor_Torque_Request signal from the bus:

Electric Motor 20

• And then connect this signal to the torque
request portion of the model:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

More Changes
• We can make similar changes to all remaining

subsystems within the Vehicle plant:
– For the Rear Diff and Body: replace the Brake Request

21

input by the Control_Signals input and extract the
Brake_Request signal inside the subsystem.

– For the Generator : replace the Generator_Torque input by
the Control_Signals input and extract the
Generator_Torque signal inside the subsystem.

– For the Engine: replace the Throttle and Engine_On inputs g p g _ p
by a single Control_Signals input and extract the Throttle
and Engine_On signals inside the subsystem.

Plant Model
• We now have a pretty clean plant model:

22

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Top Level
• We can now connect the system together at the top level:

23

• This now looks like a classical control system top-level block
diagram:
– The controller gets its commands from the driver block and then– The controller gets its commands from the driver block and then

issues commands to the plant.
– The controller monitors the plant output and modifies its output so that

the plant achieves certain performance criteria.

Top Level
• For the moment, the Driver block needs the

vehicle speed as well, and this signal is
contained within the

24

Vehicle_Systems_Diagnostics bus, so we need
to connect this bus to the driver block as well:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Top Level
• The last thing we need to do is modify the

Display_and_Logging subsystem.
• We will place this subsystem at the top

25

• We will place this subsystem at the top
level so that we can display and log
signals in all three busses.

Display and Logging Subsystem
• This system now has three bus inputs.
• We will log every signal in all three

busses

26

busses.
• You will need to rearrange some of the

signals from one bus to another as signals
that were originally in the
Vehicle_System_Diagnostics bus have
been moved to one of the other busses.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Display and Logging Subsystem 27

Enlargements of each
portion of this subsystem
are shown ion the next
few slides.

Display and Logging Subsystem 28

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Display and Logging Subsystem 29

Display and Logging Subsystem 30

You cannot see any of the
signals in this slide. This
portion displays all of the
signals in the bus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

System Test
• We will now run a test to see that we

connected everything correctly.
• We have not changed the model

31

• We have not changed the model
physically, so the results should be the
same as in Lecture 10.

• If there are differences, it is because we
made a mistake in connecting signals.

System Test
• When we run a simulation, we get an error

that says that we have an algebraic loop!

32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

System Test
• Upon further investigation, we find that the algebraic

loop includes the SimDriveline Env, and clutch, and
tire models.
It t t th t i th l t h

33

• It turns out that using the clutch can cause an
algebraic loop.

• There are three ways to fix this:
– First Method: Do not use a clutch. The only place we are

using a clutch is for the brakes. We can use the brake
model that used the torque actuator rather than themodel that used the torque actuator rather than the
clutch.

– Method 2: Add a memory block somewhere in the
mode to break the algebraic loop.

Clutch Algebraic Loop
• In the Simulation

/ Configuration
Parameters

34

Change these to items to
“warning.”

dialog box we can
change the
diagnostics for
Algebraic loops
from error to
warning (This didwarning. (This did
not work in this
case…)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

System Test
• Pick the method you would like to use and

run a simulation and vetrify that it
produces the same results for the FU505

35

produces the same results for the FU505
as in lecture 10.

Lecture 11 Demo 1
• Demo the working model of the rearranged system.

36
Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Manual Controls
• Next, we would like to replace the driver

block with manual controls.
• Eventually we will drive the vehicle with

37

• Eventually, we will drive the vehicle with
these controls in real-time.

• For now, we will just add acceleration and
braking signals.

• Later, we will add signals for turning on theLater, we will add signals for turning on the
vehicle and the gear shift.

Driver Block
• We will replace the contents of the driver

block with the manual controls shown below:

38

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Driver Block
• We did not delete the Desired_Vehicle_Speed

signal because it would require extra work on
our part to search through the model and locate

39

all instances of where this signal is is used.
• Instead, we set the driver speed to a constant of

0 so that we can continue to use all of our plots
and post processing files without modification.

• The new blocks used in the driver subsystem
are Slider Gain blocks located in the Simulink /
Math Operations library.

Slider Gain
• If you double-click on one of the slider gain blocks, you

will notice that limits are specified:

40

• This part is a gain block that is controlled by the slider
shown above. The limits on the slider are specified in the
block.

• This is a gain block. The output is the input times the g p p
gain, where the gain is determined by the slider.

• Note that the slider can be changed during a simulation,
allowing you to change the gain on-the-fly.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

Slider Gain 41

Lower limit of slider
Upper limit of slider
gain

• Since the limits on the slider gain are 0 and 1,
and the input to the slider is 1, the output of the
slider varies between 0 and 1 as we move the
slider

Lower limit of slider
gain.

gain.

slider.
• We will use these sliders as the accelerator and

brake pedals for driving our vehicle.

Driver Block
• Note that the driver block no longer needs the

vehicle speed information, so we can delete the
Vehicle_Systems_Diagnostics bus:

42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Accel and Brake Pedals
• We would like to add some logic to protect

the driver from himself and protect the
vehicle from a rogue driver

43

vehicle from a rogue driver.
• We will ad some logic that prevents the

accelerator pedal and brake pedal from
being depressed at the same time.

Accel and Brake Pedals
• We will implement the following rules:

– If the brake pedal is depressed, the accelerator
pedal signal is set to zero, even if the accelerator

44

pedal signal is set to zero, even if the accelerator
pedal is being depressed. (We will always brake
and disable the accelerator pedal whenever the
brake pedal is depressed.)

– If the brake pedal is not depressed, the value of
the accelerator pedal is passed to the system.p p y

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

Controller Modifications
• The accelerator and brake signals are

passed directly to the
Acceleration and Braking subsystem that

45

Acceleration_and_Braking subsystem that
is contained within the controller.

• We will add a signal conditioning block
where the signals first enter the
Acceleration_and_Braking Subsystem:

Acceleration and Braking Subsystem
46

• The contends of the Pedal_Conditioning
subsystem are

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Acceleration and Braking Subsystem
• We see that the Brake_Pedal signal is basically passed

to the system with little modifications.
• Saturation blocks are used to limit the signals from 0 to 1

in case we make a mistake and put in too large of a

47

in case we make a mistake and put in too large of a
signal.

• The Slew rate of the limiter is set to +/-10 per second to
eliminate very sharp braking and acceleration requests.

• The threshold of the switch is set to 0.05. The switch
sets the acceleration pedal signal to zero if the Brake

d l i d d th 5% (th 0 05 th h ld)pedal is depressed more than 5% (the 0.05 threshold).

Test Drive
• We are now ready to drive the vehicle with the

manual controls.
– Set the simulation time to inf

48

– Set the simulation time to inf.
– Set the simulation to “Normal.” (Not the accelerator

or rapid accelerator.
– In the scope plot you which to use, se thet Tiome

range to 100.
S t i d h t d d i• Set up your windows as shown next and drive
the vehicle and verify the logic of the accel and
brake pedals:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Lecture 11 Demo 2 49

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Advanced Model Based SystemAdvanced Model-Based-System
Design

Lecture 12:
System Initialization

Shifting LogicShifting Logic

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

System Initialization 2

• We now have a vehicle that we can drive
with manual accelerator and brake pedals.

• With most vehicles, you cannot just hump
in and press the accelerator pedal and p p
drive away. The following usually occurs
– You turn the key to start the vehicle.You turn the key to start the vehicle.
– The vehicle goes through a component check.
– The vehicle systems are enabledThe vehicle systems are enabled.
– You must then shift the vehicle out of park into

forward or reverse.forward or reverse.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

System Initialization 3

• We will add a parallel Stateflow chart to go
through the vehicle startup and shifting
procedures.

• This Stateflow chart will enable the
charge-control Stateflow chart that
controls the engine-generator charging g g g g
system.

• We will start with modelWe will start with model
Lecture12_Model0, which will be passed
out in classout in class.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

System Initialization 4

• First, we will add a switch to the driver block that
simulates the key switch of a conventional

hi lvehicle.
• Our vehicle does not have a starter, so all we

need is an off on switchneed is an off-on switch.
• We will use a manual switch to switch the signal

between 0 and 1between 0 and 1.
• We will add this to the Driver_Controlls bus, and

this signal will go directly to the controllerthis signal will go directly to the controller.
• We will Name the signal Vehicle_Key.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Driver Subsystem 5

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller
• Next we will add a second Stateflow chart

6

• Next, we will add a second Stateflow chart.
• The only inputs to this chart will be the

Vehicle Key signal and a clock which is theVehicle_Key signal and a clock, which is the
same clock as used for the charge controller.

• This chart has a single output, which is theThis chart has a single output, which is the
Vehicle_Ready signal.

• The value of this signal is initialized to zero and g
will remain zero until we check the status of the
battery, motor, generator, and engine.

• We will also add a variable called State for
debugging purposes.

• Add a Stateflow chart as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller Modifications 7

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller
• The contents of the chart only check to see the

8

• The contents of the chart only check to see the
status of the Vehicle_Key switch.

• Note that for the moment the vehicle KeyNote that, for the moment, the vehicle_Key
switch only tells the vehicle to turn on. It is not
capable of turning the vehicle off. p g

• (We will implement this later because we need
to do a controlled shut-down procedure.)

• The beginning of the Startup_and_Shifting chart
are shown next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller 9

There is an error in this
diagram. Something was left
out. You may find it later…

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller
• The Charge Controller Stateflow chart must also

10

• The Charge_Controller Stateflow chart must also
be modified.

• We want to specify that the engine andWe want to specify that the engine and
generator not be enabled until until the
Startup_and_Shifting chart check out all of the p_ _ g
components and signals that the vehicle is
ready.

• We will need to add the Vehicle_Ready signal as
an input to this chart.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller
• Modify the Charge Controller chart as shown:

11

• Modify the Charge_Controller chart as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Charge_Controller 12

• We will add an exit condition to the
initialization state of the Charge-Controller
Stateflow chart that will not allow the
vehicle to enter the normal
charge/discharge cycle until the vheicle is
ready.

• Note that this modification does not
address the issue of a graceful shutdown.g

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Charge Controller 13

This state transition guard
added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Battery Model 14

• Next we will add a startup handshake for the battery and
some operational details.

• The battery has a control signal that must be sent to it and a• The battery has a control signal that must be sent to it and a
status signal that it sends to indicate its state.

• The battery has an internal contactor. When the contactor is
open, the battery voltage is zero and the pack is
disconnected from the system.

• When the contactor is closed the battery is connected to• When the contactor is closed, the battery is connected to
the system (motor and generator in our case) and the output
voltage is that indicated by our model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Battery Model 15

• Connect Command – Input signal received by
the battery
– 1 – Close the contactor.
– 0 – Open Contactor.

Pack State o tp t signal sent b the Batter• Pack State – output signal sent by the Battery
– 0 – Unavailable

1 Idle– 1 – Idle
– 2 – Disconnected (Contactor Open)
– 3 – Prechargingg g
– 4 – Connected (Contactor Closed).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Battery Model 16

• The battery model needs to be modified as follows
– The Connect Command must be added as part of the Control_Signals bus.
– A switch is added to the model so that the battery voltage is switched between zero

and the model voltage depending on the value of signal “Connect Command ”and the model voltage depending on the value of signal Connect Command.
– When the battery receives the a connect command of 1, after a 3 second delay, the

contactor switch will close and the battery voltage will be equal to the model
voltage.

– If the connect command goes to zero, the contactor should open immediately.

• A diagnostic output should be added that contains the Pack state
signal. The pack state signal should have the following values
d di th t t f th b tt d ldepending on the state of the battery model:

– 2 – The contactor is open, the battery is disconnected, and the battery voltage is
zero.

– 3 – During the three second delay when the battery is connecting3 During the three second delay when the battery is connecting.
– 4 – The contactor is closed. The battery is connected, and the voltage is equal to

the modeled voltage.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Battery Model 17

• The Startup_and_Shifting Controller must be
modified as follows:
– After Vehicle_Key = 1, the controller must issue the

connect command.
– Before proceeding to the next state the controllerBefore proceeding to the next state, the controller

waits for the Pack state to Equal 4.
– If the pack state does not go to 4, do not proceed and

do not allow the driver to use the vehicle. (Indicate an
error and hold in an error state.)

– If the pack state changes to 4 allow the controller toIf the pack state changes to 4, allow the controller to
proceed to the next state.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 1
D t t th ti f th V hi l

18

• Demonstrate the operation of the Vehicle
Key Switch and the Battery Connect

d Sh th f ll icommand. Show the following:
– Startup_and_Shifting chart as it walks through

th t t dthe startup procedure.
– The battery voltage showing the operation of

the contactorthe contactor.
– The battery status signal showing the various

statesstates.
– Show a plot similar to the one shown on the

next two slides Demo___________next two slides. ___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 1 19

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Battery Model – Exercise 1 20

P k t t t t

Pack was commanded to connect,
but there was an error and it never
closed the contactor. Pack state stays at

2.

closed the contactor.

Contactor never
closes.

State goes to 4
indicating an error.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Motor and Generator Models
Next we need to add the handshake and status

21

• Next, we need to add the handshake and status
signals for the Motor and generator models.

• The Motor and Generator models have a control• The Motor and Generator models have a control
signal that must be sent to it and a status signal that
it sends to indicate its state.it sends to indicate its state.

• Enable Command – Received by Motor or Generator
– 1 – Enable Component.p
– 0 – Disable Component.

• Motor/Generator State – Sent by Motor or Generatory
– 0 – Motor/generator Not Ready
– 1 – Motor/generator Ready

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Motor and Generator Models
• The Motor and Generator models need to be modified

22

• The Motor and Generator models need to be modified
as follows
– The Enable Command must be added as part of the vehicle p

Control_Signals bus.
– The motor/ or generator will only be ready after it receives

th bl d d th b tt lt i t ththe enable command and the battery voltage is greater than
200 V.

– The motor or generator can produce no torque if they are notThe motor or generator can produce no torque if they are not
enabled or the battery voltage is below 200 V.

– A diagnostic output should be added for the motor or
t t t i l Thi i l h ld h th f ll igenerator state signal. This signal should have the following

values:
• 1 – Component OK and enabled.p
• 0 – The component is disabled. This occurs if the enable signal goes

to zero or the battery voltage drops below 200 V.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller Modifications 23

• The start-up sequence must be modified:
– After the battery has passed its start-up test

the enable command should be sent to the
motor. The controller then waits to receive
th t t f th tthe status of the motor.

• If the status is 1, proceed to the generator check.
• If the status does not change to 1 after 1 5• If the status does not change to 1 after 1.5

seconds, enter an error state and hold.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Controller Modifications 24

• The start-up sequence must be modified:
– After the motor has passed its start-up test the

enable command should be sent to the
generator. The controller then waits to

i th t t f th treceive the status of the generator.
• If the status is 1, set Vehicle_Ready to 1 and go to

the Park State (for now do nothing in this statethe Park State (for now do nothing in this state
except set Vehicle_Ready to 1).

• If the status does not change to 1 after 1.5
seconds, enter an error state and hold.

• You might want to use the After command in
St t flStateflow.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 2
D t t th ti f th V hi l K

25

• Demonstrate the operation of the Vehicle Key
Switch, Battery Connect, Motor Enable, and
G t E bl C d Sh thGenerator Enable Commands. Show the
following:

S d Shif i h i lk h h h– Startup_and_Shifting chart as it walks through the
startup procedure.
Th t t i l h i th i t t f– The status signals showing the various states of
each component.
Show a plot similar to the one shown on the next– Show a plot similar to the one shown on the next
two slides.
Plots are shown on the next two slides

Demo___________

– Plots are shown on the next two slides

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 2 26

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 2 27

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 12 Exercise 3
• We now wish to add shifting logic to our model

28

• We now wish to add shifting logic to our model.
• We will need to add three pushbuttons for forward,

reverse and park These switches go in the Driverreverse, and park. These switches go in the Driver
block.
– Park – When the driver presses this push-button, it p p

indicates that the driver wants to have the transmission
enter the park state. In this state, the accelerator pedal
input is ignoredinput is ignored.

– Forward - When the driver presses this push-button, it
indicates that the driver wants the vehicle to move
forward when the accelerator pedal is pressed.

– Reverse - When the driver presses this push-button, it
indicates that the driver wants the vehicle to moveindicates that the driver wants the vehicle to move
backwards when the accelerator pedal is pressed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 12 Exercise 3 29

• We also need some dashboard indicator lights for
the driver.
– Park LED – This LED is illuminated when the vehicle is in

Park.
– Forward LED – This LED is illuminated when the vehicleForward LED This LED is illuminated when the vehicle

is in Forward.
– Reverse LED – This LED is illuminated when the vehicle

is in Reverse.
– Error LED – This LED illuminates to alert the driver if

there is a problemthere is a problem.
– Vehicle Ready LED – This light illuminates when the

vehicle has passed all component checks.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 12 Exercise 3 30

• Note that the controller determines when
we are in park, forward or reverse.

• We will place these indicators in a new
subsystem within the Vehicle Plant called y _
Dashboard.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 12 Exercise 3 31

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

• All logic for the accelerator pedal, brake pedal and push-
buttons resides in the controller The controller emits signals for

32

buttons resides in the controller. The controller emits signals for
the traction motor torque and foundation brakes. The driver
block just contains the driver input sensors.

• At vehicle startup, after checking that the status of each
component is correct, the vehicle should enter the park state.

• To shift out of park into either forward or reverse the following• To shift out of park into either forward or reverse, the following
sequence must occur:
– The driver must depress the brake pedal by 50% or more.
– The driver can then press the forward or reverse buttons.
– When the button is pressed, the appropriate indicator light is illuminated

and the vehicle shifts into either forward or reverse.
– If the vehicle is in park and the brake pedal is depressed less than 50%

and the forward or reverse buttons are pressed, nothing happens and
the vehicle remains in Park.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

• Forward State
– The controller takes the accelerator pedal and

33

p
brake pedal signals and modifies them
appropriately so that

• The traction motor increases the vehicle speed in the
forward direction when the accelerator pedal is
depresseddepressed.

• The traction motor and foundation brakes decrease
speed in the forward direction when the brake pedal is
depressed.

• To exit the forward state, the following items must be true
simultaneously:simultaneously:

– The brake pedal must be depressed by more 50% or more.
– The vehicle speed should be less than 1 mph.
– The driver must press the Park or Reverse buttons.
– If the Park, Reverse, or Forward buttons are pressed while the above

conditions are not true, the buttons are ignored.
Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

• Reverse State
– The controller takes the accelerator pedal and

34

p
brake pedal signals and modifies them
appropriately so that

• The traction motor increases the vehicle speed in the
reverse direction when the accelerator pedal is
depresseddepressed.

• The traction motor and foundation brakes decrease
speed in the reverse direction when the brake pedal is
depressed.

• To exit the reverse state, the following items must be true
simultaneously:simultaneously:

– The brake pedal must be depressed by more 50% or more.
– The vehicle speed should be less than 1 mph.
– The driver must press the Park or Forward buttons.
– If the Park, Reverse, or Forward buttons are pressed while the above

conditions are not true, the buttons are ignored.
Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture12 – Exercise 3
D f thi ki

35

• Demo of everything working.
• I will try to brake your model.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

1

Introduction to Model-Based
Systems Design

Lecture HIL1:Lecture HIL1:
Introduction to Hardware-in-the-

Loop

HIL
• HIL is a simulation method that allows us

to test our controller, controller hardware,
and the wiring interface on a virtual plant

2

and the wiring interface on a virtual plant
before testing the controller, controller
hardware, and wiring interface on the real
plant.

• This is yet another level of testing we can
fdo before deploying our design in the real

world.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

2

HIL
• Remember that our goal is to design and

implement a controller for real and
complicated physical system

3

complicated physical system.

Controller Interface Plant

We are designing and
implementing this.

We are controlling physical
devices within this plant.

HIL
• The plant is very complicated and difficult

to understand, expensive to fix if we break
something and could be dangerous if

4

something, and could be dangerous if
controlled improperly.

• HIL allows us to test our controller on the
target hardware we will be using, with the
wiring interface we will be using.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

3

HIL
• Instead of taking our controller and seeing

if it works by connecting it to the actual
plant to be controlled we will connect it to

5

plant to be controlled, we will connect it to
a computer running a model of the plant.

• The model of the plant will have the same
interface as the physical plant. It will
have the same physical inputs and outputs
as the physical plant.

HIL
• So, instead of connecting our controller to

the real plant, we will connect it to a
computer running a model of the plant (a

6

computer running a model of the plant (a
computer pretending to be the plant).

• We can then test our controller without
worry of damaging the physical plant.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

4

HIL
• HIL will allow us to test:

– The control algorithm.
The controller hardware (the target computer

7

– The controller hardware (the target computer
on which the controller is deployed).

– The control algorithm as it runs on the target
hardware.

– The physical interface between the Controller
and the plant (Assuming that the harness weand the plant. (Assuming that the harness we
use in the test is the same harness we will
use when we connect to the physical plant.)

HIL
• Up to now we tested the control algorithm

on:
– A Windows system running on a PC -

8

– A Windows system running on a PC -
essentially using a continuous system with a
time step that is variable and can become
very small when needed, and floating point
calculations.

– Using xPC target – Using a fixed time stepUsing xPC target Using a fixed time step
and possibly discrete control blocks, but using
a more powerful computer than will be used
for the target.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

5

HIL
• HIL simulations allow us to test the control

algorithm on the hardware that will be
used to implement the controller

9

used to implement the controller.
• The benefit is that we can test the

controller using a model of the plant so
that there is no danger of personal injury
or physical damage to the plant.

HIL
• We will be using the test platform below:

10

Controller Interface Computer Model of the
Plant

Controller deployed on an
MPC5554 computer.

National Instruments PXI real-time
computer running a model of the

l tplant.
Same physical interface as

in the actual system
(Wiring for analog signals

in our example.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

6

HIL
• Once controller testing is complete and the

controller passes all tests and satisfied all
requirements we just plug the controller

11

requirements, we just plug the controller
into the physical plant.

• If the models are accurate and the
interface is the same, the controller should
be able to control the physical plant as

fwell as it controlled the model of the plant.

HIL
• Completed System:

12

Controller Interface Physical Plant

Controller deployed on an
MPC5554 computer.

The actual plant that we wish to
control.

Physical interface of the
actual system

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

7

HIL
• We will deploy the controller on an

MPC5554 computer and the plant on a
National Instruments PXI real-time

13

National Instruments PXI real time
computer.

• This requires us to learn National
Instruments hardware and software.

• We will break the process into two steps.
• First, we will simulate the entire model in

real-time on a National Instruments PXI
computer.

HIL
• This model will be similar to what we did

with xPC, except we will use National
Instruments tools

14

Instruments tools.
• We will learn how to use:

– National Instruments Simulation Interface
toolkit.

– National Instruments LabVIEW
– National Instruments Measurement and

Automation Explorer (MAX)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

8

HIL
• In this step, we will not split apart the plant

and controller. Both will remain in the
same model and be simulated on the

15

same model and be simulated on the
same real-time target (National
Instruments PXI Computer).

• This will allow us to learn the National
Instruments tools and how to use
MathWorks models with hardware and
software from other vendors.

HIL
• In the Second step, we will split the controller and

plant into separate models.
• The Plant will run on a National Instruments PXI

t t

16

target.
• The controller will run a Freescale MPC5554

target.
• The Plant will run on a National Instruments PXI

target.
• We will connect the two targets with a wiring

harness and some interface electronics (a low
pass filter).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

9

HIL
• We will use the RAppID toolbox and

associated Freescale tools to deploy the
controller on the Freescale target

17

controller on the Freescale target.
• We will use the Simulation Interface

Toolkit and associated National
Instruments tools to deploy the plant on
the National Instruments target.

• The plant and controller models are
mature and have been developed with
MathWorks tools.

HIL
• To learn the National Instruments tools We

will deploy a small model developed in a
previous class on a PXI Target

18

previous class on a PXI Target.
• Create a new folder called Lecture13.
• Copy file Lecture13_Model0.mdl into this

directory and rename the model
Lecture13_Model1.mdl.

• Copy the init file as well.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

10

Stand-Alone Model
• This model was created to run on an xPC

target, so we need to make a few
changes

19

changes.
• The starting model is shown below:

Model Modifications
• The controls for the desired speed and number

of bulbs will be front panel LabVIEW controls, so
we can eliminate the Simulink sliders for Speed

20

and Number of Bulbs:

Slider deleted. Slider deleted.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

11

Top-Level Modifications
• We would like to display the real time in

our front panel. To do this, we will create
an integrator at the top level of our model

21

an integrator at the top level of our model
and integrate a constant (equal to 1).

• The value of the integral will be the
elapsed time since the simulation started.

• Add the blocks below to your top-level
model:

Top-Level Modifications
• The sample time of the

integrator should be set
to the fixed step size

22

specified in the simulation
configuration parameters.

• This was a value that we
specified in the init file.
Set the parameters for
th i t t hthe integrator as shown:

Sample_Time specified here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

12

Top-Level Model
• Your top-level Model should be as shown:

23

Note that this signal is labeled.

Controller Modifications
• The controller contains a number of blocks that

were added do display information for xPC. These
blocks are no longer needed and can be deleted:

24

Delete these components.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

13

Controller Modifications
• To make connections between the LabVIEW

front panel and the Simulink model easier, we
will add two gain blocks to the model as

25

will add two gain blocks to the model as
shown next.

• These gain blocks will make it easy to identify
signals and label front panel controls:

Controller Modifications 26

Gain block added and
renamed to “Desired rpm.”

Gain block added and
renamed to “Scaled rpm.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

14

Plant Model Modifications
• The only changes we need to make to the

plant are in the encoder model.
• This model contains an xPC Target Scope

27

• This model contains an xPC Target Scope
block that must be deleted:

Delete this block.

Plant Model Modifcations
• Label the signal at the encoder output

“Plant_RPM.”

28

This signal was labeled.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

15

Model Modifications
• We are now done with modifications to the plant

model.
• We need to make some changes to specify that

29

g p y
the MathWorks Real-Time Workshop creates a
DLL for the National Instruments PXI target
rather than the xPC Target.

• From the Simulink menus, select Simulation
and the Configuration Parameters (or type Ctrl
e.)

Model Modifications 30

Solver
selected.

Fixed Step solver
selected because we

Step size set to
Sample Time. This

will be running in real-
time on a target.

Sa p e_ e s
value is set in the init

file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

16

Model Modifications 31

Real-Time
Workshop

nidll.tlc specified for
the target file.

• Nidll.tlc specified that when we build the model,
a dll file that can run on an National Instruments
target will be created.

selected.

Creating the DLL File
• Click the OK button.
• We are now ready to create the Dynamic-Link

Library (dll).

32

y ()
• A dll file is a compiled version of the model that can

be executed on the target. The dll has no inputs or
outputs, and we will need to create a LabVIEW
shell to connect to the inputs and outputs.

• Type ctrl-d to check your model for errors.yp y
• If there are no errors, type ctrl-b to build the model

and create the dll file.
• You will see the dialog shown in the next 2 screen

captures.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

17

33

34

Build was
successful.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

18

Creating a DLL file
• If the build was successful, a dll file will be

created in a new sub-directory. My model
was named Lecture13 Model1

35

was named Lecture13_Model1.
– The new directory that was created is named

Lecture13_Model1_nidll_rtw.
– The dll is located in this directory and is called

Lecture13_Model1.dll.
W ill d t i t t thi fil h• We will need to point to this file when we
set up our LabVIEW front panel.

National Instruments Targets
• Now that we have created the DLL for our

model, we need to create a LabVIEW shell
to specify the inputs to the model and

36

to specify the inputs to the model and
display the model output.

• We can also use the LabVIEW shell to
tune the controller parameters.

• Before we create our LabVIEW shell, we
need to identify the PXI target on which we
will run the model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

19

National Instruments Targets
• We will assume that you have already set

up your National Instruments PXI target, it
is running properly it has the correct

37

is running properly, it has the correct
software installed, and it is plugged into
the network.

• For this exercise, we need to discover the
IP address of your PXI target.

• There are three ways to discover the IP
address of a PXI target connected to the
network.

National Instruments Targets
• Ask someone that knows the IP address.
• Some PXI controllers have a VGA output

for a monitor When the system starts up

38

for a monitor. When the system starts up,
it will display the IP address.

• Use the National Instruments
Measurement & Automation Explorer
(MAX)
– MAX can be used to discover all PXI targets

on the local subnet.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

20

National Instruments MAX
• Run the National

Instruments
Measurement and

39

Measurement and
Automation Explorer

National Instruments MAX 40

• MAX is the software that allows National
Instruments hardware and software to
work together seamlesslywork together seamlessly.

• We will only show how to use MAX to
discover systems on your local subnet and
to add remote systems for which you
already know the IP address.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

21

National Instruments MAX 41

• We will assume that this is the first time
that you have run MAX.

• If this is the case MAX will only show you• If this is the case, MAX will only show you
Real-Time targets on your local Subnet.

• When MAX runs, you will see the next
screen:

42

Click on this plus sign to
expand the tree and view

National Instruments Real-
Time targets on your local

subnet.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

22

National Instruments MAX
• My MAX shows a single system on the

local subnet:

43

Click on this plus sign to
d th t dexpand the tree and

properties of this target.

National Instruments MAX
• We would like to view the network settings

for this target:

44

Click on this text to see the
network properties of the

target.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

23

National Instruments MAX
• The properties of our target are shown

below:

45

In a future exercise, we will ,
use part of the tree to

configure the cards installed
on the target.

You can view and install software on
the Target in this part of the tree. The
versions of software on your PC mustversions of software on your PC must
match the versions of software
installed on the target. We will
assume that the software has been
set up correctly.

46

Target Selected.

The IP address of this target is
192.168.1.107. We will need

thi dd i d tthis address in order to run our
model on this target.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

24

National Instruments MAX
• If you know the IP address of a target that

is not on your local subnet, you can view
the target by adding it as a remote target

47

the target by adding it as a remote target.
• In MAX, right click on Remote Systems

and then select Create New:

National Instruments MAX 48

• Select Remote Device and then click the Next
button.

• Enter the IP address
of the known system
and click the Finish
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

25

National Instruments MAX
• If you have access to the system (and

there is not a firewall set up to block
access) you can view your remote target

49

access) you can view your remote target.

• Once you add remote systems,
MAX will remember those
systems the next time you run
itit.

• For our example, all we need to
know is the IP address of our
target.

National Instruments LabVIEW
• Next, we want to run LabVIEW and create a

shell to communicate with our model DLL.
• Run LabVIEW:

50

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

26

National Instruments LabVIEW 51

Click here to create
bl k VIa new blank VI.

National Instruments LabVIEW 52

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

27

LabVIEW
• Before we begin, we would like to save the

VI.
• Select File and then Save from the

53

• Select File and then Save from the
LabVIEW menus.

• Save the file in the directory where you
saved your Simulink model.

• Save the VI as Motor Generator Shell.VISave the VI as Motor Generator Shell.VI

Motor Generator Shell
• Our motor-generator system has two user

inputs (desired speed and number of light
bulbs) and one output (motor speed at 2 5

54

bulbs) and one output (motor speed at 2.5
V per 1000 rpm).

• We will place two controls and one chart in
the LabVIEW front panel and connect
them with the Simulink model signals.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

28

55

Right-click here.

Left-click here to
select this controlselect this control.

Hover here.

Motor-Controller Shell
• When you left click on the control, it becomes

attached to the mouse and the menu
disappears.

56

• Place the control in your front panel by left
clicking on the location you wish to place it:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

29

Motor Generator Shell
• Note that the name is highlighted, so that we can

easily rename it.
• Change the name to Number of Bulbs.

57

Motor Generator Shell
• Next, we want to select the entire

indicator.
• Click and drag the left mouse as shown

58

• Click and drag the left mouse as shown

Click and hold the
left mouse button

h
Drag the mouse to

here. here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

30

Motor Generator Shell
• When you release the mouse button, the

entire indicator will be selected (both the
label and the indicator field)

59

label and the indicator field).

Entire control
selected.

• Click on the font pull-down menu as
shown next:

Motor Generator Shell 60

• Change the font to 18 pt, bold, and Arial.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

31

Motor Generator Shell
• Next, we want to change the control to

select and display an integer between 0
and 6

61

and 6.
• Right click on the control and select

properties:

• You are encouraged to play with the
settings in this tab to see their effect on
the display of the control.

62

Select the
Display Format

tab.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

32

• There are several ways we could display a
single digit. We will only show one here.

63

Click here to
select the
Advanced

editing mode.

64

Replace this text with
%2.0f. This means

display a floating point
number with a total of

2 digits and 0 digits
displayed after the

decimal point.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

33

65

Format string changed.

Next, select the Data
Entry tab and fill it in as
shown on the next slide.

• The selected settings for the control force
the choice of an integer between 0 and 6.

66

Option is not selected.

• Click the OK button
to apply the
changes and return
to the front panel.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

34

LabVIEW Front Panel 67

Try entering a number

• The display may look unchanged, but if
you enter a number into the field, you will
notice that you can only specify an integer
b t 0 d 6

here.

between 0 and 6.

LabVIEW Front Panel
• Next, we would like to create a control for

the desired speed.
• We will use a fill slide and constrain it to

68

• We will use a fill slide and constrain it to
have a value between 0 and 1 with 0.1
step increments.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

35

69

Right-click here.

Left-click here to
select this controlselect this control.

Hover here.

Motor-Controller Front Panel
• When you left click on the control, it becomes

attached to the mouse and the menu
disappears.

70

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

36

Motor-Controller Front Panel
• Place the control in your front panel by left

clicking on the location you wish to place it:

71

Motor-Generator Front Panel
• Change the name of the control to

“Desired Speed.”
• Change the font to 18 pt Arial bold using

72

• Change the font to 18 pt Arial bold using
the same techniques we used for the
numerical control.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

37

Motor-Generator Shell
• Next, we want to change the control to

select a number between 0 and 1 with 0.1
steps

73

steps.
• Right click on the control and select

properties:

• You are encouraged to play with the
settings in this tab to see their effect on
the display of the control.

74

Select the Data
Entry tab.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

38

• The selected settings for the control force
the selection of a value between 0 and 1
with 0.1 size steps.

75

Option is not selected.

• Select the Scale tab and change the
maximum value to 1.

• Click the OK button when done.

76

Select the Scale
tab.

Maximum
specified as 1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

39

Front Panel

• Click on the control and use the

77

• Click on the control and use the
handlebars to resize the fill slide:

Motor-Generator Front Panel
• The last thing we want to do

is add a chart to display the
Motor RPM.

7878

Right-click here.

Left-click here to
select Chart icon.

Hover here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

40

Motor-Controller Front Panel
• When you left click on the chart, it becomes

attached to the mouse and the menu
disappears.

79

Motor-Controller Front Panel
• Place the control in your front panel by left

clicking on the location you wish to place it:

80

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

41

Motor-Generator Front Panel
• Change the name of

the chart to “Motor
Speed (2.5 V per 1000
rpm) ”

81

rpm).
• Change the font to 18

pt Arial bold using the
same techniques we
used for the numerical
controls.

• Resize the chart to fit• Resize the chart to fit
the available space in
the window:

Motor-Generator Shell
• Next, we want to change the chart to

display 20 seconds of data and change
the y-axis to have a scale of 0 to 8

82

the y axis to have a scale of 0 to 8.
• Right click on the chart and select

properties:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

42

• The first thing we will do is change the line
thickness and color of the trace. Select the
Plots tab and make the selections shown
below:

83

Select the Plots
tab.

Yellow line color
selectedselected.

Thicker line
selected.

• Select the Scales tab and make the
changes shown below to specify that the
time axis have a range of 20 seconds:

84

Select the
Scales tab.

X-Axis selected.

Time range
specified as 0 to

20.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

43

• Next, make the changes shown below to
specify that the Y-axis have a range of 0 to
8:

85

Autoscale notAutoscale not
selected.

Y-Axis selected.

Range specified
as 0 to 8.

• We are done
with the
changes for
the chart..

• Click the OK

86

Click the OK
button when
done.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

44

Motor-Generator Shell
• We have now constructed a basic front

panel for our Motor-Generator system.
• The next step is to use the National

87

• The next step is to use the National
Instruments Simulation Interface Toolkit
(SIT) to connect the front panel controls
and chart to the DLL we created with
Simulink.

• Save your LabVIEW model before
continuing.

Simulation Interface Toolkit
• We are now

ready to connect
our front panel to
the Simulink

88

the Simulink
model compiled
into a DLL.

• From the
LabVIEW menus,
select Tools and
then SITthen SIT
Connection
Manager:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

45

SIT Connection Manager 89

We will be running our model on a National
Instruments PXI real-time target, so click

here to select Real-Time Target.

We need to specify the DLL we
created for the Simulink model. Its

h ld b HIL M d l1 dllname should be HIL_Model1.dll
and it is located in directory

Lecture13_Model1_nidll_rtw.

SIT Connection Manager 90

Model
selected.

We must now select our target. If your
PXI target is on the local subnet, you

can use this option. You do not need to
know the IP address of the target for

If the target is not on the local
subnet and you know the IP

address of the target, you can use
this option.

know the IP address of the target for
this option.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

46

SIT Connection Manager
• My target is on the local subnet:

91

I will select this option.

To detect PXI systems on the local
subnet, click on this + sign. (Make sure

that your local PXI systems are
plugged in to the network and that theplugged in to the network and that the

power is turned on.)

Sit Connection Manager
• In my system, the SIT Connection

Manager located one PXI system:

92

Click on the PXI target that you want to
use and then click the OK button. If you

do not have any PXI systems listed
here you may need use the option forhere, you may need use the option for

remote systems and specify the IP
address of the target manually.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

47

SIT Connection Manager
• After selecting the target, we return to the

SIT main dialog box with the target and
model specified:

93

model specified:

SIT Connection Manager
• The last step we need to take is to specify

connections between our front panel and
the Simulink model

94

the Simulink model.

Click on the Mappings
category to specify

connections between
the Simulink model and

the front panel.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

48

SIT Connection Manager
• The dialog box now lists the LabVIEW

controls and charts in the front panel. We
need to manually connect each to a signal

95

need to manually connect each to a signal
in the Simulink model.

Controls and charts on The control we labeled asthe front panel. The control we labeled as
“Number of Bulbs” is selected.

Simulink Model
• We would like to connect this to the

constant block in the top level of our
Simulink model The model is shown

96

Simulink model. The model is shown
below as a reminder:

Looks like we want to connect the
control in the front panel we

labeled as “Number of Bulbs” to
this constant in the Simulink

model called “One Bulb”.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

49

SIT Connection Manager 97

Font panel control “Number of
Bulbs” is selected.

Click this button.

We want to connect
to this constant (One

Bulb).

Click on this + sign to
see the properties we

can connect to in
constant “One Bulb.”

Sit Connection Manager
• We can connect the front panel control to the

value of the constant. This will allow us to
change the value of the constant with the front

98

panel control.

The value of constant “One Bulb”
is selected. Click the OK button to

connect this to the front panel
control we called “Number ofcontrol we called Number of

Bulbs.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

50

SIT Connection Manager
• The Dialog box now shows that we have

connected the front panel control to the
Simulink constant

99

Simulink constant.

LabVIEW front panel control
“Number of Bulbs” connected to
the value of Simulink constant

“One Bulb.”

SIT Connection Manager
• Repeat the process to connect the front panel

control called “Desired Speed” to the value of
the Simulink constant named “Desired Speed

100

(RPM):

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

51

SIT Connection Manager
• The last thing we need to do is connect the

Motor Speed chart to the encoder output signal
in the Simulink model. The Simulink encoder

101

model is shown below:

• This shows us that we need to connect the chart
to the output of he gain block labeled “Gain” in
the “Encoder” subsystem of the Simulink model.

SIT Connection Manager
• Select the Motor Speed chart and click the

Change Mapping button:

102

Motor Speed chart (it is classified
as an indicator) is selected. Click here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

52

Encoder Mapping
• Expand the Plant subsystem and then the Encoder

subsystem until you see the gain with the output
port labeled as “Plant_RPM.” If you recall, we

103

labeled the signal out of the gain block in the
Encoder as “Plant_RPM.”

Output port of the
encoder gain block

selected.

Click the OK button to map the
LabVIEW front panel chart to

this signal in the Simulink
model.

SIT Connection Manager
• We have now mapped all of the LabVIEW

front panel objects to the Simulink DLL.

104

• When we click the OK button, the SIT
Connection Manager will write the LabVIEW VI
to run the Simulink DLL on the remote target and
establish communication between the front
panel and the real-Time target.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

53

LabVIEW Front Panel
• The front panel has been modified with

controls to run the model.

105

Controls added by
the SIT Connection

Manager.

Block Diagram
• If you open the block diagram window, you will

see the block diagram created by the SIT
Connection Manager. We will not discuss the
operation of the various components

106

operation of the various components.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

54

Front Panel Controls
• The front panel controls added by the SIT

Connection Manager have the following
functions:

107

• Run the Simulation.
• Pause the simulation.
• Stop the Simulation.
• Edit parameters.
• Remap front panel controls and indicators• Remap front panel controls and indicators.
• Show simulation details
• Stop the front panel VI but allow the DLL to keep

running on the remote target.

Running the Model
• We are now ready to run the model. Click

on the RUN button as shown:

108

Click here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

55

Running the Model
• When you click the Run button,

LabVIEW will connect to the target and
begin downloading the model and

109

begin downloading the model and
related VIs:

Running the Model
• You might get the notification:

110

• This message is notifying us that there are
already some VIs that are present on the target
that are not needed for the project we want to
run. This is not a problem, so click the OK
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

56

Running the VI
• The model will continue to download:

111

Running the Model
• When the download is complete, the front

panel will look a little different:

112

The grid is gone. This
indicates that the VI is

running on our local PC.

The Simulink DLL is not,
however, running on the

remote target.

Click here to run the
Simulink DLL on the remote

PXI target.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

57

Running the Model
• When you click the Run button, the

Simulink DLL will run in real-time on the
remote target

113

remote target.

Desired Speed control is
set to max.

Model takes off and goes
past 8 because the

Desired Speed control is
set to max.

Running the Model
• You can now change the number of bulbs

and the desired speed and watch the
system respond in real-time

114

system respond in real time.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

58

Stopping the Simulation
• To stop the simulation on both the remote

target and your local computer (which is
running the display panel) click the Stop

115

running the display panel), click the Stop
Simulation button :

Click here to stop theClick here to stop the
simulation on both the

remote target and your local
PC.

Demo
• Demonstrate the working model running in

real-time.

116

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

59

Exercise 1
• Modify the front panel so that the current simulation time

is displayed as shown. The time should display a total of
4 digits, one of which shows time to the tenth of a
second Note that Bauhaus font is being used

117

second. Note that Bauhaus font is being used.

Demo___________

Exercise 2
• Create the front panel shown below. The controls created earlier are

unchanged. Added items are listed in the following few slides.

118

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

60

Exercise 2 119

Displays the desired and
measured speeds in the

controller subsystem.

Exercise 2 120

Displays the proportional
gain control signal and the

integral gain control signal in
the controller.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

61

Exercise 2 121

Changes the value of the
integral gain.

Changes the value of the
proportional gain.

Exercise 2 122

Decoration.
Decoration.

Decoration.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4/22/2009

62

Exercise 2 123

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

1

Advanced Model-Based-System
Design

Lecture 14:Lecture 14:
Real-Time Vehicle Model

Models
• We now have a good model of the vehicle

that runs in the Simulink environment.
• We know how to use the National

2

• We know how to use the National
Instruments Simulation Interface Toolkit to
run Simulink models in real-time.

• Next, we will put the two together and run
our vehicle model in real-time on the PXI
platform and have a cool display to show
vehicle performance.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

2

Foreshadowing
• We will need to make some modifications

to the model.
• We will need to create the LabVIEW front

3

• We will need to create the LabVIEW front
panel from scratch.

• We will run into some numerical solver
issues that will make the system behave
badly.

Models
• We will start with model Lecture_14_Model0.mdl that will

be passed out to the class.
• This is a Simulink model with push-buttons and slider

gain blocks in the driver subsystem

4

gain blocks in the driver subsystem.
• The driver block can be used to drive the vehicle, but it is

kind of clunky.
• We will replace the Simulink driver controls with

LabVIEW controls to make the vehicle easier to drive.
• We will use the Display_and_Logging subsystem to

monitor the model outputs in which we are interested.
• Save the model as Lecture14_Model1 and make the

changes to the driver block as a show on the next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

3

Driver Block Modifications
• We have replaced all of the controls by constants.

5

• Note that the names of the
constant blocks have been
changed to the name of the
signal in the bus.

• This makes the constants
easy to identify when
connecting signals with the
LabVIEW SIT.

• Note that the constants
have a value of 0. This sets
the default value of the lv
controls when the
simulations starts.

Driver Block
• Even though we are setting the driver

controls to a constant value of zero, we
will be able to drive the vehicle because

6

will be able to drive the vehicle because
we will connect the constant blocks to
LabVIEW controls.

• The LabVIEW controls will specify the
value of the constants and thus change
the driver input to the vehicle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

4

Display_and_Logging
• The other subsystem that has to change is the

Display_and_Logging subsystem.
• We need to:

7

– Remove all scopes.
– Delete all “To Workspace Blocks”
– Terminate all outputs in which we have no interest.
– Add gain blocks and signal probes to the signals that

we wish to monitor.
• The next few slides show the modifications to

the Logging_and_Display Subsystem.

8

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

5

9
We will not display this signal, so

we can terminate it.

We want to display this signal on the
front panel. Add a gain block with a gain
of 1. Name the gain block the same as
the signal name to make it easy to
recognizerecognize.

These blue things are
probes. To add a Test
point:
•Right-click on a signal line
and select Signaland select Signal
Properties.
•In the dialog box that
appears, check the box
next to Test point to add a
test point.

Logging and Display Block
• The only signals from the controller that

we will be display are the forward, reverse,
and park LED indicators

10

and park LED indicators.
• We will connect these signals to front

panel indicators so show when the vehicle
is actually in park, forward, or reverse.

• The State signal is displayed for
debugging purposes so that we can tell
which state we are in on the
Startup_and_Shifting Stateflow chart.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

6

11All signals shown are
from the
Vehicle_System_Diagn
ostics bus.
We are moniotring the
following signals:
•Vehicle_Speed_mpg
•Battery_Current_A
•Battery_Voltage_V
•Battery_SOC
•Motor_Current_A
•Generator_Current_A
•Measured_Engine_rp
m

Solver
• The last things we need to do are setup

the simulation configuration parameters
and:

12

and:
– Specify a fixed step solver type.
– Pick a fixed step solver.
– Choose the fixed step size.
– In the Real-Time Workshop section, specify

NIDLL tl th S t t t filNIDLL.tlc as the System target file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

7

Lecture14 Exercise 1
• Build the dll for the model.
• Create the front panel shown on the next

slide

13

slide.
• Use National Instruments SIT to connect

the front panel controls and indicators to
the Simulink model.

• Determine the solver and fixed step size,Determine the solver and fixed step size,
so that the model runs in real-time.

• For real-time operation, the cpu processor
utilization should be less than 70%.

14

Demo___________

CPU Utilization_______ %Lecture14 Exercise 1

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

8

Lecture 14 Exercise 2
• We notice that the generator current

bounces all around, independent of the
step size and integration methods

15

step size and integration methods.
• To get a better idea of the system

behavior, add the graphs to the front panel
as shown next:

16

Demo___________

CPU Utilization_______ %
Lecture14 Exercise 2

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

9

Model Problems
• We notice one obvious problem in that the motor

current bounces all around even though we are asking
for a constant acceleration.

17

• Occasionally the model goes wild and the vehicle
speed goes to infinity and some of the displays show a
value of NaN rather than a real numerical value. (NaN
stands for Not a Number.)

• Both of these problems can be solved by using the
ODE14x solver with a small time step.

Model Problems
• The problem with using a small time step is that the

model must be executed once each time step. It does
not matter what our time step is, the same calculations

18

occur whether we use a time step of 0.1 or a time step
of 0.001.

• The problem with a smaller time step is that all of the
model calculations must be completed by the next
time step.

• Complex models with small time steps will require a
fast real-time computer to complete the required
calculations in the specified time step.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

10

Lecture 14 Exercise 3
• As a first fix, we will use the ODE14x

solver and a time step of 0.001 seconds.
• The problem with this solution is that it

19

• The problem with this solution is that it
may take too much CPU power to run the
model.

Demo___________

CPU Utilization_______ %

Model Problems
• The ODE14x solver was designed for stiff systems

that require small time steps.
• Most of our model is pretty simple. Either we are

20

p y p
integrating a slowly changing force with a large mass,
or a slowly changing torque with a large inertia. In
either case, the time scale is such that a small time
step is not required.

• The elements in our model that require a small time
step are the tires.

• The tires model tire slip. Under hard braking it is
possible that the wheels will lock and the tires will skid.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

11

Model Problems
• We noticed under hard braking that occasionally the

model blew up and the vehicle speed went to infinity.
• Determining the boundary between when the tire is

21

g y
skidding and rolling can take a very small time step.

• To get a small enough time step to simulate the tires,
we go past 100% processor utilization on the real-time
target and bad things happen.

• A fix is to replace the SimDriveline tire with a simplified p p
tire model that has no slip.

• Create the tire model shown next and use it for both
tires on the vehicle

22

New
Tire Model

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

12

New Tire Model 23

• Given an input torque, the model calculates the force applied to
the vehicle by dividing by the radius of the tire.

• Given an input linear velocity of the vehicle, the model
calculates the rotational velocity of the tire by dividing by the y y g y
radius.

• This rotational velocity is then imposed on the driveline by the
motion actuator.

New Tire Model
• This model has a problem in that it

imposes a dynamic constraint on the drive
line It fixes the velocity of the drive line

24

line. It fixes the velocity of the drive line
to which the tire is connected.

• If we have another block in the model that
also fixes the speed of the same drive line,
we will get an error that states that we

(have a redundant dynamic constraint. (We
cannot have two blocks that specify the
velocity of the same drive line.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

13

Lecture 14 Exercise 4a
• Create a subsystem for the new tire

model.
• Create a mask for the subsystem that:

25

• Create a mask for the subsystem that:
– Specifies the tire radius as an input parameter

to the model.
– Displays the tire picture as shown.
– Displays the name “RHIT Tire Model” rather

“Sthan “Subsystem.”
Tire Masked Subsystem

Lecture 14 Exercise 4b
• With this new tire model, the model should

behave well using a large step size (0.01
or larger) and the ODE14x solver is note

26

or larger) and the ODE14x solver is note
needed.

• We will notice
– Low processor utilization.
– The model does not blow up any more.

Demo___________

CPU Utilization_______ %

– The motor current now behaves.
• A screen capture of this model running in

real-time is shown on the next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

14

27

Model Debugging
• Now that we have the model running in real time, we

can run the model and find out any other problems
that it may have.

28

• One problem that we notice is that under hard
acceleration, the motor will draw more than 50 amps.

• In our present scheme the generator only puts out 50
amps constant when it charges.

• Thus, under extended hard acceleration, we will , ,
discharge the battery completely leading to safety and
lifetime issues.

• We need to modify our control scheme.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8/28/2009

15

Lecture 14 Exercise 5
• Modify the control algorithm as follows:

– Under normal conditions, the generator will charge the battery at
50 A.

– If the battery SOC goes below a value of 0.58, a new algorithm

29

If the battery SOC goes below a value of 0.58, a new algorithm
kicks in where the battery charges at the motor current plus 20%
with some averaging. (What should happen if regen braking
kicks in and the motor current flips?)

– The minimum charging current in this mode is 50 A.
– This method continues until the battery is charged back up to

0.7.
– Once the battery is charged to 0 7 the normal chargingOnce the battery is charged to 0.7, the normal charging

algorithm kicks back in.

Demo___________

CPU Utilization_______ %

Lecture 14 Exercise 6
• One of the modifications we made to the model is that we

reduce the braking torque at vehicle speeds below 3 mph.
• As we drive the vehicle in real-time, this becomes very

annoying because the vehicle takes a long time to slow down

30

annoying because the vehicle takes a long time to slow down
below 3 mph.

• We made this modification because we had numerical
problems with the brakes at low speed.

• With the new tire model, the braking problem may no longer be
an issue.

• Modify the brakes so that we can apply full braking torque at
speeds of 0.25 mph and higher.

• Verify your design and prove that it works.

Demo___________

CPU Utilization_______ %

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 15:Lecture 15:
Number Systems

Outline
• Binary
• Hexadecimal

M tl b F ti

2

• Matlab Functions
• Unsigned Integers
• Signed Integers
• Floating Point Numbers

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Number Systems

• There are two kinds of engineers in this
world

3

– Those who know binary and those who don’t.
– That was a joke.
– If you don’t know binary, you probably didn’t

get it.
• This section is for the engineers that didn’t• This section is for the engineers that didn t

get it.

Base 10
• Most of us are familiar with base 10

number systems.
• Valid digits are 0 through 9 (Hey! There

4

• Valid digits are 0 through 9 (Hey! There
are 10 values!)

• The base is also referred to as the radix.
• An example is:

0123 1041081031077384 ×+×+×+×=

Radix = 10 Radix = 10

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Binary
• Binary uses a radix of 2.
• Valid values of a digit are 0 and 1.

5

() () () () ()01234 202121202110110 ×+×+×+×+×=

Radix = 2

() () () () 22021418016110110 =+×+×+×+×=

Binary
6

10110
0’s place

2’s place

4’s place

8’s place16’s place

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Binary
• Historically and physically our choice of 0

and 1 for a binary digit comes from:
– Switches which can be on or off

7

– Switches which can be on or off.
– Digital logic circuits that produce either a low

voltage or a high voltage.
• Typical 5 V logic circuits

– Low = logic 0 Voltage from 0 to 0.8 Volts.
– High = Logic 1 Voltage from 3.4 to 5 Volts.

• Synonyms
– 1 = logic 1 = “high” = “True”
– 0 = logic 0 = “low” = “False”

Terminology
• A single binary digit is referred to as a bit.
• A group of 4 binary digits is referred to as

a nibble (1011 1110) is two nibbles

8

a nibble. (1011 1110) is two nibbles.
• A group of 8 binary digits is referred to as

a byte (10111110) is one byte.
• 1k (for digital guys) is 210 = 1024
• 1M (for digital guys) is 1k * 1k = 210 *210=• 1M (for digital guys) is 1k 1k = 2 2 =

1048576.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

Hexadecimal – Radix = 16
• We will be dealing with long strings of bits.
• It is convenient to group those bits in

groups of 4

9

groups of 4.
Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Hexadecimal
• In decimal every digit can have ten values,

0 through 9.
• In hexadecimal each digit can have16

10

g
values ranging from 0 to 15.

• Hey, we need a single symbol for each
digit!

• How do we do this with only 10 numeric
symbols in our mathematical vernacular.
– For numbers 0 through 9, use 0 through 9.
– For numbers 10 through 15, use letters A

through F.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Hexadecimal 11

{{ { { {
3

0011
7

01111101
6

01101011
DB

() () () () ()01234 16316716131661611736 ×+×+×+×+×=DB

10162 74891573601011100111011011011 == DB

Useful Matlab Functions
• Bin2dec – Converts a binary text string to

a decimal number:

12

>> bin2dec('10110110110101110011')
ans =

• Dec2bin – Converts a decimal number to a
binary text string.

ans =
748915

>> dec2bin(748915)
ans =
10110110110101110011

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Useful Matlab Functions
• Hex2dec – Converts a hexadecimal string

to a decimal number:

13

>> hex2dec('B6D73')

• Dec2hex – Converts a decimal number to
a hexadecimal text string.

ans =
748915

>> dec2hex(748915)
ans =
B6D73

Matlab
• How do we convert from binary to hex?

14

>> dec2hex(bin2dec('10110110110101110011'))

• How do we convert from hex to binary?

(())
ans =
B6D73

>> dec2bin(hex2dec('B6D73'))
ans =
10110110110101110011

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Hexadecimal Numbers
• If we see a number like 123, how do we

know if it is a hexadecimal or decimal
number? (It could actually be any base

15

(y y
greater than 3, but we won’t go there.)

• Ways of indicating a number is a
hexadecimal number
hex 123 - saying it.
$123 di th b ith $ i$123 - preceding the number with a $ sign.
x123 - preceding the number with an x which

is short for “hex.”
12316 – Indicating the base explicitly.

Basic Data Types in Simulink
• Boolean – True or False (not 0 or 1 numerically)
• Uint8 – Unsigned 8-bit integer. Can represent

values from 0 to 255.

16

111111112

= 27+26+25+24+23+22+21+20

= 28-1 = 25510

• Uint16 – Unsigned 16-bit integer. Can represent
values from 0 to 65535.

11111111111111112

= 215+214+213+ … + 22+21+20

= 216-1 = 6553510

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Basic Data Types in Simulink
• Uint32 – Unsigned 32-bit integer. Can represent

values from 0 to 4294967295.
111111111111111111111111111111112

31 30 29 2 1 0

17

= 231+230+229+ … + 22+21+20

= 232-1 = 429496729510

Signed Integers
• There are three common ways of

representing signed numbers
– Sign and magnitude: The most significant bit

18

– Sign and magnitude: The most significant bit
represents the sign. (1 is negative, 0 is
positive)

• 10001 would represent the number -1.
• 11111 would represent the number -15.
• 00001 would represent the number 1.p
• 01111 would represent the number +15.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Signed Integers Sign and Magnitude

• With sign and magnitude representation:
– There are an equal number of positive and

negative values that can be represented.

19

negative values that can be represented.
– There are two ways to represent 0:

• 1000000
• 0000000

• We will not be using this method to
represent signed integersrepresent signed integers.

Signed Integers Biased Values
• With biased values, to calculate the

numerical value of the code, calculate the
magnitude of the code and then subtract

20

magnitude of the code and then subtract
off a fixed bias.

• Example: 5-bit codes, bias = 15.
00000 value = 0 – 15 = -15
00001 value = 1 – 15 = -14
01111 value = 15 – 15 = 0
10000 value = 16 – 15 = 1
11111 value = 31 – 15 = 16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Signed Integers – 2’s Complement
• We will be using a method called two’s

complement to represent positive and
negative integers

21

negative integers.
• With 2’s complement, the most significant

bit has a negative weight.

() () () () ()

Note this (-) sign.

() () () () ()

10
616

202121202110110 01234

−=
+−=

×+×+×+×+×−=

2’s complement Numbers 22

() () () () ()
60

202121202000110 01234

+=
×+×+×+×+×−=

• With 2’s complement
– If the most significant bit is a 1, the number is

negative

6
60

=
+−=

negative.
– If the most significant bit is a 0, the number

will be positive.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

2’s complement Numbers
• We will do some 8-bit examples.
• The most negative number is

10000000 = 27 = 128

23

10000000 = -27 = -128
• The most positive number is

011111111 = 127
• The code for -1 is

111111111 = -27+127111111111 = -2 +127

-27
127

2’s complement
• There is only one representation for 0

– 00000000

24

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

Signed Integer Types in Simulink
• Int8 – 2’s complement signed 8-bit integer. Can

represent values from -128 to 127.
10000000 = -27 = -128

25

011111111 = 127
• Int16 – 2’s complement signed 16-bit integer. Can

represent values from -32768 to 32767.
1000000000000000 = -215 = - 32768
0111111111111111 = 32767

• Int32 – 2’s complement signed 32-bit integer.
Represents values from - 2147483648 to 2147483647.
– 10000000000000000000000000000000 = -231 = - 2147483648
– 01111111111111111111111111111111 = 2147483647

Floating Point Numbers
• The MathWorks help facility has a good

section on floating point numbers.
• The following few slides were generated

26

• The following few slides were generated
from the information contained in the
MathWorks help facility.

• Search for the topic, “floating-point
numbers” in the MathWorks help facility to
find more in-depth information.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

Floating Point Numbers 27

Floating Point Numbers
• Fixed-point numbers are limited in that they

cannot simultaneously represent very large or
very small numbers using a reasonable word

28

size.
• This limitation can be overcome by using

scientific notation.
• With scientific notation, you can dynamically

place the binary point at a convenient location
and use powers of the binary to keep track of
that location.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Scientific Notation (Decimal)
• Most of us are familiar with scientific

notation.
– d is a decimal digit with values from 0 to 9

29

– d is a decimal digit with values from 0 to 9.
– We can move the decimal point right or left by

decreasing or increasing the power of 10 by
which we multiply.

410010 −±± pp dddddddddd
1

4

10.0
100.10.

+×±=
×±=×±

p

pp

ddddd
dddddddddd

Decimal point.

Binary Point
• Binary numbers can have a fractional part

just like decimal numbers:

30

2101 10410810310784.73 −− ×+×+×+×=
Decimal point.

() () () () ()21012 212121202111.101 −− ×+×+×+×+×=

() () () () ()() () () () () 75.51111204111.101 4
1

2
1 =×+×+×+×+×=

Binary point.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

Radix Point Notation (Binary)
• Radix point notation is similar. Here we

show radix notation for binary (radix = 2).
– b is a binary digit with values of 0 or 1

31

– b is a binary digit with values of 0 or 1.
– We can move the binary point right or left by

decreasing or increasing the power of 2 by
which we multiply.

4202 −×±=×± pp bbbbbbbbbb
12.0

20.2.
+×±=

×±=×±
pbbbbb

bbbbbbbbbb
Binary point.

IEEE Floating Point Standard 754
• Single Precision – 32 bits

32

() () ()
() () ()
⎪
⎩

⎪
⎨

⎧

>=⋅⋅−
≥≤≤⋅⋅−

= −

−

valuelexceptiona
feeddenormalisf

fenormalisedf
Value es

es

0,0,;.021
0,2550,;.121

126

127

• Exceptional values: NaN, inf.

⎩

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

32-bit Floating point example
• 1 10111101 10100000000000000000000

s e f
1 h ti b

33

• s = 1 we have a negative number.
• e = 10111101=18910

•
• f = 10100000000000000000000

f

() () ()62127189127 222 == −−e

• 1.f = 1.10100000000000000000000
=
= 1.625

() () () () () ()202021202121 543210 +×+×+×+×+×+× −−−−−

32-bit Floating Point Example
• Our number is
• -1.62510 + 262

7 493989779944505 1018 (d i l)

34

• = -7.493989779944505 x 1018 (decimal)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

IEEE Floating Point Standard 754
• Double Precision – 64 bits

35

() () ()
() () ()
⎪
⎩

⎪
⎨

⎧

>=⋅⋅−
≥≤≤⋅⋅−

= −

−

valuelexceptiona
feeddenormalisf

fenormalisedf
Value es

es

0,0,;.021
0,20470,;.121

1022

1023

• Exceptional values: NaN, inf.

⎩

Floating Point Numbers 36

Data Type Low Limit High Limit Exponent
Bias

Precision

Single 2-126≈10-38 2128≈3x1038 127 2-23≈10-7

• Inf - Defined as those values outside the
range of representable numbers.

Double 2-1022≈2x10-308 21024≈2x10308 1023 2-52≈10-16

• Any arithmetic operation involving Inf
yields Inf.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Floating Point Numbers
• NaN – Not a number.
• There are two types of NaN:

A signaling NaN signals an invalid operation

37

– A signaling NaN signals an invalid operation
exception.

– A quiet NaN propagates through almost every
arithmetic operation without signaling an
exception.

Th f ll i ti lt i N N• The following operations result in a NaN:

∞∞
∞×

∞+∞∞−∞

/
0/00

Questions?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 16:Lecture 16:
Introduction to MotoTron ECUs

and MotoHawk

Outline
• Physical Connections
• Creating a MotoTron MotoHawk Project
• Flashing LED Project (Digital Output)

2

• Flashing LED Project (Digital Output)
• Changing CAN Speed
• Motor Speed Controller

– Analog Input
– Digital Output

• Using MotoTune
– MotoHawk Probes
– MotoHawk Calibration

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

3

Connecting MotoTron Hardware

80-Pin Development Cable 4

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

80-Pin Development Cable 5

Main power relay (MPRD)

12V In-line fuse (25A).

80-Pin Development Cable 6

Harness +12 V Connection

Harness ground
connection

ECU CAN connector.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

ECU555-80 7

Plug these in to the ECU.
They only fit one way.

ECU555-80

80-Pin Connectors

ECU555-80 Connections 8

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

12V Power Connection 9

Connect the power
connectors. For our

application we only need
a 1 A 12V power supply.

CAN Hub 10
On/Key switch. This
switch passes 12V to the
ECUP input of the ECU.
This is an old style
switch.

6 port CAN hub.

Development cable CAN
connection

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

CAN Hub 11

Development cable CAN
connection

6 port CAN hub.

New style On/Key switch.
This switch passes 12V
to the ECUP input of the
ECU.

MotoTron Yellow CAN Cables 12

Some of the CAN cables
have an internal 120 Ω
terminator on one end.
Others do not.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

MotoTron Yellow CAN Cables 13

This end is terminated.
This end is not terminated.

Can Connections 14

If you have a terminated CAN cable, you
can plug in the terminated end into the 6-
port hub.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Can Connections 15

120 Ω terminator.

If you don not have a terminated CAN
cable, you can still use it if you plug in a
120 Ω terminator into the hub.

120Ω Terminator 16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Kavaser CAN to USB 17

Non-terminated side
of CAN cable
connected here.

Terminated side of CAN cable connected here. (Or non-
terminated cable with terminator plugged into hub.)

Isolated USB Hub 18

Isolated USB Hub. This
hub will eliminate

Plug in MotoHawk
dongle here.

ub e ate
ground loops between
your computer and the
vehicle system. It will
also help prevent faults
in one system from
damaging the other
(your PC or MotoHawk
ECU).Connect this to your computer’s USB Port.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Complete Setup 19

Creating a MotoHawk Project
• Run Matlab.
• Change to your working directory.

At th M tl b t t th d

20

• At the Matlab prompt enter the command
– motohawk_project('Motor_Control_MH1')

• This will:
– Create a directory called Motor_Control_MH1
– Change to that directory– Change to that directory.
– Create support sub directories.
– Create a model file called Motor_Control_MH1.mdl
– Open the model named Motor_Control_MH1.mdl

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Directory Structure 21

Support directories.

New model file.
New directory.

New Simulink Model Created 22

Title block.

Target definition.

Main power relay.

Foreground trigger.

Subsystem that will
contain our model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

Title Block 23

Revision number This number willRevision number. This number will
increment every time we build this model
(automatically generate code).

MotoHawk Target Definition Block 24

Selected ECU

Double-click on
this block to
change the ECU.

These numbers will
fill in when we build
the project.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

25

We will be using a
ECU555-80 target for this
example. If you have a
different target, specify it
herehere.

Click the OK button after
making any changes. You
will return to the Simulink
model.

MotoHawk Blocks 26
This block controls the main power
relay. (See picture on next slide.)
The main power relay will close
100 ms after power is applied to
the ECUP line of the ECU. The
relay will open 250 ms after 12 V is
removed from the ECUP signal.
See next slide for moreSee next slide for more
information.

Foreground real-time interrupt
trigger. By default, this block
generates a trigger signal every 5
ms. We will show how to change
the time laterthe time later.

Triggered subsystem. We will put
our controller in here. Our
controller will execute once every
5 ms.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

MotoHawk Development Harness 27

VBATT power line.

Main power relay.

ECU555-80 Data Sheet 28
Main power relay.
Closes 100 ms
after key switch
closes. Opens
250 ms after key
switch opens.
These delays
ll f f lRed wire in

development
harness.

allow for graceful
starting and
shutdown
procedures.

Key switch.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

Simulation Configuration Parameters

• We have one last item to look at before we
start creating our model.

• From the Simulink menus select

29

• From the Simulink menus, select
Simulation and then Configuration
Parameters.

• You will see the following dialog box:

30

Simulation Configuration Parameters

Discrete solver
selectedFixed step solver selected.

Simulink will pick
our step size.

Fixed step solver
selected.

Solver option
selected.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

31

Simulation Configuration Parameters

MotoHawk target
selected.

Real-Time Workshop
option selected.

Simulation Configuration Parameters

• We notice that the Simulation
Configuration Parameters are set up
correctly for our project

32

correctly for our project.
• The parameters are set up correctly

because we initially created the project
using the command
motohawk_project('Motor_Control_MH1').

• We do not need to make any changes.
• Click the OK or Cancel button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

Foreground Process
• We are now ready to create our controller.
• Our first controller will just turn on and off

the LEDs

33

the LEDs.
• These LEDs tell us that the ECU is alive.

Double-click on
the foreground
block to open it.

Default Foreground Block 34

•Default foreground
process.
•We will not use this
stuff.
•Delete the controller
and plantand plant.
•Your foreground
subsystem should
look as shown on the
next slide.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

New Foreground Subsystem 35

Flashing Light Controller
• We will now create a controller that turns

on and off two LEDs at a one second rate.
• Place a part called Pulse Generator

36

• Place a part called Pulse Generator
(located in the Simulink / Sources library).

• Place a part called Compare to Constant
located in Simulink \ Logic and Bit
Operations library

Double-click on this
block to open it.
Change it as sown
next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

Pulse Generator 37
Select sample based.
The sample time is 5 ms
since we are in a
triggered subsystem that
is triggered every 5 ms.

The output pulse goes
from 0 to 1.

The period is 200 samples.
Since the sample time is 5
ms, the period is 200 times
5 ms, or 1 second.

Pulse width is 100 samples
of 0.5 seconds. This is the
time the pulse is 1.

Inherit the sample time. This
will be 5 ms since we are in a
triggered subsystem.

Click OK when done.

Compare To Constant
• We want the Compare To Constant block to

perform a logical inversion function.
• To do this, we can change the comparison to

38

, g p
<=0.5.

• When the pulse output is 1, the comparison will
be false and the block will output false.

• When the pulse output is 0, the comparison will
be true and the block will output true.p

• Double-click on the block and change the dialog
box as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Compare To Constant 39

Change to 0.5.

Change to boolean. We’ll
see why in a few slides.

MotoHawk Digital Output
• We now need to add blocks to access the

digital outputs of the MotoTron ECU.
• Place two blocks called MotoHawk Dout

40

• Place two blocks called MotoHawk_Dout
in your model. These blocks are located in
the MotoHawk \ Digital I/O Blocks
library.

• Connect the blocks as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

MotoHawk Digital Output 41

This block requires a Boolean data type for
the input. This is why we specified that the
output data type of the Compare To
Constant block as Boolean.

We need to specify which pin of the ECU
we want to use.

MotoTron ECU Resources
• The MotoTron ECU has several digital outputs.
• We will use the data sheet to select one.
• Our LED will draw about 50 mA of current

42

Our LED will draw about 50 mA of current.
• The digital outputs of the MotoTron ECU have

high current drivers, so this should not be an
issue.

• Open the data sheet for your ECU.
• We will use the FUELP and TACH outputs• We will use the FUELP and TACH outputs.
• The data sheet detailing these outputs is shown

next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

FUELP 43

The TACH output
uses pin B12. Output connected to the

development harness.
This output can sink 1.5
A of current.

The FUELP output
uses pin B11.

Output connected to the
development harness.
This output can sink 1.5
A of current.

FUELP and TACH Outputs
• To determine which wires in the

development harness we should use, we
need to scroll down further in the data

44

need to scroll down further in the data
sheet.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

45

FUELP and TACH 46

The FUELP output is an Orange wire and is
numbered 43.

The TACH output is an Orange wire and is
numbered 44.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

Digital Output
• In the

Simulink
model,

47

double-
click on the
Discrete
Output
block and
change thechange the
Resource
to TACH:

Digital Output
• Change

the
Resource

48

Resource
of the
other
digital
output
block toblock to
FUELP:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Blinky Lights Model
• Your Simulink model should appear as

shown:

49

TACH resource specified.

FUELP resource specified.

Data Type Conversion
• There is one last step we need to take.
• The output of the Pulse Generator block is a

double precision data type (even though it only

50

p yp (g y
outputs a value of 0 or 1.

• The input data type for the Discrete Output block
is Boolean.

• We need to convert the double precision data
type to a Boolean.yp

• Place a Data Type Conversion block as shown.
This block is in the Simulink \ Commonly Used
Blocks library.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

Data Type Conversion 51

Double-click on this
block to open it.

Data Type Conversion 52

This setting will allow
Simulink to choose the

output data type.

Since we know that we
want a Boolean data type,

select Boolean.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

Data Type Conversion 53

Boolean output
data type selected.

Data Types
• It is always a good idea to check your

model for errors periodically.
• We would also like to display data types

54

e ou d a so e o d sp ay da a ypes
on the signal lines to help spot any errors.

• Data type mismatches can cause erratic
behavior of your controller and be difficult
to diagnose.

• To display data types on your schematic• To display data types on your schematic,
select Format, Port/Signal Display, and
then Port Data Types from the Simulink
menus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

55

56

Data types now
shown on model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

Updating the Model
• When you make changes to your model, the

data types are not automatically updated on the
schematic.
W ld l lik t h k d l f

57

• We would also like to check our model for errors.
• To accomplish both of the above, type ctrl-d in

the Simulink window.
• Any errors will be listed and the data types will

be updated.
• My model was already up to date and there• My model was already up to date and there

were no errors, so there is nothing to show.
• However, you should use the ctrl-d command

frequently.

Wiring
• The next thing we need

to do is wire up our
circuit.

58

5V

XDRP (A23)
Wire No. 23
Purple/Yellow

• The LED circuit is
shown to the right.

• We have already
identified the wires for
the TACH and FUELP

D1
LED

D2

LED

R1
100

R2

100

Signals.
• We need to find a 5V

reference.
TACH (B12) FUELP (B11)

Wire Number 44
Gray

Wire Number 43
Orange

LED1 LED2

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

Wiring
• MotoTron ECU provide a +5V reference

for use in sensors.
• Two signal lines are available called

59

• Two signal lines are available called
XDRP and XDRP_B (Pins A23 and B24)

Wiring
• Looking further down the datasheet for our

ECU, we find
– XDRP (A23) is wire number 23 and is

60

– XDRP (A23) is wire number 23 and is
Purple/Yellow

– XDRP_B (B24) is wire number 56 and is
P rple/PinkPurple/Pink

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

Wiring
• We need to make

connections as shown.
• Physical Connections

61

y
are Shown on the next
slide.

Wiring 62

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

Project Build
• We are now ready to build the Project.
• If you typed ctrl-d in the Simulink window

and received no errors you should be able

63

and received no errors, you should be able
to build the project without any errors.

• Before we build, notice in the MotoHawk
title block that we are at revision 000.

Revision 000.

Project Build
• In the Simulink window, type ctrl-b to build

the project.
• You can also select Tools Real Time

64

• You can also select Tools, Real-Time
Workshop, and then Build Model from
the Simulink menus.

• After typing ctrl-b, switch to the Matlab
command window to observe the
progress.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

Matlab Command Window 65

66

Total memory usage.

Model memory usage.

Look at this more closely.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

Project Build 67

This is the file we will
download to the ECU.

This build was created
with rev 000 of the model.

Project Build
• The build files we just created are stored in directory

C:\ECUFiles.
• The .srz files are located in directory

C:\ECUFiles\Programs

68

C:\ECUFiles\Programs

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

Project Build
• When we switch back to our model, we

notice that the revision number in the
header has been incremented

69

header has been incremented.

Revision 001.

MotoTune
• To download our controller to the

MotoTron ECU we will use MotoTune.
• Run MotoTune It is located in the

70

• Run MotoTune. It is located in the
MotoTools folder in your Start menu.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

MotoServer
• Before we download our model, we will

check the CAN port settings in
MotoServer

71

MotoServer.
• The MotoServer icon should be

located in your windows tray.
MotoServer icon.

MotorServer
• Right-click on the MotoServer icon and

select Ports

72

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

MotorServer
• You should have a port labeled PCM-1.

The correct settings are:
– Kavaser CAN

73

– Kavaser CAN
– Access 4
– Baud Rate 250000

This port should
be enabled.

MotoServer
• The CAN Baud rate default setting of the

ECU modules is 250k.
• If you have never changed the baud rate

74

• If you have never changed the baud rate
of your ECU, then it is probably set to 250
k.

• If your port settings are not as shown on
the previous slide, or you know that your
ECU was programmed previously with a
different Baud rate, we will need to change
the port settings.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

MotoServer – Only if Necessary
• Skip to slide 84 if your port settings are

correct as shown in slide 74.
• If you need to change the port settings

75

• If you need to change the port settings,
select PCM-1 and click the Modify button.

Port selected.
Click the Modify
button.

MotoServer – Only if Necessary
• Change the settings as needed to match

your CAN baud rate or the settings shown:

76

Click the OK button to accept the changes• Click the OK button to accept the changes.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

MotoServer – – Only if Necessary
• If your port settings are now correct, skip

to slide 84.
• If your window does not show PCM 1 you

77

• If your window does not show PCM-1, you
must do the following:

• Click the Edit Names button

Click here.

MotoServer – Only if Necessary 78

Click this Add
button.

Select CAN Kingdom and
then click the Next button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

MotoServer – Only if Necessary
• Fill in the dialog box as shown and click

the Finish button.

79

Name is PCM-1.

CityID is 11.

CAN Bus 1.

MotoServer – Only if Necessary
• PCM-1 should be added to the CAN Bus

Mappings.

80

Name listed here.

• Click the OK button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

MotoServer – Only if Necessary 81

Click this Add
button.

Fill in properties as shown.
•Type – Kavaser CAN
•Location PCM-1
•Access Level 4
•Baud Rate 250000

•Click the OK button when done.

MotoServer – Only if Necessary 82

The port should
be added withbe added with
the proper
settings.

Port is selected.

Click the OK button. We
are ready to go.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

MotoTune
• We now have the ports set correctly and

can program our ECU!
• In the MotoTune window select File and

83

• In the MotoTune window select File and
then Program, or select the program
button:

MotoTune 84

Select the most
recent .srz file for
your model (or the
srz file you want to.srz file you want to

download to your
ECU).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

MotoTune 85

File selected. Click
the Open button.

Note that we are using port PCM-1. If
this port is not selected, use the pull-
down menu to choose port PCM-1.

MotoTune
• If you are successful, you will see the

series of dialog boxes below:

86

If you do not see this
box, you may need to
turn on your key switch
and/or turn on your 12 V
power supply.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

MotoTune
• Our model should now be programmed on the

ECU.
• You should see the LEDs flashing on and off.

87

g
• As you cycle the key switch, the ECU should

automatically power off and on and start the
program (which flashes the LEDs).

• MotoTune has many more capabilities which we
will show in our next example.p

• Here, we only show how to program the ECU
with MotoTune.

Build Process
• If you make any changes to the model,

you will need to go through the following
steps to run the new model on the ECU:

88

steps to run the new model on the ECU:
– Build the model in Simulink (ctrl-b)
– Program the ECU with MotoTune
– That is it!

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

45

CAN Baud Rate
• As a last part of this example, we will show

how to change the CAN Baud rate of our
ECU.

89

• We will increase the Baud rate to 500 K.
• All future examples will use a Baud rate of

500 k.
• Place a part called CAN Definition in your

modelmodel.
• This block is located in the MotoHawk /

CAN library.

90

CAN Definition block
placed in the top level of
our model.

Double-click on this
block to change its
parameters.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

46

91

MotoTron ECUs have two CAN
ports available. We can change
the properties of each CAN port
independently.

Default CAN Baud rate is 250K. If
we do not change the Baud rate
with a CAN Definition block, the
baud rate will be 250k.

Note that the City ID is 11 (hex B).
R b th t th Cit ID fRemember that the City ID for
PCM-1 was also set to 11. This
enables MotoTune to communicate
with your ECU.

92

The only change we will make is to
change the Baud rate to 500 k.

Make this change and click the OK
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

47

CAN Baud Rate 93

•Note that the Baud rate
change is reflected here.
S d l d th t•Save your model and the type

ctrl-b to build it.
•View the Matlab window to
observe the build progress.

CAN Baud Rate 94

•Since this is the second time
we have built the model, the
executable file is now called

001 srz Each time we build…001.srz. Each time we build
the model, we will get a new
.srz file.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

48

CAN Baud Rate
• We now need to program the ECU with

the new executable (.srz file).
• Note that the ECU is still running at 250 K

95

• Note that the ECU is still running at 250 K.
• The ECU will not run at the changed Baud

rate until we program it.
• Thus, we will leave the MotoServer ports

at 250k until the ECU is programmed.at 250k until the ECU is programmed.

CAN Baud Rate
• We will now program the ECU.
• Select File and then Program from the

MotoTune menus.

96

• Select the most recent .srz file.

• When the programming is complete, the ECU
will use a Baud rate of 500k.

• Note that your two LEDs should still be flashing.
All we changed in the model was the CAN rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

49

CAN Baud Rate
• Now that the ECU is running at a different

CAN Baud rate, we need to change the
port settings on MotoServer

97

port settings on MotoServer.
• Right-click on the MotoServer icon and

select Ports.

CAN Baud Rate
• To change the port settings, select PCM-1

and click the Modify button.

98

Port selected.
Click the Modify
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

50

CAN Baud Rate
• Change the settings as shown:

99

• Click the OK button to accept the
changes

Baud rate
changed.

changes.

CAN Baud Rate
• Your port configuration should be as

shown.

100

Baud rate changed
to 500k.

• Click the OK button if your settings match.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

51

CAN Baud Rate
• MotoTune can once again communicate

with our ECU.
• To show this we will change the rate at

101

• To show this, we will change the rate at
which the LEDs flash and then reprogram
the ECU.

• Double-click on the Pulse Generator block
inside your model.

• Make the following changes:

CAN Baud Rate 102

Period set to 100.

Pulse width set to 50.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

52

CAN Baud Rate
• Click OK to close the dialog box.
• Type ctrl-b in Simulink to build the model.

U M t T t d l d th l

103

• Use MotoTune to down load the newly
created .srz file
– Select File/Program from the MotoTune

menus.
– Select the most recent .srz file.

CAN Baud Rate
• If the Baud rates were changed in both the

ECU and MotoServer ports and they
match, programming of the ECU should

104

start.

When programming is complete you the• When programming is complete, you the
new model should run, and the lights
should flash faster.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

53

The Last Slide
• We will leave the CAN Baud rate at 500k

for the remaining examples in this
workshop

105

workshop.

Lecture 16 Demo 1
• Demo the Operation of the MotoTron ECU blinking

lights. The CAN baud rate should be 500 k.

106

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 17:Lecture 17:
MotoTron MotoHawk Projects

Outline

• Implement the controller for the Motor Generator
system that we modeled earlier.

2

• Use the MotoHawk PWM block.
• Use the MotoHawk analog input block.
• Use MotoHawk Probes to view signals internal

to the ECU in real-time.
• Use MotoHawk Calibration blocks to change the g

feedback gains in real-time.
• View real-time signals using MotoTune charts.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

Motor Control Project
• We will now create a new MotoHawk

project in our working directory.
• Enter the command

3

• Enter the command
motohawk_project('Motor_Control_MH2')
at the Matlab command prompt.

• Simulink will run and open the new model.

Motor Control Project
• We need to make a few modifications:

– Change the CAN Baud rate to 500k (copy the
can block from our first model)

4

can block from our first model)
– Delete the controller and plant subsystems

inside the Foreground subsystem.
– Copy the Flashy lights portion of the first

model and place it in the foreground
subsystem of our new model (These lightssubsystem of our new model. (These lights
will tell us that the ECU is working.)

– The following two slides show what you
should have:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Top Level Model 5

Added CAN definition
block. Note baud rate is

500 k.

Foreground Subsystem 6

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

Analog Inputs
• In our model, we are going to read three analog

inputs:
– The potentiometer (POT) – This is a 0 to 5V analog

7

voltage.
– The motor rpm output signal. This is approximately a

0 to 8V signal coming out of the motor. This signal is
divided in half by two 10 k resistors on the circuit
board. Thus, the input is approximately a 0 to 4 V
signal.

– The generator output voltage. This is approximately a
0 to 24V signal coming out of the motor. This signal is
divided in half by a resistor network on the circuit
board to produce a 0 to 5V signal.

Analog Inputs
• We have scaled all of our analog signals

to be between 0 and 5V.
• The MotoTron ECU has several analog

8

e o o o CU as se e a a a og
input channels.

• Most channels are designed for a 0 to 5 V
input.

• A portion of the available inputs are shown
on the next slideon the next slide.

• This information is contained in the data
sheet for your MotoHawk ECU.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

ECU555-80 Data Sheet 9

Analog Inputs
• We will use analog inputs AN4M, AN5M,

and AN6M because:
– The do not have an internal pull-up

10

e do o a e a e a pu up
resistor.

– They have the highest input impedance:
• AN1M through AN3m have 51.1k resistors

to ground.
• AN4M through AN8M have 200k resistorsAN4M through AN8M have 200k resistors

to ground.
• All inputs have built-in filters. Note that we

did not include these filters in our model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

Analog Inputs
• The ECU555-80 data sheets tells us that the

analog inputs have a 0-5V range, 10-bit
resolution and a filter time constant of 1 ms

11

resolution, and a filter time constant of 1 ms.
– A 0 V input is converted to a numeric value of 0.
– A 5 V input is converted to a numeric value of

210-1 or 1023.
• The 1 ms time constant comes from the low

filt (th 33k i t d th 0 033 Fpass filter (the 33k resistor and the 0.033 μF
capacitor).

Analog Inputs
• Place three instances of the block

motohawk_ain in your model.
• This block is in the MotoHawk / Analog I/O

12

• This block is in the MotoHawk / Analog I/O
Blocks library

Added analog input
blocks.

Double-click on this
block to open it.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

Analog Inputs 13

Change this to AN4M.

Note that the output data
type is uint16. This is an
unsigned 16-bit integer.
The 10-bit conversion will fit
in a uint16 without any y
problems.

Click the OK button after
changing the resource to

AN4M.

Analog Inputs
• Modify the three Analog Input Blocks as shown.

14

Changed to AN4M.

Changed to AN5M.

Changed to AN6M.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

Analog Inputs
• The output of the analog blocks is a 16-bit

unsigned integer data type (uint16).
• The rest of our model uses double

15

e es o ou ode uses doub e
precision floating point data types.

• Add three data type conversion blocks to
the model (library Simulink / Commonly
Used Blocks):
– Double-click on the Convert block and specifyDouble click on the Convert block and specify

the type as double.
• You should have the model shown on the

next slide.

Analog Inputs 16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

Analog Inputs
• The output of the analog input blocks is a

number from 0 to 1023.
• We want to scale this value to a number

17

• We want to scale this value to a number
between 0 and 1.

• We will do this by using a gain block with a
gain of 1/1023:

• Add Gain blocks and Goto blocks as shownAdd Gain blocks and Goto blocks as shown
next:

Analog Inputs 18

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

Analog Inputs
• I will hide the block names on the model:

– Select the part
Right click on the part

19

– Right click on the part
– Select Format and then Hide Name from the

menus

Analog Inputs
• We would like to observe these three

signals in real-time as the controller is
running on our ECU

20

running on our ECU.
• We can observe the signals with

MotoTune if we place MotoHawk Probes
in our model.

• From the MotoHawk / Probing &
Calibration Blocks library, place three
instances of the block called
motohawk_probe in your mdoel.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

Analog Input 21

Added probe blocks.

MotoHawk Probes
• We need to name each of the probes with

a unique name.
• To name a probe double click on a probe

22

• To name a probe, double-click on a probe
block.

Change the Probe
name here. Note:
•The name must be
enclosed in single g
quotes.
•There must be no
spaces in the name.
•Underscores are OK.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

MotoHawk Probes
• Change the Probe names as shown:

23

PWM Output
• We now have the analog inputs we need

to run our system.
• Next we need a PWM output to drive our

24

• Next, we need a PWM output to drive our
system.

• MotoTron ECUs have several high current
PWM drivers that we can use.

• For example, the ETC (electronic throttleFor example, the ETC (electronic throttle
control) output can drive a 5 A load.

• The OILP output can drive a 10 A load.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

PWM Output
• Out system already has high current drivers, so all

we need to do is supply a low current pwm signal.
• We could use a high current PWM output such as

ETC but we’ll save that in case we need it

25

ETC, but we ll save that in case we need it.
• We will use the EST outputs because they have

active pull-up and pull-down drive transistors.
(Some of the outputs only have a low side driver
and would need a pull-up resistor for our
application.)

• Also, the EST outputs produce 5V amplitude PWM , p p p
signals, and this is compatible with our hardware.

• The portion of the 555-80 data sheet is shown next
for the EST outputs:

PWM Output 26

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

PWM Outputs
• Eight EST outputs are available.
• We will use EST1 for this application.

T thi l t

27

• To access this resource, place a part
called motohawk_pwm in your model.

• This part is located in the MotoHawk \
Analog I/O Blocks library.

PWM Output
• The first thing we need to do is specify

EST1 as the output pin we want to use.
• Double click on the PWM block and

28

• Double-click on the PWM block and
change the parameters as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

PWM Output 29

Specify the Resource as
EST1.

S if th i i fSpecify the minimum frequency
as 1000. (If you are not using
MotoHawk 084 Beta 9 or
higher, you will get a different
dialog box here.)

PWM Output
• We notice a few things about the PWM

block.
– The duty cycle input is a number from -4096

30

– The duty cycle input is a number from -4096
to 4096. Its type is a signed 16-bit integers
(int16)

– For full bridge outputs (like ETC), we can
have a negative or positive output. A duty
cycle of -4096 means full negative output.cycle of 4096 means full negative output.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

PWM Output
• Duty Cycle Input Continued

– Since we are using a half bridge, we will only
use the positive half of the duty cycle input

31

use the positive half of the duty cycle input
range.

– A duty cycle input of -4096 to 0 produces an
output that is always low.

– A duty cycle input from 1 to 4096 produces a
PWM output with a duty cycle from 0 to 100%PWM output with a duty cycle from 0 to 100%

PWM Output
• The frequency input is a 32-bit unsigned

integer (uint32).
• An input of 100 produces a frequency of 1

32

pu o 00 p oduces a eque cy o
Hz.

• For this input, we need to multiply the
desired PWM frequency by 100.

• We would like to use a PWM frequency of
20 kHz because it is inaudible to humans20 kHz because it is inaudible to humans.

• We will use a constant block to specify the
PWM Frequency as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

PWM Frequency 33

Double-click here to open this block.

Specify the value as 20000*100 to
specify a PWM frequency of 20 kHz.

PWM Frequency 34

FrequencyFrequency
value
specified
here. Select this tab

next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

PWM Frequency
• The frequency input needs a uint32 data

type.
• We could do this with a data type

35

• We could do this with a data type
conversion block.

• Instead we will do it with the Signal Data
Types tab in the constant block:

PWM Frequency
• Select the Signal Data Types tab and

select the uint32 data type:

36

Uint32 specified.

Click the OK
b tt hbutton when
done.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

PWM Duty Cycle
• The signal from our controller will have the

following properties:
– Numerical value from 0 to 1

37

– Numerical value from 0 to 1.
– Data type: floating point double precision

• Add a gain block to scale values of 0 to 1
to values from 0 to 4096.

• Add a data conversion block to convert a
double precision number to a type of int16.

PWM Duty Cycle Input 38

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

MotoHawk Override
• Eventually, the PWM signal will come from

our controller.
• For now we would like to manually control

39

• For now, we would like to manually control
the duty cycle through MotoTune.

• Place a constant with a value of 0 and a
part called motohawk_override_abs from
the MotoHawk / Calibration & Probing
Blocks library

• Wire your model as shown:

MotoHawk Override 40

Double-click on this block and change
the attributes as shown below.

Change the name to
‘Duty_Cycle_Override’

Do not forget the quotes.

Leave the default at zero so that the
motor will be off unless we change the
value with the override.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

MotoHawk Override 41

• Before we build the model we need to
check it for errors.

• Select Format, Port/Signal Display, and
then Port Data Types from the Simulink
menus to display data types on the signal
lines.

• Type ctrl-d to check the model for errors.

42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

Model Build
• If:

– you did not receive any errors after using the
ctrl-d command, and

43

ctrl d command, and
– Your data types match the ones shown

• Type ctrl-b to build your model.
• Switch to the Matlab command window to

view the progress.

Wiring Connections
• The final step we need to take is physically

connect the ECU to our motor-generator system
with wires in the development harness.

44

• The first wire we need to connect is our
transducer ground reference. This wire is called
XDRG and is pin A22, wire 22 and is
Black/Orange.

• Connect this wire to one of the GND connections
on the motor-generator circuit board

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

PWM Connection
• From the portion of the ECU555-80

datasheet we saw earlier, we chose EST1
which was pin B2.

45

• Looking further down the datasheet, we
see the following information

• We see that this is a green/black wire and
is numbered 34is numbered 34.

• Connect this wire to the one labeled
“PWM” on the motor/generator PC board.

POT Connection
• From the portion of the ECU555-80

datasheet we saw earlier, we chose AN4M
which was pin A6.

46

• Looking further down the datasheet, we
see the following information

• We see that this is a light blue/white wire
and has the number 6and has the number 6.

• Connect this wire to the one labeled “POT”
on the motor/generator PC board.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

RPM Connection
• From the portion of the ECU555-80

datasheet we saw earlier, we chose AN5M
which was pin A7.

47

• Looking further down the datasheet, we
see the following information

• We see that this is a white/yellow wire and
has the number 7has the number 7.

• Connect this wire to the one labeled
“RPM” on the motor/generator PC board.

Voltage Connection
• From the portion of the ECU555-80

datasheet we saw earlier, we chose AN6M
which was pin A8.

48

• Looking further down the datasheet, we
see the following information

• We see that this is a brown/white wire and
has the number 8has the number 8.

• Connect this wire to the one labeled
“VOLTAGE” on the motor/generator PC
board.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

Circuit Diagram
• A complete circuit diagram for our

connections is shown below.

49

D1
LED

D2

LED

R1
100

R2
100

5V

XDRP (A23)
Wire No. 23
Purple/Yellow

PWM

R3
10k

5V RPM Voltage

TACH (B12) FUELP (B11)
Wire Number 44
Gray

Wire Number 43
Orange

EST1 (B2)
Wire Number 34
Green/Black

XDRG (A22)
Wire Number 22
Black/Orange

AN4M (A6)
Wire Number 6
Light Blue/White

LED1 LED2 PWM GND POT

AN5M (A7)

RPM

Wire Number 7
White/Yellow

AN6M (A8)
Wire Number 8
Brown/White

VOLTAGE

Wiring Connections
• A picture of the wiring connections is

shown below:

50

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

MotoTune
• We are now ready to program the ECU

with MotoTune.
• Use the procedure covered earlier

51

• Use the procedure covered earlier
– Run MotoTune
– Select File and then Program from the

MotoTune menus
– Select the most recent executable version of

our MH2 model.
• When the programming is complete, click

the OK button to close the dialog box.

MotoTune Display
• You should have an empty MotoTune

window.
• Select File New and then Online

52

• Select File, New, and then Online
Display/Calibration or from the menus.

• Select Display and click the OK button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

MotoTune Display 53

Cli k th N t b tt t i d th li k• Click the Next button twice and then click
the Finish button.

• You should have the screen shown next:

54

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

MotoTune
• Click on the plus sign(s) next to

Motor_Control_MH2 to expand the tree.

55

Click on this + sign
and then expand
the tree fully.

MotoTune Display 56

This is the override
we placed in our p
model.

These are the three
probes we placed in
our model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

MotoTune Display
• You can display as many or as few of the

probes and overrides as you want.
• To place an item in your display drag the

57

• To place an item in your display, drag the
item into the display window.

• If you drag an individual item, only that
item will be displayed.

• If you drag a folder, all probes andIf you drag a folder, all probes and
overrides in the folder will be displayed.

MotoTune Display
• Drag the item Actual_Speed to the disply

window as shown below:

58

Release the mouse
button here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

MotoTune Display
• When you release the mouse button, the

item and its value will be displayed.
• Resize the cells to show the entire text

59

es e e ce s o s o e e e e
labels.

Probe name.
Real-time value.

MotoTune Display
• Drag the probes Desired_Voltage and

Actual_Voltage to the display window.

60

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

MotoTune Display
• For the override, we need both items.
• The easiest way to do this is by dragging

the folder Duty Cycle Override Override

61

e o de u y_Cyc e_O e de O e de
to the display window. Both items will
appear in the window:

MotoTune Display
• The next thing we need to do is change

the speed at which the displayed values
are updated

62

are updated.
• Right click on the cell as shown below:

Right-click here and
then select Properties
from the menufrom the menu.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

MotoTune Display 63

• By default, MotoTune updates all of the
values at a 500ms rate.

• This is too slow for our example.
• Click the Set Fast button and select the

Apply To All option

MotoTune Display 64

Option selected.

• We have specified that all values in the display window
will be updated every 50 ms.

• The downside is that this information is communicated

Values will be displayed
at a 50 ms rate.

The downside is that this information is communicated
over the CAN bus.

• By displaying a lot of items and updating them at a high
rate, we are increasing the amount of CAN traffic on the
bus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

MotoTune Display
• The model is running on our ECU.
• If you rotate the pot, you should see the

value on the Desired Voltage probe

65

value on the Desired_Voltage probe
change between 0 and 1.

MotoTune Override
• Right now, the override is set to Pass-

Through.
• From the model the value we specified is

66

• From the model, the value we specified is
0, so the motor will be off.

Click here to reveal the
options.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

MotoTune Override 67

After selecting the cell,
options are now available.

Select Override and press
the enter key.

Override now selected.

MotoTune Override 68

Enter a value here.

When you press the enter
key, the output of the
override block will be
changed to the value you
enter.

Enter a value between 0 and 1. Zero is full
off, 1 is full on.

The motor should spin and you should see
all of the other probe values change.

If you have an oscilloscope, you can
observe the PWM output and see the PWM
waveform as the duty cycle changes.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

MotoTune Override 69

• We now know how to use probes and
overrides.

• The last thing we will do is save our
display.

MotoTune Display
• Select File and then Save from the

MotoTune menus.
• Specify a name for your display like MH2

70

• Specify a name for your display, like MH2
and click the Save button.

• The next time we use this model, we can
open the display we saved.

• We can also use the display in futureWe can also use the display in future
models if we have the same probes and
overrides.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

Lecture 17 Demo 1
• Demo of MotoTune with the Motor/generator system

– MotoHawk Probes display measurements
– MotoHawk override controls motor speed.

71

Demo___________

Controller Implementation
• We now have a MotoHawk shell that has

the inputs and outputs that we need to
control our system

72

control our system.
• We will now place the controller we

designed with simulations in our ECU
model.

• We will do this in a subsystem so that we
can easily separate our control subsystem
from the MotoHawk I/O shell.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

Controller Implementation
• Place a subsystem block in the foreground

block of our model.
• Subsystem blocks are located in the

73

• Subsystem blocks are located in the
Simulink / Commonly Used Blocks library.

• Rename the subsystem “Controller.”

74

Added subsystem.

Double-click on the
subsystem to open it.

Add ports as shown next.p

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

Controller Subsystem 75

• In the Foreground subsystem, make the
connections shown next to the Controller

b tsubsystem.
• Use From and Goto blocks located in the

Simulink / Signal Routing library.

Controller 76

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

Controller
• To connect the controller PWM output to

the ECU PWM output, replace the
constant block with a From block as

77

constant block with a From block as
shown:

This was a constant block.

Controller
• We now have a shell for utilizing the ECU

resources, and we have a convenient
place to put all of our control logic

78

place to put all of our control logic.
• If we make a change to our control

algorithm, we only need to modify the
contents of the controller subsystem. The
only time we will need to modify our

fMotoHawk shell is if we need to create
additional inputs or outputs.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

Controller
• We will start with the proportional feedback

method we developed in model
Motor_Control_Sim1.mdl.

• The controller portion of the model is shown

79

The controller portion of the model is shown
below.

Only copy this part. Do not
copy the ports.

Controller.
• We only need to copy the proportional

control portion of the model.
• The low pass filter is implemented in

80

• The low-pass filter is implemented in
hardware and is a circuit on the PC board.

• Copy and paste the controller from the
simulation into the MotoHawk model as
shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

MotoHawk Controller 81

• The load voltage signal is not being used,
so we will connect it to a terminatorso we will connect it to a terminator.

• This controller had a fixed gain of 100.

MotoHawk Controller
• We would like to add the capability of changing

the proportional gain while the controller is
running.

82

• This will allow us to tune the controller to our
physical system in real time.

• We can do this by adding a MotoHawk
Calibration block to our controller.

• The calibration block is located in the MotoHawk
/ Calibration & Probing Blocks library.

• Make the changes shown next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

MotoHawk Controller 83

Gain changed to 1

P d t bl k dd d

• Double-click on the calibration block and
make the changes shown next.

Product block added.
Cal block added.

Calibration Block 84

Name changed to
‘Proportional_Gain’

Do not forget the quotes. No
spaces allowed.

Default value set to 10.

We can change this value
while the model is running on
h ECUthe ECU.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

Calibrations
• Click the OK button.
• Build the model.
• Download the model to your ECU with

85

• Download the model to your ECU with
MotoTune.

• Display all of the probes and overrides as
we did in the previous example.

• You can load a saved display from the
MotoTune File menu if you wantMotoTune File menu if you want.

• You should have the following MotoTune
display.

MotoTune 86

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

Motor-Generator Operation
• We can now run or controller on the actual

motor-generator system.
• We notice the following:

87

• We notice the following:
– The motor speed follows the setting on the

speed pot.
– The motor speed is held relatively constant as

we change the load on the generator. (As it
should with a proportional feedback system)should with a proportional feedback system.)

– The Motor generator system makes a ton of
noize.

Lecture 17 Demo 2
• Demo of Motor/generator with the proportional feedback

control system.

88

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

45

Motor-Generator Operation
• We notice that the motor speed signal is

bouncing all around. (It might not do this.
We added a flywheel to the motor

89

We added a flywheel to the motor
generator system to fix this problem.)

• If we looked at the motor speed on an
oscilloscope, we would notice that the
speed signal is oscillating.

Motor-Generator Operation
• In our MotoHawk realization, the

foreground process only executes every 5
ms

90

ms.
• This means that the control algorithm

executes only once every 5 ms, which
may e too slow for the motor/generator
system.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

46

MotoHawk – Trigger Definition
• To change the rate at which the

foreground process is triggered, we need
to place a motohawk trigger def block in

91

to place a motohawk_trigger_def block in
the top level of our model.

• This block is located in the MotoHawk /
Trigger Blocks library.

• Place the block in the top level as shown
next:

MotoHawk – Trigger Definition 92

Block added.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

47

MotoHawk – Trigger Definition
• When we open the block, we see

– Trigger FGND RTI period is set to 5000 μs, or
5 ms.

93

5 ms.
– FGND RTI stands for foreground real-time

interrupt.
– This trigger will be generated every 5 ms.
– Change this value to 1000 to generate a

trigger every 1 mstrigger every 1 ms.

94
Period changed
to 1 ms.

This is a trigger block that generates a trigger
based on the foreground real-time interrupts.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

48

FGND RTI
• We see that our foreground subsystem is

triggered by the FGND RTI. Since we
changed this value to 1 ms our controller

95

changed this value to 1 ms, our controller
will now execute every 1 ms.

This block generates a trigger at
the rate specified by the FGND
RTI block.

This 5 ms is for documentation purposes.
Changing it is not necessary. To change it, right
click on it, select Edit Mask, select the
Initialization tab, and then change the sample
time.

Motor-Generator Operation
• Build the model and download it to the

ECU.
• Lets see if the bad behavior has been

96

e s see e bad be a o as bee
fixed.

• The oscillation has been eliminated with
no load.

• There is still a grinding sound at higher
speeds and higher loadsspeeds and higher loads.

• We will look at changing the feedback gain
to see if it fixes this oscillation.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

49

MotoTune Calibration
• In the MotoTune window we have all of the

probes and overrides displayed.

97

MotoTune Calibration
• We can change the gain by changing the

calibration we added in the previous
model

98

model.
• Select File, New, and then Online

Display & Calibration from the MotoTune
menus.

• Select Calibration and click the OK button

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

50

MotoTune Calibration
• You can specify a new

name or use the one given.
• Click the Save button

99

Click the Save button.
• In the future, we will be

able to load calibrations
that we made earlier.

• We can also back load
calibrations into our modelcalibrations into our model
(although this process is
not recommended).

MotoTune Calibration 100

Expand this portion of the tree.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

51

MotoTune Calibration 101

•This is the calibration part that
we added to out model.

•Double-click on it to open a
window for this calibration.

•Calibration window that allows us
to change the value of the
Proportional_Gain.

•Enter a new value in the cell.

When you press the Enter key,
the new value will ne sent to the
ECU.

Calibrations
• The Calibrations allow us to try different

values of the parameter we are changing.
• We can save the calibrations to a file for

102

• We can save the calibrations to a file for
later use.

• We can backload the values into out
model. (Not recommended.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

52

Motor-Generator Operation
• My system appears to have the following

behavior:
• For gains of 1 to 5 the noise disappears

103

• For gains of 1 to 5, the noise disappears.
• For a gain around 10, we hear some

noise.
• For gains of 100 and 1000, the oscillation

is noticeable for all speeds of operation.is noticeable for all speeds of operation.

Proportional Feedback
• The error signal is the difference between

the desired quantity and the actual
measured quantity.

104

– In our case the error is the difference between
the desired voltage signal and the voltage
signal representing the rpm.

• A system with proportional feedback will
have the following properties:
– As we increase the gain, the error signal will

decrease.
– For a fixed gain, as we increase the load, the

error will increase.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

53

Proportional Feedback
• To make the actual rpm follow the desired

rpm (make the error as small as possible)
we want to make the gain as large as

105

we want to make the gain as large as
possible.

• Increasing the gain can make the system
unstable.

• We can observe all of these properties in
our system.

Proportional Gain
• To make the observation of our system a

little easier we will add a probe on the
error signal as shown below:

106

error signal as shown below:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

54

Motor-Generator System
• Download our change to the ECU.
• Observe that the system exhibits the

behaviors discussed.

107

be a o s d scussed

Lecture 17 Demo 3
• Demo of Motor/generator with the proportional

feedback control system with the following
– Foreground process set to a trigger rate of 1 ms

108

– Modifying the feedback gain with MotoHawk calibrations.
– Viewing the Error Signal

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

55

Further Investigations
• At this point, we know how to use several

of the tools available from MotoTron.
• We will investigate the effects of different

109

• We will investigate the effects of different
control methods.

Integral Control
• The proportional control method causes

the measured signal to follow the desired
control signal with a constant amount of

110

error.
• Integral will cause this error to go to zero

in steady state.
– We are controlling rpm.
– The rpm will equal the command rpm in p q p

steady state.
– When we change the load, the rpm will return

to the steady state value after a slight
(hopefully) disturbance.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

56

Integral Control
• We explored the effects of adding an

integrator in our SIL simulations, and in
our real-time simulations.

111

• We will not use the built-in MathWorks
discrete integrator because:
– The integration time step is determined at

compilation time. (For our system, it is 1 ms.)
– This predetermined value is used to calculate

the integral even if the actual time between
integration steps varies slightly while the
model is running.

Integral Control
• MotoHawk has a block called dT.
• This block returns the actual time difference

between when the block was previously

112

be ee e e b oc as p e ous y
executed to the time is currently being
executed.

• This block allows us to use the actual time
difference in a calculation.

• We will use a rectangular integration method• We will use a rectangular integration method
with saturation limits.

• Open your controller and modify as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

57

Integral Control 113
Proportional Gain.

Sum. Forms the
Proportional/Integral
(PI) control.

Error Signal.

Integrator.

Integrator – Rectangle Method 114

Integrator output.
Equal to the
previous value plus

Rectangular area. (Width of
time slice times the error.)

previous value, plus
the added area of
the rectangle just
calculated.

Integrator output from
the previous time step.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

58

115Integrator – Rectangle Method
Calibration block used to set gain. Saturation block. Limits the

integrator output to ±1.

Integral gain.
Initially the gain is
set to zero We will

MotoHawk delta time (dT)
block. Located in the
MotoHawk / Extra
Development Blocks library.

set to zero. We will
change the gain
with the calibration
block.

Model Build
• Build and download the model to your

ECU.
• Display all MotoHawk Probes

116

• Display all MotoHawk Probes.
• Display the calibration spreadsheet for the

proportional and integral gains.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

59

117

System Behavior
• You should notice the following properties

of your PI System.
– The proportional gain behaves similar to our

118

p p g
last example.

• High proportional gain causes the system to
oscillate and emit an grinding noise.

• Low proportional gain produces a large error under
high load conditions.

– The Integral gain g g
• Drives the error signal to zero.
• Causes over and undershoot.
• Larger values of integral gain cause more over and

undershoot, but drive the error to zero faster.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

60

Lecture 17 Demo 4
• Demo of Motor/generator with the PI feedback

controller.

119

Demo___________

Calibration Problem
• One thing you might have noticed is that

when you changed the value of the
integral gain calibration the motor speed

120

integral gain calibration, the motor speed
jumped (sometimes extremely high) and
then slowly game back to the rpm it was
set at.

• Imagine if you were in a vehicle and you
changed the gain with a calibration and a
50 hp engine or electric motor made a
similar jump in speed and torque.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

61

Calibration Problem
• A step change like the one we see in our

motor-generator system could easily break
a shaft

121

a shaft.
• The reason for this problem is where we

placed the gain block for our integrator.

Calibration Problem 122

Output to sum
bl k E

Integrator output: This value
hold constant or changes
relatively slowly when a step
change occurs in the gain (It

block: Even
though the
integrator
holds it value,
this signal will
have step
changes
because the
gain has stepchange occurs in the gain. (It

will eventually change in
response to the step change in
gain.)

Integral gain (the calibration
together with the product
block):This value can change
instantaneously.

gain has step
changes.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

62

Calibration Problem
• We can fix this problem by placing the

gain before integrator:

123

Step changed will occur here. Integrator output tends to hold its
value. Output will change when
we have a step change in the
input, but the output will change
slowly.

Calibration Problem
• Even though the input to the integrator will have

step changes, the output of the integrator can
only change slowly.

124

• Thus, when we change the integral gain, we will
not get wild changes in the motor speed and
torque that we saw earlier.

• We expect changes, but only slow changes.
• Note that the change in the placement of the g p

gain does change the effect of the limiter.
(How?)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

63

Controller Improvements
• One thing we notice in the operation of our

motor-generator system is that even though we
are keeping the motor speed constant, as we
turn on more light bulbs the light bulbs become

125

turn on more light bulbs, the light bulbs become
dimmer.

• This is because of the output impedance of the
generator.

• We are effectively modeling the generator as an
ideal voltage source:g
– The output voltage is constant no matter how much

current we draw.
– The output voltage is a function of the generator rpm

(which we are keeping constant)

Generator Model
• With this model, if we keep the rpm

constant, the output voltage should be
constant independent of load

126

constant, independent of load.
• This is obviously not the case since we

observed that the lights become dimmer
as we turn on more lights.

• A better model of the generator is an ideal
voltage source with a series output
resistance.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

64

Generator Model
• What we should do:

– Set up a series of measurements using the
MathWorks Model Based Calibration tool.

127

MathWorks Model Based Calibration tool.
– Measure the generator characteristics.
– Generate a new model.
– Simulate the new model.
– Generate a new controller for the model.
– Download the new model on to out ECU.

Constant Voltage Controller
• We will skip the process of improving the

model and simulating a controller.
• Note that this is a dangerous step if

128

• Note that this is a dangerous step if
you are working with a complicated and
expensive system.

• You should always simulate a new
control method before deploying it on
hardware.

• We don’t have time in this short
workshop to do this.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

65

Constant Voltage Controller
• Instead we will use our knowledge of control

systems.
• Looking at our controller, we note that we are

129

g ,
comparing the control signal (called Desired
Voltage) to the measured rpm signal.

• The feedback tries to make the measured signal
equal to the control signal.

• To regulate the generator output voltage, all we g g p g ,
need to do is change the signal we are feeding
back.

• Make the changes shown on the next slide.

Constant Voltage Controller 130

Generator output
voltage is now the
feedback variable.

The speed signal is
not being used.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

66

Constant Voltage Controller
• The feedback now attempts to keep the

generator output voltage equal to the
control signal

131

control signal.
• As the load changes, the controller will try

to keep the generator voltage constant.
• When you run this model, you will notice

that, in order to keep the generator voltage
constant, the motor will speed up as more
light bulbs are turned on.

Constant Voltage Controller
• Build this model.
• Download it to your ECU.
• Test it

132

• Test it.
• Observe the effects of changing the gains.
• Note that this system may require different

feedback gains than our constant motor
speed system.

• You should be able to visually see the
effects of over and undershoot in the
brightness of the bulbs.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

67

Lecture 17 Demo 5
• Demo of Motor/generator with the PI feedback

controller and constant voltage feedback.

133

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

1

Advanced Model-Based-System
Design

Lecture 18:Lecture 18:
CAN Communication

Outline

• Can code calculator
• CAN message data base with Vector CANdb+

2

• CAN message m-files for MotoHawk
• MotoHawk Read CAN Message block
• MotoHawk Send CAN message block
• We will create a system where we have two

MotoTron ECUs communicate over a CAN linkMotoTron ECUs communicate over a CAN link.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

2

CAN Signals - Apology

• (The author apologizes for the repetitive
nature of the following 70 slides)

3

nature of the following 70 slides.)

ECU1 CAN Output
• We will generate 4 sine waves on ECU1

and send the values over CAN to ECU2.
– Sine Wave 1: Period = 1 s Amplitude = 1V

4

– Sine Wave 1: Period = 1 s, Amplitude = 1V
– Sine Wave 2: Period = 2 s, Amplitude = 3V
– Sine Wave 3: Period = 3 s, Amplitude = 5V
– Sine Wave 4: Period = 4 s, Amplitude = 7V

• We will send all 4 values in one CAN
message with CAN ID x123

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

3

Vector CANdb++
• We will use a program named CANdb+

from Vector Informatik to visualize CAN
messages and maintain a CAN database

5

messages and maintain a CAN database.
• All signals will be saved in a database

named MBD_MotoHawk.dbc
• We will show a variety of signals to

illustrate CAN scaling and offsets.

CAN Message ECU1_Message1
• Sent by ECU1
• CAN ID x123 (hex)

6

• CAN Standard 11-bit ID
• DLC – 6 bytes in length
• Signals

– SW1 values -1 to 1
– SW2 values -3 to 3
– SW3 values -5 to 5
– SW3 values -7 to 7

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

4

SW1

• Sine Wave 1
is a signal

CAN Code Calculator

Unsigned Codes

7

g
with values
from -1 to +1.

• Send as an
unsigned 8-bit
code.

g

n 8:= Number of bits in the code

Xmax 2n 1−:= Xmax 255=

Xmin 0:=

X i th bi l f th d i th fi ld WX is the binary value of the code in the field. We are
assuming a unsigned codes from 0 to 2n-1.

8Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 1:= Ymin 1−:=

factor 1:= offset 0:= Initial Guesses

Given

Y factor X offset+Ymax factor Xmax⋅ offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,():=

factor 7.843137 10 3−×= offset 1−=

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

5

SW2

• Sine Wave 2
is a signal CAN Code Calculator

2' li t i d d

9

g
with values
from -3 to +3.

• Send as a
signed 8-bit
code.

2's compliment signed codes
n 8:=

Xmax 2n 1− 1−:= Xmin 2n 1−−:=

Xmax 127= Xmin 128−=

X is the binary value of the code in the field. We are
1 1assuming a signed codes from -2n-1 to 2n-1-1.

10
Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 3:= Ymin 3−:=

factor 1:= offset 0:= Initial Guesses

Given
Ymax factor Xmax⋅ offset+Ymax factor Xmax offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,():=

factor 0.023529= offset 0.0117647=

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

6

SW2

• Sine Wave 3
is a signal

11

with values
from -5 to +5.

• Send as an
unsigned 16-
bit code.

• Use little• Use little
endian (Intel)
format.

12Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 5:= Ymin 5−:=

factor 1:= offset 0:= Initial Guesses

Given

Ymax factor Xmax⋅ offset+a a
Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,():=

factor 1.525902 10 4−×= offset 5−=

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

7

SW4

• Sine Wave 4 is a
signal with CAN Code Calculator

2's compliment signed codes

13

values from -7 to
+7.

• Send as a
signed 16-bit
code.

• Use big endian

2 s compliment signed codes
n 16:=

Xmax 2n 1− 1−:= Xmin 2n 1−−:=

Xmax 32767= Xmin 32768−=

X is the binary value of the code in the field. We are
assuming a signed codes from -2n-1 to 2n-1-1.

(Motorola)
format.

assuming a signed codes from 2 to 2 1.

14Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 7:= Ymin 7−:=

factor 1:= offset 0:= Initial Guesses

Given
Ymax factor Xmax⋅ offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,():=

factor 2.136263 10 4−×= offset 0.0001068=

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

15

Note: Intel (little endian) format.

CANdb++ display of CAN message x123

Note: Motorola (big endian) format.

CAN Message ECU1_Message1
Summary

16

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

9

MotoHawk CAN M-files
• The MotoHawk CAN block does not read

CANdb+ files.
• We will create one m file for each CAN

17

• We will create one m-file for each CAN
message we want to send.

• When you create a model using the
command motohawk_project, you may
have noticed a subdirectory called CAN.

• This directory:
– Is where we will place our CAN m-files.
– Contains an example CAN message m-file.

Example CAN Message M-file
• If you look in the CAN directory, you

should see an m-file with the name of your
project and a m extension

18

project and a .m extension.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

10

CAN Message m-files
• You can open this file and take a look at

the file.
• Here we will go over the m files we

19

• Here, we will go over the m-files we
created for this example.

• These files are provided for you.
• First, take a look at file called

ECU1 Message1.m.ECU1_Message1.m.
• Edit this file with the Matlab editor:

ECU1_Message1.m 20

Note that our m-file was named
ECU1_Message1.m.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

11

ECU1_message1 21

The message will be
sent at a 50 Hz rate.

Information for
documentation.

The physical CAN channel
we will be using.

ECU1_message1 22

We will be using an11-bit ID.

The ID for this CAN
message is Hex 123.

This is a 6-byte
message.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

12

ECU_Message1 23

Here is where the signals
contained in the message

are definedare defined.

ECU1_message1 – SW1 24

Signal name. Same as in CANdb+.

Units for documentation only.

Same as in CANdb+.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

13

ECU1_message1 – SW1 25

Location of the least significant
bit of the signal.

Independent of:
•Big endian, little endian.

•Number of bytes in the
message.g

Bit numbering is different
than that shown in CANdb+.

26

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal SW1 is
bit 56.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

14

ECU1_message1 – SW2 27

Location of the least significant
bit of this signal is 48.

28

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal SW2 is
bit 48.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

15

ECU1_message1 – SW3 29

Location of the least significant
bit of this signal is 40.

30

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24 Least significant bit of signal SW3 is
bit 40.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

16

ECU1_message1 – SW4 31

Location of the least significant
bit of this signal is 16.

Note that the byte order for this
signal is big endian.

32

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0 Least significant bit of signal SW4 is
bit 16.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

17

ECU1_Message2
• Sent by ECU1
• CAN ID x601 (hex)

33

• CAN Standard 11-bit ID
• DLC – 6 bytes in length
• Signals

– Potentiometer Value 0 to 1023.
– Sine Wave Period = 5.0 s, Amplitude = 5V
– Shark Tooth Waveform (Ramp) -100 to 100.
– Time 0 to 3600 seconds.

Potentiometer
• Analog signal measured with analog input. Use

the POT on the Motor-Generator system.
• Value is read on ECU1 as a 10 bit code with

values from 0 to 210 1 (1023 for non ECE

34

values from 0 to 210-1 (1023 for non ECE
people).

• Send over CAN as an unsigned 10-bit code.
• Factor is 1.
• Use little endian (Intel) format.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

18

Sinewave (not mispelled!)

• Signal with
values from -5

35

to +5.
• Send as an

unsigned 14-
bit code.

• Use little Use tt e
endian (Intel)
format.

36

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

19

SharkTooth

• Signal with
values from -

37

100 to +100.
• Send as an

unsigned 12-
bit code.

• Use little Use tt e
endian (Intel)
format.

38

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

20

Time

• Signal with
values from 0

39

to 3600.
• Send as an

unsigned 12-
bit code.

• Use little Use tt e
endian (Intel)
format.

40

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

41

CAN Message ECU1_Message2
Summary

42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

22

ECU1_Message2.m 43

Note that our m-file was named
ECU1_Message2.m.

ECU1_message2 44

The message will be
sent at a 50 Hz rate.

Information for
documentation.

The physical CAN channel
we will be using.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

23

ECU1_message2 45

We will be using an11-bit ID.

The ID for this CAN
message is Hex 601.

This is a 6-byte
message.

ECU_Message2 46

Here is where the signals
contained in the message

are definedare defined.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

24

ECU1_message2 – Sinewave 47

Location of the least significant
bit of signal Sinewave is 50.

48

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal Sinewave
is bit 50.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

25

ECU1_message2 – Time 49

Location of the least significant
bit of the signal.

50

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal Sinewave
is bit 28.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

26

CAN Message ECU2_Message1
• Sent by ECU2
• CAN ID x708 (hex)

51

• CAN Standard 11-bit ID
• DLC – 3 bytes in length
• Signals

– Temperature 0 to 100
– Fred -3150 to -3120
– LED3 0 to 1
– Pulsewidth 0 to 100

Temperature

• Signal with
values from 0

52

to 100.
• Send as an

unsigned 7-bit
code.

• Use little Use tt e
endian (Intel)
format.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

27

53

Fred

• Signal values
from -3150 to

54

-3120.
• Send as an

unsigned 5-bit
code.

• Use little Use tt e
endian (Intel)
format.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

28

55

LED3
• Signal value 0 or 1.
• Send over CAN as an unsigned 1-bit code.
• Factor is 1

56

Factor is 1.
• Use little endian (Intel) format.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

29

Pulsewidth

• Signal values
from 0 to 100.

57

• Send as an
unsigned 10-bit
code.

• Use little
endian (Intel) e d a (te)
format.

58

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

30

59

CAN Message ECU2_Message1
Summary

60

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

31

ECU2_Message1.m 61

Note that our m-file was named
ECU2_Message1.m.

ECU2_Message1 62

The message will be
sent at a 50 Hz rate.

Information for
documentation.

The physical CAN channel
we will be using.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

32

ECU2_Message1 63

We will be using an11-bit ID.

The ID for this CAN
message is Hex 708.

This is a 3-byte
message.

ECU2_Message1 64

Here is where the signals
contained in the message

are definedare defined.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

33

ECU2_Message1 – Fred 65

Location of the least significant
bit of signal Fred is 63.

66

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal Fred is
bit 63.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

34

ECU2_Message1 – LED3 67

Location of the least significant
bit of signal LED3 is 52.

68

63 62 61 60 59 58 57 56

55 54 53 52 51 50 49 48

47 46 45 44 43 42 41 40

39 38 37 36 35 35 33 32

31 30 29 28 27 26 25 24

Least significant bit of signal LED3 is
bit 52.

23 22 21 20 19 18 17 16

15 14 13 12 11 10 9 8

7 6 5 4 3 2 1 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

35

CAN Message ECU2_Message2
• Sent by ECU2
• CAN ID x124 (hex)

69

• CAN Standard 11-bit ID
• DLC – 1 byte in length
• Signals

– Cooling_Fan 0 to 1

Cooling_Fan
• Signal value 0 or 1.
• Send over CAN as an unsigned 1-bit code.
• Factor is 1

70

• Factor is 1.
• Use little endian (Intel) format.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

36

71

CAN Project Preview
• We will connect two MotoTron ECUs

together on a single CAN bus.
• Each ECU will control a motor generator

72

• Each ECU will control a motor-generator
setup.

• ECU1 will send commands to ECU2,
some of which are commands to spin the
motor connected to ECU2.

• ECU2 will send commands to ECU1,
some of which are commands to spin the
motor connected to ECU1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

37

CAN Project Preview
• We will use two PCs to communicate with

the individual ECUs.
• Each PC will use its own copy of

73

• Each PC will use its own copy of
MotoTune.

• To use MotoTron with two ECUs on the
same CAN bus, we will have to change
the City ID of one of the ECUs.

Can Project Preview
• We will use the same hardware setup as

we used in the previous examples.
• No wiring changes are needed

74

• No wiring changes are needed.
• All we need to do is connect two of the

CAN hubs together with one of the yellow
MotoTron CAN cables (non-terminated at
both ends). (Do not do this yet!)

• We can remove one of the key switches
since the switches are effectively in
parallel. (Do not do this yet!)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

38

Work in Groups of Two
• One person should choose to be ECU1.

Follow the slides with the header “ECU1.”
• These are slides that follow this slide

75

• These are slides that follow this slide.
• One person should choose to be ECU2.

Follow the slides with the header “ECU2.”
• ECU2 should skip the following slides and

jump to the appropriate slides.jump to the appropriate slides.
(Approximately slide number??)

76

ECU1 Slides

ECU2 Group skip ahead to slides
l b l d ith h d ECU2labeled with header ECU2.

(Approximately slide number 116)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

39

ECU1
• ECU1 will do the following:

– Generate 4 sine waves and send the values
over the CAN bus using message

77

ECU1_Message1.
– Read the potentiometer from the motor-

generator system and send the binary value
(0 to 1023) over the CAN bus using
ECU1_Message2.

– Generate signals for Time, a ramp (shark
tooth), and a sine wave, and send the values
over the CAN bus using message
ECU1_Message2.

ECU1
• ECU1 will receive the following information

over the CAN bus in message
ECU2 Message1:

78

ECU2_Message1:
– Temperature: Value will be displayed with a

MotoHawk probe.
– Fred and LED signals: Light up LED on

motor-generator system. Display value with
MotoHawk probeMotoHawk probe.

– Receive the pulse width signal (0 to 100) and
spin the motor with the given pulse width.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

40

ECU1
• ECU1 will receive the following information

over the CAN bus in message
ECU2 Message1:

79

ECU2_Message1:
– Cooling Fan signal. Display the value with a

MotoHawk probe.

ECU1
• At the Matlab command prompt, enter the

command:
motohawk project('ECU1 CAN CAN') to

80

motohawk_project(ECU1_CAN_CAN) to
create a new model.

• In the top level of the model, place a
MotoHawk CAN Definition block:
– Part in library MotoHawk /CAN Blocks
– Change the CAN rate to 500 k baud
– Leave the CityID at 11 (hex B).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

41

ECU1 81

ECU1
• When you create a project using the

command motohawk_project, a new
directory is created with the same name

82

directory is created with the same name
as the project.

• Inside the new directory is a subdirectory
called CAN. We will place all of the CAN
files in this directory.

CAN m-files should be
placed in this directory.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

42

ECU1
• Copy all of the CAN files to the CAN

directory.
• By default the MotoHawk CAN blocks will

83

• By default, the MotoHawk CAN blocks will
look in this directory for the m-files.

All of our m-files copied to the CAN
subdirectory.

ECU1
• Next, open the foreground subsystem.
• Delete the controller and plant models.

Pl 4 Si W t i thi b t

84

• Place 4 Sine Wave parts in this subsystem
(library Simulink/Sources).

Sine wave properties:
•Amplitude: 1
•Period: 1 sec

Double-click on this part
and change its properties
as shown next.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

43

ECU1 85

Time based chosen. We cannot
use a sample based sine wave
inside a triggered subsystem.

seconds)in(Period/2
Hz)in(Frequency2(rad/sec)Frequency

π
π

=
=

Since this part is inside a
triggered subsystem the sampletriggered subsystem, the sample
time must be set to inherited (-1).

ECU1
• Use the same settings for the other sine

waves except:
– Sine Wave 2 should have a period of 2

86

– Sine Wave 2 should have a period of 2
seconds and amplitude of 3.

– Sine Wave 3 should have a period of 3
seconds and amplitude of 5.

– Sine Wave 4 should have a period of 4
seconds and amplitude of 7seconds and amplitude of 7.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

44

ECU1
• We want to send the values of the sine

waves over the CAN bus.
• Place a part called Send CAN Messages

87

• Place a part called Send CAN Messages
in your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the part and change the
settings as shown:

ECU1 88
We created this m-file earlier.

•The name of the file was
ECU1_Message1.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink input
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

45

ECU1
• Your block should look as shown.

89

ECU1
• Connect the sine wave sources to the

CAN block.

90

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

46

ECU1
• ECU1 will also send out the following

information that will be contained in
message ECU1 Message2:

91

message ECU1_Message2:
– The potentiometer reading from the motor-

generator.
– A sine wave of amplitude 5 and period 5

seconds.
A periodic ramp signal of amplitude 100 and– A periodic ramp signal of amplitude 100 and
period of 5 seconds (mistakenly called a
shark tooth).

– The time since the ECU was last started.

ECU1
• For the potentiometer signal, we will use

the same analog input as we used in the
earlier project

92

earlier project.
• Copy the potentiometer analog input from

our previous project.
• Use a convert block to change the data

type to double.
• Add an override so that we can change

the value while debugging.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

47

ECU1
• As a reminder, the potentiometer used

analog input AN4M.
• Do not scale the value (We are

93

• Do not scale the value. (We are
transmitting the raw value in the range of 0
to 1023.)

ECU1
• For the sine wave, use the same part as

we used for the first 4 sine waves and set
the amplitude to 5 and period to 5:

94

Amplitude 5.

Period 5Period 5.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

48

ECU1
• For our ramp, we will use a part called

Signal Generator. (Located in library
Simulink/Sources.)

95

Sawtooth chosen.) Sawtooth chosen.

Note that we have chosen
that the time reference for
this block should be an
external signal.

We will need to provide aWe will need to provide a
signal for this block that
corresponds to time.

Amplitude set to 100, Frequency set to
0.2 Hz (corresponding to a period of 5
seconds.)

ECU1
• When you click OK in the dialog box for

the signal generator, you will notice that
the Signal Generator has an input

96

the Signal Generator has an input.
• This input is the time input for the block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

49

ECU1
• The last signal we need is a signal corresponding

to time.
• MotoHawk provides a block called

t h k b ti (l t d i lib

97

motohawk_abs_time (located in library
MotoHawk/Extra Development Blocks).

• The output of this block is the time since the
MotoTron ECU was last restarted.

• Place the block in your model and connect it to the
i t f th i l t bl kinput of the signal generator block.

ECU1
• We want to send the values of the signals

just created over the CAN bus.
• Place a part called Send CAN Messages

98

• Place a part called Send CAN Messages
in your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the part and change the
settings as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

50

ECU1 99
We created this m-file earlier.

•The name of the file was
ECU1_Message2.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink input
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

ECU1
• Your block should look as shown.

100

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

51

ECU1
• Connect the CAN block as shown. (An

enlargement is shown on the next slide.)

101

ECU1 102

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

52

ECU1
• ECU1 will be receiving two can messages.
• We need to add a CAN receive block for

each message we are receiving

103

each message we are receiving.
• Place a part called Read CAN Message in

your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the block and change theDouble click on the block and change the
settings as shown:

ECU1 104
We created this m-file earlier.

•The name of the file was
ECU2_Message1.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink output
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

53

ECU1 105

ECU1
• All signals will be connected to probes so

we can observe their values.
• In addition we will do the following:

106

• In addition, we will do the following:
• Fred:

– If the value equals -3127, turn on one of the
LEDs in the motor-generator system.

– Use digital output part with pin FUELP. (Same
as in our previous motor control exercise. –
Should already be wired up correctly.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

54

ECU1
• LED3:

– Convert to a Boolean type and turn on and off an LED
in the motor-generator system.

– Use digital output part with pin TACH (Same as in

107

Use digital output part with pin TACH. (Same as in
our previous motor control exercise. – Should already
be wired up correctly.)

• Pulsewidth:
– The received signal has values from 0 to 100.
– Convert to values from 0 to 4096.
– Convert to type int16 and send out a PWM signal

using the PWM output block with pin EST1.
– (Same as in our previous motor control exercise. –

Should already be wired up correctly.)

ECU1
• The next few slides show the connections.

108

MotoHawk probe. Compare to constant. Check if
values is equal to -3127.

MotoHawk_dout.
Pin: FUELP

MotoHawk_dout.
Pin: TACH

MotoHawk probe.

Data Type Conversion.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

55

ECU1 109

Motohawk_pwm.
Pin: EST1

MotoHawk probe.
Gain block. Gain
set to 4096/100.

Constant block. Sets PWM
frequency to 20 kHz. Value:
20000*100.

ECU1
• All connections for CAN read block.

110

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

56

ECU1
• The second CAN message that ECU1 will

receive is ECU2_message2.
• This message has one signal called

111

• This message has one signal called
Cooling_Fan.

• We will display this signal with a probe.
• Place a part called Read CAN Message in

your model. (Library MotoHawk/CANyour model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the block and change the
settings as shown:

ECU1 112
We created this m-file earlier.

•The name of the file was
ECU2_Message2.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink output
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

57

ECU1 113

ECU1
• Connect the Cooling_Fan signal to a

MotoHawk probe.

114

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

58

ECU1
• We are now done building the model.
• Use the techniques covered previously to:

Check for consistency in data types:

115

– Check for consistency in data types:
• Select Format, Port/Signal Displays, and then

Port Data Types to display data types.
• Type ctrl-D to evaluate your model for errors.

– Build the Model (type ctrl-b)
Use MotoTune to download your model to– Use MotoTune to download your model to
your ECU.

• Note: Do not connect both ECUs to the same CAN
network yet.

116

ECU2 Slides

ECU1 Group skip ahead to slides
l b l d ith h d ECU1/ECU2labeled with header ECU1/ECU2.
(Approximately slide number 166)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

59

ECU2
• ECU2 will do the following:

– Receive 4 sine waves over the CAN bus
using message ECU1_Message1. The values

117

will be displayed with probes.
– Receive the potentiometer over the CAN bus

using ECU1_Message2. Scale the signal from
0 to 4096 and spin the motor in the motor-
generator system using the given duty cycle.

– Receive signals for Time, a ramp (shark
tooth), and a sine wave over the CAN bus
using message ECU1_Message2. The values
will be displayed with probes.

ECU2
• ECU2 will send the following information

over the CAN bus in message
ECU2 Message1:

118

ECU2_Message1:
– Temperature. The value will be set with a

MotoHawk override.
– Fred and LED signals. The values will be set

with a MotoHawk overrides.
Pulsewidth The value will be read from the– Pulsewidth. The value will be read from the
potentiometer on the motor-generator system
and scaled to values from 0 to 100. An
override will also be used for debugging.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

60

ECU2
• ECU2 will send the following information

over the CAN bus in message
ECU2 Message1:

119

ECU2_Message1:
– Cooling Fan signal. The value will be set with

a MotoHawk override.

ECU2
• At the Matlab command prompt, enter the

command:
motohawk project('ECU2 CAN CAN') to

120

motohawk_project(ECU2_CAN_CAN) to
create a new model.

• In the top level of the model, place a
MotoHawk CAN Definition block:
– Part in library MotoHawk /CAN Blocks
– Change the CAN rate to 500 k baud
– Change the CityID to12 (hex C).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

61

ECU2 121

CAN definition block. Double-
click on the block and change
the settings as shown next.

ECU2 122

Baud rate set to 500 kbaud.

City ID set to 12 (hex C). This is
necessary so that MotoTune can
communicate with two different
ECUs on the same CAN bus.

Contact MotoTron tech support
for a range of valid City IDs.

Click the OK button when done.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

62

ECU2 123

ECU2
• When you create a project using the

command motohawk_project, a new
directory is created with the same name

124

directory is created with the same name
as the project.

• Inside the new directory is a subdirectory
called CAN. We will place all of the CAN
files in this directory.

CAN m-files should be
placed in this directory.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

63

ECU2
• Copy all of the CAN files to the CAN

directory.
• By default the MotoHawk CAN blocks will

125

• By default, the MotoHawk CAN blocks will
look in this directory for the m-files.

All of our m-files copied to the CAN
subdirectory.

ECU2
• Next, open the foreground subsystem.
• Delete the controller and plant models.
• The foreground subsystem should be

126

The foreground subsystem should be
empty except for the two blocks shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

64

ECU2
• ECU2 will be receiving two can messages.
• We need to add a CAN receive block for

each message we are receiving

127

each message we are receiving.
• Place a part called Read CAN Message in

your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the block and change theDouble click on the block and change the
settings as shown:

ECU2 128
We created this m-file earlier.

•The name of the file was
ECU1_Message1.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink output
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

65

ECU2 129

ECU2
• All signals will be connected to probes so

we can observe their values.

130

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

66

ECU2
• The second CAN message that ECU2

receives is ECU1_Message2.
• Place a part called Read CAN Message in

131

• Place a part called Read CAN Message in
your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the block and change the
settings as shown:

ECU2 132
We created this m-file earlier.

•The name of the file was
ECU1_Message2.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink output
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

67

ECU2 133

ECU2
• All signals will be connected to probes so

we can observe their values.
• In addition we will do the following to the

134

• In addition, we will do the following to the
Potentiometer signal:
– Scale the signal from 0 to 1023, to 0 to 4096.
– Convert the signal to an int16 data type.
– Output the signal with a MotoHawk_pwm

block on EST1 and spin the motor with the
specified duty cycle.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

68

ECU2
• The next few slides show the connections.

135

Gain block. Scale the
signal to 0 to 4096. Gain

= 4096/1023.

MotoHawk_pwm.
Pin: EST1

Data Type
Conversion.

MotoHawk probe.

Constant block. Sets PWM
frequency to 20 kHz. Value:
20000*100.

ECU2
• All connections for CAN read block.

136

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

69

ECU2
• ECU2 will transmit the following information that

will be contained in message ECU2_Message1:
– Temperature. A value from 0 to 100. This value will

137

be set with a MotoHawk override.
– Fred. A value from -3150 to -3120. This value will be

set with a MotoHawk override.
– LED3. A value from 0 to 1. This value will be set with

a MotoHawk override.
– Pulsewidth. A value from 0 to 100. The value will bePulsewidth. A value from 0 to 100. The value will be

obtained from the potentiometer on the motor-
generator system. An override will also be used for
debugging purposes.

ECU2
• For the pulsewidth signal, we will use the same

analog input as we used in the earlier project.
• Copy the potentiometer analog input from our

138

py p g p
previous project.

• Use convert block to change the data type to
double.

• Use a gain block to scale the signal from 0 to
100.

• Add an override so that we can change the
value while debugging.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

70

ECU2
• As a reminder, the potentiometer used

analog input AN4M.

139

ECU2
• The three other signals in this message

use overrides to set the values.
• To protect against the user making an

140

p g g
error when setting an override, we will add
saturation blocks to limit the signals.

Temperature Saturation limits: 0 to 100.

FRED Saturation Limits: -3150 to -3120.

LED3 Saturation limits: 0 to 1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

71

ECU2
• We want to send the values of the signals

just created over the CAN bus.
• Place a part called Send CAN Messages

141

• Place a part called Send CAN Messages
in your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the part and change the
settings as shown:

ECU2 142
We created this m-file earlier.

•The name of the file was
ECU2_Message1.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink input
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

72

ECU2
• Your block should look as shown.

143

ECU2
• Connect the CAN block as shown. (An

enlargement is shown on the next slide.)

144

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

73

ECU2 145

ECU2
• ECU2 will send out the following information that

will be contained in message ECU2_Message2:
– Cooling_Fan. A value from 0 to 1. This value will be

146

set with a MotoHawk override.
– To protect against the user making an error when

setting an override, we will add a saturation block to
limit the signal from 0 to 1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

74

ECU2
• We want to send the value of the

Cooling_Fan signal just created over the
CAN bus

147

CAN bus.
• Place a part called Send CAN Messages

in your model. (Library MotoHawk/CAN
Blocks.)

• Double-click on the part and change the
settings as shown:

ECU2 148
We created this m-file earlier.

•The name of the file was
ECU2_Message2.m.

•We placed this file in the
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal
definitions for this message.

When you click the OK button, if
MotoHawk can find the m-file, the
block properties will change:p p g

•There will be one Simulink input
for every signal in the message.

•The block will display the
properties of each signal and the
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

75

ECU2
• Your block should look as shown.

149

ECU2
• Connect the CAN block as shown.

150

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

76

ECU2
• We are finished building the model.
• Use the techniques covered previously to:

Check for consistency in data types:

151

– Check for consistency in data types:
• Select Format, Port/Signal Displays, and then

Port Data Types to display data types.
• Type ctrl-D to evaluate your model for errors.

– Build the Model (type ctrl-b)
Use MotoTune to download your model to– Use MotoTune to download your model to
your ECU. (See Next Slide!!!)

• Note: Do not connect both ECUs to the same CAN
network yet.

ECU2
• If you recall, in the top level of model

ECU2_CAN_CAN, we changed the City ID of
ECU2 to 12 (hex C).

152

• Since we have not yet programmed ECU2 with
the new model, ECU2 still has a City ID of 11.

• Thus, we program ECU2 with MotoTune the
same as we did in our last example.

• Once we program ECU2 with the new model, we
will need to make some changes in the
MotoTune ports.

• (Program your ECU with the new model if you
have not yet done so.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

77

ECU2
• Once ECU2 has been programmed with

the new model, we need to change (or
add) a port for PCM-2 (City ID 12)

153

add) a port for PCM 2 (City ID 12).
• We used a procedure earlier to

change/verify the properties of the
MotoServer ports.

• We will repeat a similar procedure here.

ECU2 - MotoServer
• We now need to add a port for City ID 12

(PCM-2) using MotoServer.
• The MotoServer icon should be

154

• The MotoServer icon should be
located in your windows tray.

MotoServer icon.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

78

ECU2 - MotorServer
• Right-click on the MotoServer icon and

select Ports

155

ECU2 - MotorServer
• You may or may not have a port called

PCM-2.
• If you have a PCM 2 port the settings

156

• If you have a PCM-2 port, the settings
should be:
– Kavaser CAN
– Access 4
– Baud Rate 500000

If you have this port,
enable it and disable
the PCM-1 port.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

79

ECU2 - MotoServer
• If PCM-2 port settings are not:

– Kavaser CAN
Access 4

157

– Access 4
– Baud Rate 500000

• Then you will need to change the port
settings.

• Skip to slide 166 if your port settings are p y p g
correct.

ECU2 - MotorServer
• If you need to change the port settings,

select PCM-2 and click the Modify button.

158

Port selected.
Click the Modify
button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

80

ECU2 - MotorServer
• Change the settings as shown:

159

• Click the OK button to accept the changes.
Make sure that
only port PCM 2only port PCM-2
is enabled.

ECU2 - MotoServer
• If your port settings are correct, skip to

slide 166.
• If your window does not have a port

160

• If your window does not have a port
named PCM-2, you must do the following:

• Click the Edit Names button

Click here.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

81

ECU2 - MotoServer 161

Click this Add
button.

Select CAN Kingdom and
then click the Next button.

ECU2 - MotoServer
• Fill in the dialog box as shown and click

the Finish button.

162

Name is PCM-2.

CityID is 12.

CAN Bus 1.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

82

ECU2 - MotoServer
• PCM-2 should be added to the CAN Bus

Mappings.

163

Name listed here.

• Click the OK button.

ECU2 - MotoServer 164

Click this Add
button.

Fill in properties as shown:
•Type – Kavaser CAN
•Location PCM-2
•Access Level 4
•Baud Rate 500000

•Click the OK button when done.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

83

ECU2 - MotoServer 165

The port should
be added with
the proper
settings

Disable all other
ports.

settings.

Port is enabled.
Click the OK button. We
are ready to go.

ECU1 / ECU2 CAN
• We can now connect the two 6-port hubs

together with a CAN Cable. (Non-
terminated at both ends.)

166

• Remove one of the key switches. (One
key switch will turn on both ECUs.)

• Run MotoTune on each PC and open a
display to your ECU.

PC1 ECU1 (PCM 1)– PC1 connect to ECU1 (PCM-1 port)
– PC2 connect to ECU2 (PCM-2 port)

• Both PC1 and PC2 show all probes and
overrides on the display.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

84

PC1 – ECU1 Display 167

PC2 – ECU2 Display 168

Quick check:
Signals SW1
through SW4
should be
h ichanging

continuously.

Quick check: All
of these signals
should be
changing except
h P ithe Potentiometer

signal.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

85

Testing
• Next, we will change values of the

overrides on PC2/ECU2 and we should
see the probe values change on

169

see the probe values change on
PC1/ECU1.

• Test each override for several values
within each signal’s range.

• I will show the display for both PCs on the
same slide. You will have the displays
shown on two different PC screens.

Testing 170
This value
should follow a
change in the
indicated
override. Valid
range is 0 to 1.

To see a faster response,
you may want to set the
update rate of a cell to
fast. (Right-click on a cell
and select Properties.
Next, click the Set Fast
button and then click the
OK button.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

86

Testing 171
This value should
follow a change in
the indicated
override. Valid
range is -3150 to
-3120.

Testing 172
Note a significant
amount of error?
For a temperature
range of 0 to 100
degrees, we only
used 7 bits. One
bit is equal to q
0.79 degrees.

With signals like the
Pulsewidth and temperature,
we are representing a
continuous signal by a binary
code with a finite number of
bits. You will notice that the
value transmitted over the
CAN bus is an
approximation that results in
round off error.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

87

Testing
• Using the overrides, verify that all signals

being sent from one ECU are received
accurately by the other ECU

173

accurately by the other ECU.

MotoTune – Displaying Charts
• To verify the waveforms that are being

sent over CAN are working, we will plot
the signals with MotoTune

174

the signals with MotoTune.
• We will first plot signal SW1 on ECU2.
• Right-click on the SW1 value cell and

select Properties.

Right-click here and select
Properties from the menu.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

88

MotoTune – Displaying Charts
• Fill in the dialog box as shown:

175

We will apply the changes to all
signals in the display.

Click the OK button when done.

This option not selected combined with the
Apply To All option will result in all signals

being removed from the chart.

MotoTune – Displaying Charts
• After clicking the OK button, the selections

to not plot anything will take effect.
• Right click again on the SW1 value cell

176

• Right-click again on the SW1 value cell
and select Properties.

• This time:
– Click the Set Fast button.
– Do not select the Apply to All button.pp y
– Select the Add to Chart/Log button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

89

MotoTune – Displaying Charts
• Fill in the dialog box as shown:

177

Option not selected.

This signal will be displayed on the chart.

The value of the signal will be updated
every 50 ms.

MotoTune – Displaying Charts
• Click the OK button to accept the

changes.
• With our settings only signal SW1 will be

178

• With our settings, only signal SW1 will be
displayed on our chart.

• To display the chart, select Chart and then
Open Chart from the MotoTune menus.

• You should see the following chart:You should see the following chart:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

90

MotoTune – Displaying Charts 179

MotoTune – Displaying Charts
• To add another signal to the chart:

– Right-click on the value cell and select
Properties.

180

Properties.
– In the dialog box that appears:

• Click the Set Fast button.
• Select the Add to chart/log option.
• Do not select the Apply To All option.
• Clock the OK button.Clock the OK button.

– Close the chart that is presently open.
– Open a new chart by selecting Chart and

then Open Chart from the MotoTune menus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

91

MotoTune – Displaying Charts
• Display all 4 Sine waves on the same

chart.

181

MotoTune – Displaying Charts
• Display the SharkTooth waveform.

182

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

92

CAN_CAN Project
• You should now be able to control the

motors and LEDs connected from one
ECU by CAN messages sent from the

183

ECU by CAN messages sent from the
other ECU.

• We are done. Whew…
• Any Questions?

Lecture 18 Demo ECU1
• ECU1: CAN Communication

– Fred – ECU 1 Turns on LED when it receives value of
-3127. Value sent with MotoHawk Probe.________

184

– LED3 – Turn on and off an LED connected to ECU1.
One bit signal sent by ECU2.________

– Pulsewidth – Receive signal of 0 to 100 from ECU2.
ECU1 Receives the signal and emits a PWM signal
that controls the motor speed._________

– Temperature – ECI1 Receive CAN signal from ECU2 p g
and display value with probe.___________

– Cooling FAN – Receive 10bit Signal from ECU2.
Display with MotoHawk Probe. _________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

93

Lecture 18 Demo ECU2
• ECU2: CAN Communication

– Receive four sine waves from ECU1. Display values
on a chart ._________

185

– Potentiometer– Receive potentiometer signal from
ECU1. Scale signal and emit a PWM signal that
controls the motor speed._________

– ECU2 receives signals for time, a ramp (shark tooth),
and a sine wave over the CAN bus. The values will be
displayed with probes and a chart. _________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Advanced Model BasedAdvanced Model-Based
Systems Design

Lecture 19:
Hardware In The loop Simulations

(HIL)(HIL)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

HIL 3

• Up to this point we have:
– Learned several levels of simulations: PC

and Real-Time.
– Learned several software packages:

MATLAB, Simulink, MotoHawk, LabVIEW
– Used many platforms: PC, LabVIEW RT, PXI
– Used several different hardware targets: PXI,

MPC555.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

HIL 4

• It is now time to put it all together and perform Hardware-
in-the-loop (HIL) simulations.

• We will start with the full vehicle model developed in• We will start with the full vehicle model developed in
Lecture 14 exercise 6 and split the model so that:
– The controller runs in the MPC555 target.
– The plant runs on the PXI target.

• The two targets will be connected with a CAN bus, the
same harness that will be used in the final productsame harness that will be used in the final product.

• The Controller will be connected to driver controls
through a wiring harness.

• The models will run in real time.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

HIL
• This is a test of the controller:

5

• This is a test of the controller:
– Hardware - It is running on the target we will use in

the final implementation.p
– Speed - It is running in real time.
– Wiring Interface - It is connected to the plant and

driver controls using the same interface that will be
used in the final implementation.

• This tests both the wiring as well as the effect of network g
latency as control messages are sent through the CAN bus.

• If the controller works when hooked to our virtual
l t h fid th t it ill k hplant, we have confidence that it will work when

we hook it to the physical plant (the real vehicle).

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

HIL
• We will start with Lecture14_Exercise6.mdl and split it

6

_ p
into two models, the plant and the controller. (The model
has been renamed Lecture19_Model0.mdl and passed
out)out.)

• The plant will:
– Run on the PXI Target.
– Use LabVIEW and SIT to create a shell to interface between the

model and the controller.
– The inputs and outputs will be CAN signals.p p g

• The controller will
– Run on an MPC555 target.
– Use MotoHawk to interface between the model and physical

world.
– The inputs and outputs will be analog voltages and CAN signals.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

HIL 7

• We will be using the test platform below:

Controller
d l ddeployed on an

MPC555
computer.

National Instruments
PXI real-time

computer running a
d l f th l t

Same physical interface as
model of the plant.

Same physical interface as
in the actual system. (CAN

bus in our example.)

p y
in the actual system.

(Wiring for analog signals
in our example.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

8

HIL SimulationsHIL Simulations

Part 1: Implementing the
Controller on the MPC5554 Targetg

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Motor Controller Deployment 9

• From lectures 16 through 18, we now know how
to use the hardware resources of the MPC555

ll h t it th t t f thwell enough to use it as the target for the
controller of our motor-generator system.

• We will use the control method we proved• We will use the control method we proved,
tested, and verified in the SIL and real-time
portions of the class.portions of the class.

• First, we will create a shell that accesses the
hardware resources of our target (MPC555).g ()

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Motor Controller Deployment 10

• The controller will have the following driver
inputs that come from the driver board:
– Brake Pedal – 0 to 5 V analog input.
– Accelerator Pedal – 0 to 5 V analog input.

Park push button 0 to 5 V analog input– Park push-button - 0 to 5 V analog input.
– Forward push-button - 0 to 5 V analog input.
– Reverse push-button - 0 to 5 V analog input.Reverse push button 0 to 5 V analog input.

• The driver board has LEDs that indicate Park,
Forward, Reverse, Error, and Vehicle Ready: , , , y

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Driver Board Schematic 11

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Motor Controller Deployment 12

• You will need to use MotoHawk analog input
channels to read the analog inputs and then

l th i l i t l f th i lscale the signal appropriately for the signals
required by the controller.

• You will use MotoHawk high current digital• You will use MotoHawk high current digital
outputs to drive the LEDs. Note that a low output
will illuminate the LEDs on the driver board.will illuminate the LEDs on the driver board.

• All other inputs and outputs for the controller will
use the CAN bus.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell 13

• We will now create a top-level “shell” for
our controller that:
– Initializes the MPC555 and MotoTune
– Reads and scales the inputs and provides the p p

outputs
– Passes the information to a subsystem that

contains the controller.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell 14

• The basic idea is that our interface to the
hardware will not change that much.

• Given the same interface, we can make
significant changes to our control method.
All f th h ill b i l t d i th• All of these changes will be implemented in the
controller subsystem.
Th h d h ll ill i l ti l• The hardware shell will remain relatively
unchanged. (Occasionally, a new control
method will require new inputs or outputs In thismethod will require new inputs or outputs. In this
case, we will need to modify the hardware shell.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Model – Top Level 15

Specify CAN 1 and a baudSpecify CAN 1 and a baud
rate of 500 K

Specify the GHS compiler.

Controller and shell inside
here. Run once every 5
msms.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell - Foreground Subsystem
16

All input signals

Analog inputs
and outputs.

All input signals
bussed together
here and passed
to the controller.

Controller outputs

CAN

p
extracted with a
bus selector and
passed to analog
and CAN outputCAN

Outputs
and CAN output

blocks.

CAN
Inputs

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell – LED Outputs
17

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell – LED Outputs
18

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell – Push-button Inputs
19

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Hardware Shell – Bus interface to Controller
20

Controller inside hereController inside here.
(Unchanged - Mostly)

Subsystems “Probes” and “Probes1”
t i l b th t l kcontain only probes so that we can look

at every controller input and output
signal for debug purposes.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

21

HIL SimulationsHIL Simulations

Part 2: Implementing the Plant on
the National Instruments PXI

Target

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Plant Model 22

• Since we already implemented the entire
model in real-time to run on a PXI target in
the previous lecture, we will reuse some of
the work we did in that model.

• This Model was resaved as
Lecture19 Model0._

• Open the model and resave it as
Vehicle Plant mdlVehicle_Plant.mdl.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Plant Model 23

• Delete the Controller subsystem and NI_Driver
subsystem.

• Leave the NI_Display_and_Loging subsystem in
the model as we will display most of the same
signals in the LabVIEW front panel as we did insignals in the LabVIEW front panel as we did in
lecture 14.

• The inputs that came from the controller are now• The inputs that came from the controller are now
connected to In ports and the plant outputs that
went to the controller are now connected to Out
ports.
– We will associate these with CAN signal inputs and

outputs using the Simulation interface toolkit.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Plant Model 24

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

NI_Display_and_Logging 25

• The NI_Display_and_Logging subsusyem
was slightly modified because we needed
to remove the driver signals.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

LabVIEW Front Panel 26

• We will use the front panel we created in
Lecture 14 in this example.

• We will remove the driver controls from
display but reuse everything else from the p y y g
example.

• The VI from lecture 14 has been providedThe VI from lecture 14 has been provided
for you and renamed as
Lecture19 Model0 viLecture19_Model0.vi.

• Modify the front panel as shown next:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

LabVIEW Front Panel 27

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

SIT Connection Manager 28

• You will need to use the SIT connection
manager to:
– Change the DLL to use the one for the plant

only.
– Connect the front panel displays to the

appropriate signals in the DLL.
– Associate CAN inputs and outputs with the In

and Out ports that we placed in the plant
d lmodel.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

SIT Connection Manager - CAN 29

• The CAN signals are specified in a CANdb file.
This file has been provided for you and is named
AMBD HIL1 dbAMBD_HIL1.dbc

• All of the CAN signals that are needed are
contained in this filecontained in this file.
– (Not all of the m-files needed to define the CAN

signals in MotoHawk have been provided.) s g a s o o a a e bee p o ded)

• CAN signals are associated with In and
Out ports by selecting the Hardware I/OOut ports by selecting the Hardware I/O
category in the SIT Connection Mamager:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

SIT Connection Manager - CAN 30

Select Hardware
I/O.

Click this button.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

SIT Connection Manager
• You will need to right click on your target

31

• You will need to right click on your target,
select Add Device and then NI-CAN.

• The ensuing
screens will allow

t id tif thyou to identify the
CAN hardware on
your target and
specify a CANdb
“.dbc” for the
projectproject.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

SIT Connection Manager 32

• Once you identify the CAN channels and
specify the CANdb file, all of the signals in
he CANdb file will be displayed.

• You can then associate model inputs and p
outputs with (In and Out ports) with CAN
signals.g

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

CAN Baud Rate 33

• You will need to use the National
Instruments Measurement and Automation
Explorer to set the baud rate of the
specific CAN channels.

• (Show how to do this.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 19 Exercise 1 34

• Demonstrate a working HIL system with the
controller logic unchanged. You will need to:
– Use MotoTune to debug and display many of the

controller input and output signals.
– Define some m-files for the missing CAN signalsDefine some m files for the missing CAN signals.
– Wire the driver control board to your ECU.
– Debug a lot of wrong connections and signal g g g

associations.

• You should be able to drive you vehicle
with the driver controls.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 19 Exercise 2 35

• You will notice that the charging current oscillates
wildly when the vehicle starts charging.

• This is because the feedback signals and generator
torque engine throttle command signals for the
proportional feedback loop come over the CAN busproportional feedback loop come over the CAN bus.

• CAN messages are periodic and are sent at a slower
rate than needed to make the loop stablerate than needed to make the loop stable.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 19 Exercise 2a 36

• Investigate an earlier model that we ran in Matlab.
• Add delay to the feedback loops to model the delay

introduced by the periodicity of the CAN messages.
• Show that the control loops for maintaining constant

i d t t ill t h dd 20engine rpm and constant oscillate when we add 20 ms
delays to the incoming and outgoing signals.
Thi h ld th th th t th th• This should prove the theory that the reason the
system is unstable is the added delay due to latency
in the CAN networkin the CAN network.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 19 Exercise 2b 37

• In the controller model running on the MotoTron ECU,
add calibration blocks that allow us to change the
f db k i f th i d l d thfeedback gains of the engine speed loop and the
generator current loop.

• Determine the feedback gain of both loops necessary• Determine the feedback gain of both loops necessary
to obtain constant and stable charging currents.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

Lecture 19 Exercise 3 38

• In Exercise 2b, we find that the proportional gains have to be
reduce so much that the engine rpm and generator currents are
quite far away from the desired values.quite far away from the desired values.
– The loops are stable but we have a large error because the gains are so

small.

To fi this problem add integrators to both loops and add• To fix this problem, add integrators to both loops and add
calibration blocks so that we can tune both the proportional and
integral gains of each loop separately.

• Show that the error goes to zero and that the system is stable.
(A little bit of overshoot is acceptable.)
Y ill d t b ild di it l i t t d k• You will need to build your own digital integrator and make sure
that it saturates (or has limits on how big the value can grow).

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter.
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license,
http://creativecommons.org/licenses/by-sa/3.0/.

