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Course Outline
• Modeling a series hybrid-electric vehicle

– Introduction to Simulink and SimDriveline
Models for the Driver Battery and Electric

2

– Models for the Driver, Battery, and Electric 
Motors.

– Creating and Running Drive Cycles
– Models for Engines.
– Developing the hybrid-electric vehicle 

t llcontroller.
– Measuring and predicting vehicle 

performance.
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Course Outline
• Real-Time Simulations (xPC)

– Stand-Alone Simulations 
– Verify logical operation
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– Give user feel of controls and vehicle operation
– Plant and controller on same target

• Introduction to CAN
– Message IDs
– Scaling and Offset
– Big Endian and Little Endian
– CAN Message Database
– Cabling, isolation, and termination

Course Outline
• Introduction to MotoHawk MotoTune tools.
• HIL Simulations (Real-Time)

– Separate the Plant from the Controller.

4

p
– Controller on real-time target.
– Plant on real-time target.
– V&V Using HIL RT Model

• Set up a standard set of tests for the series controller.
• Run standard set of tests, record and report results, indicate faults.

Verify communications interfaces and A/D inputs and outputs• Verify communications interfaces and A/D inputs and outputs.
• Verify that controller can execute control algorithm in specified time 

step.
• Verify Communication data rates.
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Advanced Model-Based-System 
Design

Building a Large System ModelBuilding a Large System Model

Part 1
• Develop a basic model for a series hybrid 

electric vehicle with models for 
– Engine

6

– Engine
– Motor/Generator
– Battery
– Driver
– Powertrain

• Develop a controller for the vehicle
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Part 1 Outline
• Powertrain
• Battery Model

7

8

Almost

Final Model

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



5

Electric Vehicle
• We will begin by creating a model for a 

rear-wheel vehicle.
• In this model an electric motor is coupled

9

• In this model, an electric motor is coupled 
directly to the rear wheels through a 
differential.

• The specs of the vehicle are:
– Vehicle Mass: 3600 lbs
– Tire Radius: 16 inches
– Rear-Differential Ratio 3.73

Drive Train
• The drive train we will create is shown 

below:

10
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Longitudinal Vehicle Dynamics
• The Longitudinal Vehicle Dynamics block 

solves for the speed of the vehicle given:
– An input force Fxr

11

– An input force Fxr.
– A specified road grade (beta) in degrees.

• The calculation includes aerodynamic 
drag.

• The block also calculates the normal force 
on each wheel of the vehicle, which is 
needed by the tire model.

Longitudinal Vehicle Dynamics 12

Input force applied 
by the front tires.

Calculated speed of 
the vehicle

Input force applied 
by the rear tires. Calculated normal 

force on the front 
tires.

Calculated normal
Road grade in 
percent.

Calculated normal 
force on the rear 
tires.
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Longitudinal Vehicle Dynamics
• The Longitudinal Vehicle Dynamics block 

is located in the Simscape / SimDriveline 
/ Vehicle Components library

13

/ Vehicle Components library.
• Place a block in your model and then 

double-click on it to set its parameters.
• We would like to understand how this 

block works and what is inside this block.
• Set the parameters as shown next:

• We have set:
– the mass of the vehicle 

to 1000 kg.
– The frontal area to 

14

zero.
– The drag coefficient to 

0.
• With this model, the 

model reduces to amodel reduces to a 
force accelerating a 
mass.
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Create the following model 15

Longitudinal Vehicle Dynamics
• All we are doing applying a 100 N force to 

a 1000 kg mass.
• The drag was set to zero

16

• The drag was set to zero.
• The road elevation was set to zero.
• Thus, if we divide the applied force by the 

vehicle mass and integrate, we should be 
able to calculate the vehicle’s speed.able to calculate the vehicle s speed.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



9

Lecture 1 Exercise 1
• Calculate by hand the speed of the vehicle 

after 100 seconds assuming a vehicle mass 
of 100 kg and an applied force of 100 N

17

of 100 kg and an applied force of 100 N 
• Use basic Simulink blocks to make the same 

calculation.
• Compare the vehicle speed  using all three 

methods:
– Longitudinal Vehicle Dynamics Block_______
– Simulink Basic Blocks _____
– Hand Calculations ____

Demo___________

Longitudinal Vehicle Dynamics
• Next, we would like to look inside the 

block. We will do this in two steps:
– First look at the mask to see how parameters

18

– First look at the mask to see how parameters 
are passed to the underlying model.

– Second, look under the mask to see the 
Simulink used to implement this block.

• Right-click on the Longitudinal Dynamics 
Bl k d l t Vi M k f thBlock and select View Mask from the 
menu:
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19

20
Icon tab is selected.

The Icon tab is used to create port 
labels and add a graphic to the block.labels and add a graphic to the block.
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21
Parameters tab is selected.

Variable names used in the 
underlying model.

The Parameters tab is used to create 
parameters in the block’s dialog box 
and associate variables to those 
parameters that can be used by the 
model.

22

Initialization tab is selected.

Constants used in the 
underlying model.

The Initialization tab is used to create constants or make one-
time calculations that can be used by the underlying model. 
Here, a number of constants are created. Or example gravity 
(g) is set to 9.81.
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23
Documentation tab is selected.

When you click the help button, 
this information will be 
displayed.

This block is used to specify the documentation for the block.

24
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Longitudinal Vehicle Dynamics
• We will not change the mask, so click the 

Cancel button.
• Next right click on the Longitudinal

25

• Next, right-click on the Longitudinal 
Dynamics Block and select Look Under 
Mask from the menu:

• You will see the underlying Simulink 
model:

26

We will examine this model a little moreWe will examine this model a little more 
closely. I will make some of the gain 
blocks larger so that we can see how 
they are defined.
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27
The forces on the front and 
rear tires are added 
together. 

The sine of the road grade times the gravitational force is 
the component of force that decelerates the vehicle (or 
accelerates the vehicle if the grade is negative).

The gravitational force is subtracted from the two forces 
applied by the front and rear tires.

28
Integrator to calculated the 
vehicle speed.

The total force is divided by the vehicle mass and then 
integrated to calculate the vehicle speed.
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29
The drag force is proportional to velocity squared times 
the vehicle drag coefficient  times the vehicle frontal area.

The drag force goes as the velocity of 
the vehicle squared.

30

This block calculates the normal force on the frontg and 
rear tires. We wont go there.
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Subsystems Blocks and Masks
• We kind of understand what is inside the 

Longitudinal Vehicle Dynamics block.
• We know how to mask a subsystem

31

• We know how to mask a subsystem.
• We know how to look under a mask.
• Many “blocks” in Simulink are actually 

Simulink subsystems that have been 
masked.masked.

Drive Train and Solver
• We will now create our the rear drive train and 

vehicle solver for our system.
• We will begin creating the system below:

32
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Initialization File
• The model that we will be creating will contain 

hundreds of blocks.
• Most blocks will have numerical values.

33

• To give these numerical values meanings, we 
will define them in a MATLAB scrip file, and add 
documentation to the script file.

• We will define a number of MATLAB variables in 
this m-file, use the variables to specify the , p y
values of various blocks, and then run the m-file 
before every simulation.

• Name the file vehicle_Init_File.m

Vehicle Init File 34

• The numerical values of the blocks are 
defined in the following few slides:
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35

Simscape / SimDriveline / Vehicle 
Components / Tire

Given the vehicle speed and normal force on a 
tire, the tire model converts an input torque to a 
force in the x-direction. (This force is in the 
direction that accelerates or decelerates the 
vehicle.) We will only specify the tire radius. All 
other parameters will be left at their default 
value.

36

We will only 

The normal force on the 
rear axle is divided by two. 
One half the normal force 
on the rear axle goes toy

specify the 
vehicle mass. 
All other 
parameters will 
be left at their 
default value.

on the rear axle goes to 
the left rear tire and the 
other half goes to the right 
rear tire.
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37

Library Simscape / SimDriveline /Library Simscape / SimDriveline / 
Gears / Differential

38

Library Simscape / SimDriveline / 
Solver & Inertias/ Inertia
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39

This drive line represents the half-shaft 
that connects the rear differential to the 
wheel (tire). The half-shaft is a rotating 
element. Every rotating element must 
have an inertia specified.

40

Library Simscape / SimDriveline / Solver 
& Inertias/ Driveline Environment

You must have one driveline environment 
blocked connected to a drive line in your 
model. This is required by the solver.
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Powertrain and Vehicle Solver
• We have now created a model of a rear-

wheel drive vehicle that requires a torque 
input

41

input.
• We will test the system with a “motor” that 

outputs a constant torque.
• The motor on the next slide was created 

with a Constant and a Torque Actuator
(library Simscape / SimDriveline / 
Sensors and Actuators.) 

Constant Torque Source Model 42

Constant torque source.
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System Testing
• To verify that all of our models work are 

the same, we will simulate the models for 
200 seconds

43

200 seconds.
• Calculate the vehicle’s velocity at 200 

seconds and generate a plot of the 
vehicle’s speed versus time.

• Remember to remove the limitation on the 
number of points a scope can display.

• (Continued on next slide…)

Lecture 1 Exercise 2
• System Testing
• Vehicle Terminal Velocity

Pl t f hi l d ti

44

• Plot of vehicle speed versus time.

Demo___________
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Lecture 1 Exercise 3
• Most motors and engines have torque 

curves.
• Implement a motor that has the following

45

• Implement a motor that has the following 
torque curve:
– From 0 to 2000 rpm, the torque is constant at 

200 Nm
– From 2000 to 7000 rpm, the torque decreases 

li l tlinearly to zero.
• The torque is in Nm and the speed is in 

rpm.

Lecture 1 Exercise 3
• You will need to sense the “motor” speed and 

convert it to rpm.
• You can do this using a 1-D lookup table.

Pl t th hi l l it d d t i th

46

• Plot the vehicle velocity and determine the 
vehicles velocity after 200 seconds.

Demo___________
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Model Hierarchy
Battery Model

Model Hierarchy

• Although the model we have developed is 
still fairly simple, as we add models for the 
b tt i d t th d l ill

48

battery, engine, and motors, the model will 
become quite large and cumbersome.

• We will break the model into subsystems 
that represent specific vehicle 
components.

• Our present model has blocks that 
represent the motor, the rear differential, 
and  body. 
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Motor

Rear Diff and  
BodyBody

Model Hierarchy
• We will make a subsystem out of the 

powertrain.
• Select all of the components you wish to

50

• Select all of the components you wish to 
place in the subsystem by dragging a 
selection box around the components.

• Right-click on the selected components 
and select the Create Subsystem menu 
selection.
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51

All parts but the “motor” 
selected because only the 

powertrain model 
components will go in the 

subsystem.

52

Right –click on one of the 
selected components and 
select Create Subsystem 
from the menufrom the menu.
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53
After creating the subsystem we have the top level block 
diagram as shown:

Click on the text “Subsystem” and change the text to “Rear 
Diff and  Body”

Double-click on the Rear Diff and  Body subsystem block to 
open it:

54
Scope 

was here.

•Clean up the model by rearranging the 

SimDriveline 
port.

SimDriveline port and deleting the scope 
(if it is in your model).

•Rename the SimDriveline port as “Diff 
Input.”
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Rear Diff and Body Subsystem
• This block models the physics in which we 

are interested.
• We would like to create a status bus that 

56

e ou d e o c ea e a s a us bus a
contains the vehicle speed, and tire 
speeds.

• We need to convert the tire speed from r/s 
to mph.

• We need to convert the vehicle speed• We need to convert the vehicle speed 
from m/s to mph.
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Conversions
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⎟
⎠

⎜
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⎟
⎠

⎜
⎝ metersHour

ppp
16091

)()(

Linear Speed = angular speed (rad/sec) 
times Tire Radius

58

The constant Tire_Radius is 
defined in the init file.

Gain blocks are shown 
enlarged on the next slide.
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Rear Diff and Body Diagnostics
• The last thing we need to do is create the 

diagnostics bus for this block. 
• Use the bus creator part

60

• Use the bus creator part 
(Simulink/Commonly Used Blocks)

• Add the following signals
– Passenger_Tire_Speed_mph
– Driver Tire Speed mph_ _ p _ p
– Vehicle_Speed_mph
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Double-click here.

Change to 3.

Bus creator after making 
change.

62

An enlargement of the changes are shown on the next slide.
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Diagnostic Bus
• We need to make the information available 

on this diagnostic bus available outside 
this block

64

this block.
• Add an “Out1” port        

(Simulink/Commonly Used Blocks) to 
the diagram and label it as “Powertrain 
Diagnostics.”
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65

When we close this subsystem and return to the top level, we 
see the following model:

• We will be developing a new motor model, so we 
can remove the simple constant torque source 
that we initially used for the motor.

• The top level block diagram will only contain one 
subsystem after deleting the motor:

66

• Next, we will create a model for the battery.
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Battery Model

• We will now create a battery model that 
calculates the battery terminal voltage and 

67

y g
battery state of charge (SOC).

• The inputs to the model are the two motor 
currents that we will have in the vehicle. 
(You can also add an input for the vehicle 
hotel loads.))

• The outputs of this block are the battery 
voltage and a diagnostic bus that contains 
battery signals of interest.

Battery Terminal Voltage
• We will use the first order model below: 

68

RSeries

IBAT

VOC

Series

+

VBAT

-
VBAT = VOC + IBAT*RSeries
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Battery Terminal Voltage 69

I
+

RSeries

C t i d fi d iti i t th b tt

IBAT

VOC

-

VBAT

• Current is defined as positive into the battery.
• Positive current charges the battery and 

increases the battery SOC.

Battery Model

• For now, the open circuit voltage (VOC) and the 
battery series resistance (RSeries) are a constant.

70

• As our understanding of the model increases, 
we can make the battery model less ideal by:
– Making VOC a function of SOC and Temperature
– Making RSeries a function of the SOC and temperature.
– Having a different charge and discharge series 

resistances. 
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Battery Model
• We will now create a subsystem and 

implement the equation for the battery 
voltage

71

voltage.
• Place a Subsystem block in the top level 

of your model (Simulink\Commonly 
Used Blocks)

72

Highlight the text “Subsystem” and change it to 
“Battery.”  This will name the subsystem.
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73
Double-click 

here.

Subsystem name 
changed.

Next, double-click on the subsystem to 
open it.

74

•This subsystem has a single input and a single output.

•The output is just equal to the input.

•Delete the connection between the input and output. 
(Click on the wire and press the delete key.)

•Duplicate In1 by

•Holding down the control key and then dragging In1•Holding down the control key and then dragging In1 
to a new location.

•Right-click on In1 and drag it to a new location.
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75

•In1 and In2 will be the motor and generator currents. The 
total battery current will be the sum of these two inputs.total battery current will be the sum of these two inputs. 

•Click on the text In1 and change it to Motor_Current_A.

•Click on the text In2 and change it to Generator_Current_A.

76

•Next, we would like to form the battery current as the sum of the motor 
and generator currents. 
• Place the sum part (Simulink/Commonly Used Blocks) in your model 
and connect the two inputs as shown:
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77

•We would like to use the battery current in a few places 
so we will add a “Goto” part to our model. This part is 
located in the Simulink/Signal Routing library.

D bl li k th G t t t h th l b l

Double-click 
here.

•Double-click on the Goto part to change the label.

78

Si th t t “A” i hi hli ht d j t t i t f th• Since the text “A” is highlighted, we can just type in a new tag for the 
Goto part.

• Enter the text, “Battery_Current_A” and click the OK button.

• You may need to change the size of the Goto part to see the label.
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Right-click on the Battery_Current_A Goto part and select Format/Hide 
Name from the menus to hide the text “Goto.”

Right-click here.

Battery Model
• Next, we will calculate the battery terminal 

voltage as VBAT = VOC + IBAT*RSeries
• VOC and RSeries are constants defined with 

80

OC a d Series a e co s a s de ed
the init file and read from the workspace.

• Create the model shown next.
• Use Parts:

– Constant (Simulink/Commonly Used Blocks)
Sum (Simulink/Commonly Used Blocks)– Sum (Simulink/Commonly Used Blocks)

– Product (Simulink/Commonly Used Blocks)
– From (Simulink/Signal Routing)
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• Right click on all of the components and 
select Format/Hide Name to clean up the 
model.

82
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Battery Constants
• The battery open circuit voltage and series 

resistance are defined in the init file that 
will be run before every simulation

83

will be run before every simulation.
• The numerical values for these constants 

should be documented by your battery 
manufacturer.

• We will use typical values for a 336 V 
NiMH battery pack. 

84
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Battery State of Charge
• The unit of an Amp-Hour is an amount of 

charge in coulombs.
• 1 Amp = 1 coulomb / 1 second

85

• 1 Amp = 1 coulomb / 1 second.
• 1 Hour = 3600 seconds.
• 1 Amp-Hour = 1 amp * 1 Hour = 3600 

coulombs. 

Battery State of Charge (SOC)
• The battery amp-hour rating is a measure 

of how much charge the battery stores.
• The battery SOC is a measure in percent

86

• The battery SOC is a measure in percent 
(0% to 100%, or 0 to 1)of how much 
charge is stored in the battery relative to 
the full AH rating.
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Battery SOC
• To calculate the SOC, we need to know 

the initial SOC and then calculate how 
much charge has been added or removed 

87

from the battery. 
• The charge added or removed is 

calculated by integrating the battery 
current.

• We then divide the battery charge by theWe then divide the battery charge by the 
amp-hour rating of the battery to obtain the 
SOC. 

Battery SOC
• The initial SOC is a constant defined in the 

vehicle model init file, and read from the 
workspace.

88

• Use an integrator          to integrate the 
battery current. (Simulink/Commonly 
Used Blocks)

• Scale the integrated current by 3600 to 
convert charge to amp-hours. (Use theconvert charge to amp hours. (Use the 
gain block. Simulink/Commonly Used 
Blocks)
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89

Amps
Amp-Seconds Amp-Hours

(Added or Removed)

•Next, divide the Amp-Hours added or removed by the battery Amp-
Hour Rating to calculate the SOC added or removed.

•Use the Divide part (Simulink/Math Operations).

•The battery Amp-Hour rating is a constant defined in the init file.

90

N t dd th SOC dd d d t th b tt

SOC
(Added or 
Removed)

We could also 
do this with a 
gain block.

•Next, we add the SOC added or removed to the battery 
initial SOC to calculate the battery’s current SOC.

•Use the Sum part (Simulink/Commonly Used Blocks).

•The battery initial SOC is a constant defined in the init file.
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91

•The battery SOC will not be used by other components in 
the model but it will be used by our supervisory controller.the model but it will be used by our supervisory controller.

•We do not need an output port for this parameter.

•We will add a Goto port to this parameter.

•Later, we will add this signal to our status bus.

92

•We will clean up the model slightly.

•The entire model is shown on the next slide.
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93

Battery Diagnostics
• The last thing we need to do is create the 

battery diagnostics bus. 
• Use the bus creator part

94

• Use the bus creator part 
(Simulink/Commonly Used Blocks)

• Add the following signals
– Battery Voltage
– Battery Currenty
– Battery SOC
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95

Double-click here.

Change to 3.

Bus creator after making 
change.

96Complete the model as shown below.
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Initialization File Changes
97

When we go to the top level block diagram, 
th b tt b t h ld h ththe battery subsystem should show the 
inputs and outputs that we defined.

Top Level Block Diagram
• The top level block diagram now contains 

two blocks.

98

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



50

Lecture 1 Exercise 4
• Show your completed Battery and Rear Diff 

and Body subsystems.
• Run a simulation that shows that your

99

• Run a simulation that shows that your 
Battery:
– Produces the correct output voltage for a given 

input current.
– Calculates the correct battery state of charge for 

i i t ta given input current.

Demo___________
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Advanced Model-Based-System 
Design

Lecture 2: Motor Model andLecture 2: Motor Model and 
Display Subsystem

Electric Motor Model
• Create an ideal motor that converts 

electrical power to mechanical power with 
100 percent efficiency

2

100 percent efficiency.
• This model will work for both regen and 

motoring modes. The conversion equation 
is:

MotorMotorBatteryMotorVI ωτ=−
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Electric Motor Model

• The battery voltage is always positive.
• When the motor torque is in the same

3

When the motor torque is in the same 
direction as the motor shaft velocity, the 
motor accelerates the vehicle. (Motoring 
mode.) 

• In this mode, the motor will draw current 
f h b Thfrom the battery. The motor current 
should be negative to discharge the 
battery.

MotorMotorBatteryMotorVI ωτ=−

Electric Motor Model

• When the motor torque is in the opposite 
di ti f th t h ft l it th

4

direction of the motor shaft velocity, the 
motor is decelerating the vehicle. 
(Regenerative braking mode). 

• In this mode, the motor will force current 
into the battery. The motor currentinto the battery. The motor current 
should be positive to charge the battery.

MotorMotorBatteryMotorVI ωτ=−
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Electric Motor Model
• This motor model has a flat torque curve.
• The motor has the same available torque 

at any rpm

5

at any rpm.
• The motor is 100% efficient.
• This is a simple model to get started. We 

can always make the model more 
complicated as our understanding of thecomplicated as our understanding of the 
system increases.

Electric Motor Model
• Model Inputs (Simulink):

– Battery Voltage
– Torque Request (-1 to 1);

M d l O (Si li k Si l )

6

• Model Outputs (Simulink Signals):
– Motor Current
– Motor Diagnostics

• Motor rpm
• Motor Torque
• Motor Current

M d l O t t (Si D i li )• Model Outputs (SimDriveline):
– Motor Torque
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7

Place a new subsystem part (Simulink/Commonly 
Used Blocks) in your circuit and change the name 
to “Electric_Motor.”

Double-click on the subsystem block to open it:

Motor Model
• We have two Simulink inputs and two 

Simulink outputs. 
– Delete the line between the input and output 

8

p p
ports.

– Duplicate the input and output ports
– Rename the ports:

• Battery_Voltage
• Torque_Request

M t C t• Motor_Current
• Motor_Diagnostics
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9

We also have one SimDriveline connection port 
(SimDriveline/Utilities). 

Place this part in your model and rename it as 
“Motor_Port.” 

10

We now have all of the input and output ports forWe now have all of the input and output ports for 
our motor model. All that is left is for us to build 
the actual model. 
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11

•We will assume that the motor output torque can 
range from 0 to the maximum output torque.  

•The maximum torque is a constant defined in the 
init file.

•Remember that the torque request signal is a 
number from -1 to 1.

•The Torque Actuator part is located in the 
SimDriveline/Sensors & Actuators library.

•The inertia part is located in the 
SimDriveline/Solver & Inertias library.

12

The inertia part specifies the inertia for all rotating parts of the motor. We 
will define this inertia in the init file. Double-click on the inertia part and 
change the value to “Motor_Inertia.”

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



7

13
We should find the inertia from the motor specifications or 
measure the inertia. Once a value is obtained, we will specify 
it in the init file:

Next, we can calculate the motor current as

Battery

MotorMotor
Motor V

I ωτ
−=

Use a Motion Sensor (SimDriveline/Sensors & 
Actuators) to measure the motor shaft speed in r/s.

14
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Motor Diagnostics
• The last thing we need to do is create the 

motor diagnostics bus. 
• Use the BUS Creator part

15

• Use the BUS Creator part 
(Simulink/Commonly Used Blocks)

• Add the following signals
– Motor_rpm
– Motor torque Nm_ q _
– Motor_Current_A

Motor Diagnostics
• The Motor torque and motor current are 

already available. 
• Motor speed is available but is in radians

16

• Motor speed is available, but is in radians 
per second. To convert r/s to rpm, multiply 
by 60/(2*pi).

• To change the number of bus inputs, 
double-click on the bus creator part and 
change the number from 2 to 3.
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17

Double-click here.

Change to 3.

Bus creator after making 
change.

18

Complete the model as shown below.
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Vehicle Model
• When you close the motor model, the 

motor model subsystem should have the 
input and outputs as shown:

19

input and outputs as shown:

Top Level Block Diagram 20
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Vehicle System
• We now have enough subsystem 

components to create a simple vehicle. 
We will create the beginning of a series

21

We will create the beginning of a series 
hybrid electric vehicle by using 
– The electric motor drive the rear diff.
– The electric motor draw power from the 

battery.
• Connect the blocks as shown:

22

The motor port is not in a convenient location to connect it to the rear 
diff. We can fix this problem by:

•Double-clicking on the Electric_Motor subsystem to open it.

•Double-clicking on the “Motor_Port” part to open its dialog box.

You will see the dialog box shown next:
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23
Double-click here.

Change this to right.

After making this change, we can easily connect the motor and rear diff.

24
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Vehicle System Diagnostic Bus
• Before continuing, we would like to create 

the system diagnostic bus that contains 
every diagnostic signal in the model. 

25

• Each subsystem block already has its own 
diagnostic bus.

• Creating the vehicle system diagnostic bus 
is just a matter of merging the individual 
busses using the bus creator partbusses using the bus creator part 
(Simulink/Commonly Used Blocks).

26

First, use the Goto part (Simulink/Signal Routing) 
to make connections to the subsystem busses.
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27

Create the Vehicle System Diagnostic Bus using the 
From part (Simulink/Signal Routing) and the Bus 
Creator part (Simulink/Commonly Used Blocks)

28

Top Level Block Diagram
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Vehicle Driver Block
• This block allows us to follow a drive cycle.
• The input to this block is the vehicle’s present 

29

p p
speed.

• The output is a torque request (-1 to +1) that 
tells the car to speed up or slow down.

• Note that the driver block is not part of the 
physical system. It is for simulation purposesphysical system. It is for simulation purposes 
only and generates a torque request that would 
normally come from the vehicle’s accelerator 
and brake pedals.

Vehicle Driver Block
• This is a classic feedback system where:

– we compare the desired speed to the actual 
speed

30

– create an error signal
– amplify the error signal, 
– pass that signal to the plant (which is our 

vehicle).
• The desired speed will be stored in a 

variable.
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Vehicle Driver Block

• Create a subsystem with one input and 
one output by placing the Subsystem 
bl k i t l l bl k di

31

block in your top level block diagram. 
• The input to this block will be the Vehicle 

System Diagnostics bus which will contain 
the speed of the vehicle. 

• Rename the subsystem “Driver ”• Rename the subsystem Driver.  

Driver Block
• Open the driver block.
• Rename the input port to 

“Vehicle System Diagnostics ”

32

Vehicle_System_Diagnostics.
• Use the Bus Selector part 

(Simulink/Commonly Used Blocks) to 
extract the Vehicle_Speed_mph signal.
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Driver Block
• We will now create the feedback system 

that compares the actual vehicle speed to 
the desired speed and creates an error

33

the desired speed and creates an error 
signal. 

• For the moment, the desired speed will be 
a constant of 60 mph.

Driver Block
• The output of the error amplifier 

determines the torque. 
• Depending on the gain and how far off the

34

• Depending on the gain and how far off the 
speed is, the torque signal can be from     
–(big number) to +(big number). 

• We would like to limit the torque signal to 
±1. 

• Use the Saturation part located in the 
Simulink/Commonly Used Blocks
library.
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• A driver torque request of -1 means full braking.
• A driver torque request of +1 means full 

acceleration.
• Specify the limits of the saturation part as +1 

and 1

35

and -1.
• Rename the output terminal to “Driver Torque 

Request.”

• The saturation limits are specified as 
shown:

36
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Driver Block
• The top-level view of the driver block looks 

as shown:

37

as shown:

Top Level Block Diagram 38
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Display Subsystem
• We are now ready to run a simulation. 
• The current driver block uses a constant 

for the vehicle speed so the vehicle

39

for the vehicle speed, so the vehicle 
should accelerate up to a constant speed 
of 60 mph and hold the speed constant.

• For diagnostic purposes, we may want to 
create several plots to display various 
signals in different configurations.

• We will also use this subsystem to log 
data.

Display and Logging Subsystem
• We will create a subsystem with a single 

input (the vehicle system diagnostic bus) 
and no outputs:

40

and no outputs:

• We will show two methods of creating a 
display The first method will use a Scopedisplay. The first method will use a Scope
block. The seconds will be shown later 
and use the Signal and Scope Manager.
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Display Subsystem
• Inside the display subsystem, we will use 

the Bus Selector part 
(Simulink/Commonly Used Blocks) and 

41

the Scope (Simulink/Commonly Used 
Blocks) to create a display of the 
important signals.

Display Subsystem
• Creating the previous model took several 

steps.
• When you place the bus selector and

42

• When you place the bus selector and 
scope parts, the two parts do not have the 
desired number of inputs and outputs:
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Creating the Display
• Double-click on the Bus Selector part

43

Creating the Display
• Remove the signals ??? Signal1 and ??? 

Signal2.

44

• Click on the +• Click on the + 
signs in the 
“Signals in the 
Bus” window 
to view the 

il blavailable 
signals.
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Creating the Display
• Select the signal you want to extract and 

then click the Select button.
• Select the signals in the order you want

45

Select the signals in the order you want 
them to appear on the bus extractor.

Creating the Display
• Click the OK button and resize the Bus 

Selector part.

46

• Next, double-click on the Scope part:
Double-click here.
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47

Click on this button.

• Click on the Parameters button

Change this to 5.

48

Click on the Data history 
Tab.

Click here to uncheck this 
box. Deselecting this boxbox. Deselecting this box 
will display all data in our 
simulation.
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49

Box unchecked.

Click the OK Button.

Close the scope 
window and returnwindow and return 

to the model. 
Resize the scope 
part and connect 

the signals.

50
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Running a Simulation
• We are now ready to set up and run a 

simulation. 
• Select Simulation and then Configuration 

P t f th Si li k

51

Parameters from the Simulink menus.
• Specify the Stop time as 60 (seconds).
• Specify ode23tb as the Solver.

52

Set to 60.

Select ode23tb
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Simulation Diagnostics
• We would like to enable some diagnostics 

to help us identify potential errors or 
problems in our model

53

problems in our model.
• Select Diagnostics and specify Algebraic 

Loops to generate an error.

54

Diagnostics selected.

Set to error.

Set to error.

• These selections will highlight an algebraic 
if one is detected.
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Running the Simulation
• Click the OK button.
• Select Simulation and then Start from the 

Simulink menus or click the play button

55

Simulink menus or click the play button.
• It appears that we have an error.

Algebraic Loop
• The top-level block diagram shows that 

there is an algebraic loop formed between 
two of our subsystems The Algebraic loop

56

two of our subsystems. The Algebraic loop 
is highlighted in red:
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Algebraic Loop
• If you look inside the Electric_Motor Subsystem, you 

will see the offending components in that subsystem:

57

In order for Simulink to calculate the motor current, it 
needs to know the battery voltage. 

Algebraic Loop
• If you look inside the Battery Subsystem, you will see 

the offending components in that subsystem:

58

In order to calculate the battery voltage, Simulink 
needs to know the motor current?
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Algebraic Loop – The Loop
• In the motor model, to calculate the motor 

current, Simulink needs to know the 
battery voltage. 

59

• In the battery model, to calculate the 
battery voltage, Simulink needs to know 
the motor current?

• Thus, Simulink does not have the 
information it needs to make thisinformation it needs to make this 
calculation.

Aglebraic Loop
• We can break this loop by adding a 

Memory part           (Simulink/Discrete) 
to

60

to

either the Battery model or the motor 
model.

• We will add it to the Electric Motor modelWe will add it to the Electric_ Motor model 
as shown:
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61

•The memory block is a one time step delay. In the division 
calculation, Simulink will use the battery voltage from the 
previous time step. Thus the battery voltage is know, and 
Simulink can calculate the motor current.

•Rerun the simulation and see if this fixes the problem.

• The problem is fixed, but we get another 
error.

62

• Click on the link to jump to the error.
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63

According to the error 
message, this signal mustmessage, this signal must 

be Infinite, or Nan.

Error
• How can the battery current become 

Infinite?
• Looking at the motor model we calculate

64

• Looking at the motor model, we calculate 
the motor current (which becomes the 
battery current) as the requested motor 
power divided by the battery voltage.
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65

For the first time step what is the input to the Divide block?•For the first time step, what is the input to the  Divide block?

•The Memory block outputs the value from the previous time step.

•For the first time step, what is the previous value.

•If the block outputs a 0, we get a divide by zero, and the Divide block either outputs 
Inf or Nan.

•We need to move the Memory block somewhere else to eliminate the algebraic loop.

66

Memory block removed.
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67

Memory block added to the 
battery model.

Rerun the Simulation 68
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Lecture 2 Exercise 1
• The Simulation Runs!
• There appear to be some problems with 

our physical model

69

our physical model.
• Demonstrate the operation of your model.
• The Speed Approaches 60 mph, but there 

are problems in the rpm signal.

Demo___________

Advanced Model-Based-System 
Design

Debugging the ModelDebugging the Model
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Debugging the Model
• The previous slide had a problem with the 

motor rpm, battery voltage, and battery 

71

current:

72

Vehicle speed 
OK.

Motor rpm spikeMotor rpm spike.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



37

Model Debugging
• With a direct drive system, how can the 

vehicle speed follow a different curve than 
the motor speed?

73

the motor speed?
• The wheels must be skidding.
• We will verify this with another plot which 

we will add to the Display subsystem.

74

•If there is no skidding, the tire speeds should be the same as the vehicle 
speed.

•Run the simulation
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75

Zoom in here.

76

Tire speed same 
as vehicle speed.

Tire speed 
different than 
vehicle speed.
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Debugging the Model
• Lets look at the torque request coming 

from the driver request block.
• Open the driver block and add a scope to

77

• Open the driver block and add a scope to 
the driver torque request signal.

Rerun the simulation and view the scope.

78

Max torque (1).

Tire skidding 
happens here.

Vehicle cruising g
at 60 mph here.
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Model Debugging
• It looks like the tire skidding occurs when 

we have a large change in the driver 
torque request

79

torque request.
• We can fix this by adding a Rate Limiter

to the driver torque request. 
(Simulink/Discontinuities)

80

•The rate limiter places a limit on how fast 
a signal can increase or decrease.

•The default rising and falling rates are 
1/second.

•We will use the default values.

•Since the driver torque request signal is 
between -1 and +1

•Our motor will go from no torque (0)•Our motor will go from no torque (0) 
to full torque (1) in one second.

•Our motor will go from full forward 
torque (1) to full reverse torque (-1) in 
two seconds.

Run a simulation with the rate limiter.
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81

Things are 
worse!

82

Motor rpm going 
negative.

What do you 
notice about 
this?

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



42

Model Debugging
• Let’s remove the rate limiter since it made 

things worse.
• Let’s plot the motor torque using a scope

83

• Let s plot the motor torque using a scope.

Rate limiter 
removed.

84

Scope added.
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85

Tire skidding 
h hhappens here.
Zoom in on this 
section.

86

Traces in nature 
are very rarely 
straight. Usually 
things are curved.

Zoom in someZoom in some 
more.
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87

Simulation point.
Simulation point.

p

Looks like a 
t i ht listraight line 

connecting two 
simulation points.

Model Debugging
• Another hint comes from the MATLAB 

command window.

88

What is this?
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89

Warning: Using a default value of 1.2 for maximum 
step size.  The simulation step size will be equal 
to or less than this value.
You can disable this diagnostic by setting 
'Automatic solver parameter selection' diagnostic 
to 'none' in the Diagnostics page of

•It looks like Simulink can take a step size as large as 1.2 seconds between 
simulation points. 

•This is a large time step for our simulation. From the previous slides, it looked 
like we had a step of 0.35 seconds that was too large.

g p g
the configuration parameters dialog. 

p g

•Let’s try a smaller step size.

•Select Simulation and then Configuration Parameters from the Simulink 
menus.

•Change the Max Step size from Auto to 0.01 (seconds)

90

Changed to 0.01.

•This parameter specifies that the maximum time 
between simulation points will be 0 01 seconds (Itbetween simulation points will be 0.01 seconds. (It 
can be smaller if necessary.)

•Rerun the simulation with this change.
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91

Model Debugging
• Everything looks great.
• Our error was numerical rather than 

something nonphysical or too ideal in our

92

something nonphysical or too ideal in our 
model. 

• Later we will have problems because our 
system is too ideal, such as torque spikes 
and negative battery voltages.
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Lecture 2 Exercise 2
• We would like our vehicle to be able to 

accelerate from 0 to 60 mph in 9 seconds.
• Determine:

93

• Determine:
– Required motor torque________ (Nm)
– Required battery current __________ (A)
– The peak motor power __________ (kW)

• How does our model breakdown if the 
motor current is too large?

Demo___________
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Advanced Model-Based-System 
Design

Lecture 2: Drive Cycles andLecture 2: Drive Cycles and 
Advanced Models

Following a Drive Cycle
• Next, we will have the vehicle follow a 

simple drive cycle. 
W ill t ll d F

2

• We will use a part called From 
Workspace (Simulink/Sources) to read in a 
2-D variable. 

• Using the init file, define a variable called 
Sch Cycle. This is two dimensional matrix. _ y

• The first column contains the time values 
and the second column contains the 
speed values:
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Following a Drive Cycle
• Sch_Cycle =

• 0     0
• 10 0

3

10     0
• 15    30
• 20    30
• 30    40
• 40    40
• 55    70
• 70    70
• 80    30

90 30• 90    30
• 100     0
• 120     0

• >> Your init file should look like the following:

Following a Drive Cycle 4
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Following a Drive Cycle
• Run the init file to load the variables into 

memory. 
• In the Driver block add the From

5

• In the Driver block, add the From 
Workspace part which is located in the 
Simulink/Sources library.

6

Constant block replaced p
with From Workspace
block.

Double-click on 
the From 
Workspace block 
and modify as 
shown:

Changed to Sch_Cycle.
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Following a Drive Cycle
• Click the OK button to save the changes.
• Set the simulation time to run for 120 

seconds

7

seconds.
• Run the simulation and view the plot:

8
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Following a Drive Cycle
• We see that the vehicle does follow the 

specified profile.
• Since there are no mechanical brakes, the 

9

S ce e e a e o ec a ca b a es, e
motor is responsible for slowing the 
vehicle. Regen braking is working.

• We see the battery discharge as the 
vehicle accelerates.

• We see the battery charge as the vehicle• We see the battery charge as the vehicle 
decelerates.

Following a Drive Cycle
• One question we have is how close does 

the vehicle follow the drive cycle.
• We need to add a diagnostic output to the 

10

e eed o add a d ag os c ou pu o e
driver block to display the Sch_Cycle 
signal.

• We need to add this signal to the Vehicle 
System Diagnostic bus.

• We need to display this signal on the• We need to display this signal on the 
same plot as the vehicle speed.
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Modified Driver Block 11

Top Level Block Diagram 12

This part added.
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Top Level – Vehicle System 
Diagnostic Bus

13

This part added.

Display Modifications 14

When we run the simulation, we see that the 
vehicle has a little trouble following the drive 
cycle.
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15

Advanced Model-Based-System 
Design

Reading Drive Cycles in ExcelReading Drive Cycles in Excel
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Drive Cycles
• Drive Cycles are available from several 

sources and in several different formats.
• We will use Excel to store our drive cycles

17

• We will use Excel to store our drive cycles 
since Excel can be used to easily modify 
the cycles.

Drive Cycles
• Create a directory called Drive_Cycles in 

your current working directory.
f

18

• We will keep all of our drive cycles in this 
directory.

• Copy the drive cycles that were provided 
for this class to this directory

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



10

AVL Drive Cycle
19

The Sch_Cycle tab contains the time 
and speed coordinates for the cycle.

Sch Cycle Tab.

TimeTime
(seconds) Speed 

(mph)

Drive Cycles
• The speed in the Sch_Cycle worksheet is 

in mph.
• For the moment all we will use is the

20

• For the moment, all we will use is the 
Sch_Cycle information for vehicle speed.

• The Excel file contains information for the 
brake pedal, gear selection, grade, and 
key on.
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Drive Cycles
• As your model progresses, you may use 

some of the other signals. 
• For now we will read in all of the

21

• For now, we will read in all of the 
information, but we will only use the 
vehicle speed information.

• We will place the following code in our init 
file to read in the excel drive cycle file and 
store it in MATLAB variables.

22

%Read a drive cycle contained in an excel spreadsheet.
if (exist('fn') == 0)|(fn==0)

fn='Drive_Cycles\sch_fu505.xls';
else

fn=['Drive_Cycles\',fn];
end
[fn,pn]=uigetfile('Drive_Cycles\sch*.xls','Specify an Excel Schedule File Name',fn);
name=[pn,fn];
Sch_Cycle = xlsread(name, 'Sch Cycle');
Sch_Brake_on = xlsread(name, 'Sch Brake On');
Sch Gear on = xlsread(name 'Sch Gear On');Sch_Gear_on = xlsread(name, Sch Gear On );
Sch_Grade = xlsread(name, 'Sch Grade');
Sch_Key_on = xlsread(name, 'Sch Key On');
%Convert the grade from percent to radians.
Sch_Grade(:,2)=atan(Sch_Grade(:,2)/100);
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23

if (exist('fn') == 0)|(fn==0)
fn='Drive_Cycles\sch_fu505.xls';

else
fn=['Drive_Cycles\',fn];

endend

If variable fn exists (the file name was 
previous selected), use the old name as the 
default file name.

If variable fn has not yet been defined, use 
file name sch_fu505.xls as the default file 
name.

24

[fn,pn]=uigetfile('Drive_Cycles\sch*.xls','Specify an Excel 
Schedule File Name',fn);
name=[pn,fn];

Open a Windows style file name selection 
box. This function returns the file name and 
the path.

Concatenate the path and file name into one 
string.
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25
Sch_Cycle = xlsread(name, 'Sch Cycle');
Sch_Brake_on = xlsread(name, 'Sch Brake On');
Sch_Gear_on = xlsread(name,'Sch Gear On');
Sch_Grade = xlsread(name, 'Sch Grade');
Sch_Key_on = xlsread(name, 'Sch Key On');

Read individual worksheets into separate 
variables.

Drive Cycles
• Run this section of code. 
• Select the AVL drive cycle.

Di l t t f i bl S h C l

26

• Display contents of variable Sch_Cycle.
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27

Contents of Variable Sch_Cycle
28

>> Sch_Cycle

Sch_Cycle =

0     0
5     0
15    25
35    25
37    18
57    18
72    46
92    46

107    56
127    56
148    32
167     0
180     0

>> 
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Drive Cycles
• If you remember, the Driver block uses the 

contents of variable Sch_Cycle as the 
drive cycle

29

drive cycle.
• We can now easily run predefined drive 

cycles.

Drive Cycles
• Let’s plot the drive cycles to see what they 

look like. 
• Use the code below to plot the drive cycle

30

• Use the code below to plot the drive cycle.

plot(Sch_Cycle(:,1),Sch_Cycle(:,2));
l b l('Ti ( )')xlabel('Time(s)');

ylabel('Speed (mph)');
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AVL Drive Cycle
31

FU505 Drive Cycle
32
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Consumer Reports City
33

Drive Cycles
• Each cycle runs for a different length of 

time.
• We would like to automatically specify that

34

• We would like to automatically specify that 
a simulation runs for the length of the 
cycle.

• Use the command below to obtain the last 
time point in the cycle:

Sch_Cycle(end,1);
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Drive Cycles
• This command can be used as the stop 

time in the Configuration Parameters 
dialog box

35

dialog box. 
• Select Simulation and then 

Configuration Parameters from the 
menus, and enter the command as shown:

36

The last time point in the drive 
cycle will be used as the ending 
time for the simulation.
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Automatically Run Init File
• We want to run the init file every time we 

run our model. 
• We can do this in Simulink using a Call

37

• We can do this in Simulink using a Call 
Back function. 

• Open the model and right-click on some 
empty space in the model and select 
Model Properties from the menu:

38

In the dialog box that 
appears, select the 
Callbacks tab and 
select InitFcn:
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39

Enter the name of 
the initialization 
file here and then 
click the OK 
button

With this setting, our init file will run each 
time we run a simulation.

Running a Simulation
• When we run a simulation, it will 

automatically run the init file which will
– Define all of our model parameters

40

– Define all of our model parameters.
– Read in a drive cycle.

• Run a simulation and make sure that 
everything works
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AVL Drive Cycle Results 41

FU505 Drive Cycle Results 42
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Lecture 3 Exercise 1
• You may notice that it takes a long time to 

read Excel files.
• To shorten the time it takes to run the

43

• To shorten the time it takes to run the 
initialization file, we would like to store and 
read drive cycles as MATLAB .mat files.

• Part 1
– Write an .m file that asks the user to select an 

excel drive cycle, reads the variables from 
that file, and saves the variables in a .mat file 
with the same name.

Lecture 3 Exercise 1
• Part 1: Write an .m file that:

– Clears all variables from the MATLAB workspace.
– Asks the user to select an excel drive cycle and reads 

44

information in the file and stores the data with the 
same names as used when reading drive cycles with 
Excel. 

– Clears variables fn and pn from the workspace.
– Saves the drive cycle variables in a .mat file with the 

same name as the excel file except with a .mat p
extension..
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Lecture 3 Exercise 1
• Part 2: 

– Create a new init file that is the same as the original 
init file except that the drive cycle is read as a .mat file 

th th l fil

45

rather than an excel file.
– Using drive cycle “sch_fu505 ten times.xls”, compare 

the time it takes MATLAB to complete each of your 
init files.

– Use the tic and toc functions to see how long it haves 
to run each script file.

Demo___________

Vehicle Modeling
• At this point we have

– An electric vehicle model.
The structure to make a more complicated

46

– The structure to make a more complicated, 
detailed, and accurate model.

• We could head off in several directions
– Add an engine.
– Charge the battery.
– Other
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Model Based Design
• The important thing is to add detail slowly 

and verify the accuracy of our models as 
we add detail

47

we add detail.
• We will do the following:

– Add detail to the motor model.
– Add detail to the battery model.

Electric Motor
• Add a torque curve.
• Make the motor less than 100% efficient.

48
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Torque Curve
• Obtain the torque versus rpm curve for 

your motor from the manufacturer or use 
measured data

49

measured data.
• Place the data in an excel file.
• Read the excel files into the MATLAB 

workspace.
• Use a table lookup to use the data in yourUse a table lookup to use the data in your 

model.

Vendor Supplied Torque Curve
Rpm Torque (Nm)
0 370
1200 361
1400 319

50

1600 260
1700 242
2000 190
2200 170
2400 128
2600 120
3000 793000 79
3500 60
4000 51
4500 40
5000 30
6000 10
7000 0

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



26

Component Data

• We will place this data in an excel file and 
read it using the xlsread function.

51

read it using the xlsread function.
• We will place all component data files in a 

directory called “Component Data.”

Motor rpm Data
• We will place the rpm data and the torque 

data in separate worksheets.
• This is not required It just makes it easier

52

• This is not required. It just makes it easier 
to split up the two parts of the table.

• The two worksheets are shown next:
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53

Rpm data. This worksheet was named Max_Torque_rpm_Axis.

Torque data. This worksheet was named Max_Torque.

We will read this data using the xlsread function in the init file.

Add the following lines to you init file.

Motor_Name = 'Fantasy Motor_Data.xls'; 
Motor_PN = ['Component Data\',Motor_Name]; 
motor_max_torque = xlsread(Motor_PN,'Max_Torque');
motor_max_torque_rpm_axis =xlsread(Motor_PN,'Max_Torque_rpm_Axis');

54

You can plot the torque curve using the command

plot(motor_max_torque_rpm_axis, motor_max_torque)

Generate this plot 
to verify that youto verify that you 
can read your 
excel file.
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Motor Model
• Now that we have our motor torque curve 

available as workspace variables, we can 
use that data in our model

55

use that data in our model.
• We will use a 1-D look up table.
• Our motor model presently has a constant 

torque curve:

56

Replace this constant with a lookup table 
(Simulink/Lookup Tables).
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57

Double-click on the lookup table and specify 
the parameters as shown:

58

•The output of the part (Table data) is the motor torque. 

•The input to this part is the motor rpm. We already 
calculate the rpm in the model, so the connection is easy to 
make.
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59

Lecture 3 Exercise 2
• The motor model has a problem in that the 

effective torque we request changes as the 
available torque goes down. The effectively 
changes the loop gain of our system and the

60

changes the loop gain of our system and the 
motor rpm changes.

• We want to modify the model so that the torque 
request is always the maximum motor torque 
times the driver torque request. If the available 
motor torque is less than the torque requestmotor torque is less than the torque request, 
then the available motor torque is used. If the 
available motor torque is greater than the torque 
request, then the torque requested is used.

Demo___________
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Advanced Model-Based-System 
Design

Lecture 4: Advanced ModelsLecture 4: Advanced Models

Vehicle Modeling
• At this point we have

– An electric vehicle model.
The structure to make a more complicated

2

– The structure to make a more complicated, 
detailed, and accurate model.

• We could head off in several directions
– Add an engine.
– Charge the battery.
– Other
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Model Based Design
• The important thing is to add detail slowly 

and verify the accuracy of our models as 
we add detail

3

we add detail.
• We will do the following:

– Add detail to the motor model.
– Add detail to the battery model.

Electric Motor
• Add a torque curve.
• Make the motor less than 100% efficient.

4
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Torque Curve
• Obtain the torque versus rpm curve for 

your motor from the manufacturer or use 
measured data

5

measured data.
• Place the data in an excel file.
• Read the excel files into the MATLAB 

workspace.
• Use a table lookup to use the data in yourUse a table lookup to use the data in your 

model.

Vendor Supplied Torque Curve
Rpm Torque (Nm)
0 370
1200 361
1400 319

6

1600 260
1700 242
2000 190
2200 170
2400 128
2600 120
3000 793000 79
3500 60
4000 51
4500 40
5000 30
6000 10
7000 0
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Component Data

• We will place this data in an excel file and 
read it using the xlsread function.

7

read it using the xlsread function.
• We will place all component data files in a 

directory called “Component Data.”

Motor rpm Data
• We will place the rpm data and the torque 

data in separate worksheets.
• This is not required It just makes it easier

8

• This is not required. It just makes it easier 
to split up the two parts of the table.

• The two worksheets are shown next:
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9

Rpm data. This worksheet was named Max_Torque_rpm_Axis.

Torque data. This worksheet was named Max_Torque.

We will read this data using the xlsread function in the init file.

Add the following lines to you init file.

Motor_Name = 'Fantasy Motor_Data.xls'; 
Motor_PN = ['Component Data\',Motor_Name]; 
motor_max_torque = xlsread(Motor_PN,'Max_Torque');
motor_max_torque_rpm_axis =xlsread(Motor_PN,'Max_Torque_rpm_Axis');

10

You can plot the torque curve using the command

plot(motor_max_torque_rpm_axis, motor_max_torque)

Generate this plot 
to verify that youto verify that you 
can read your 
excel file.
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Motor Model
• Now that we have our motor torque curve 

available as workspace variables, we can 
use that data in our model

11

use that data in our model.
• We will use a 1-D look up table.
• Our motor model presently has a constant 

torque curve:

12

Replace this constant with a lookup table 
(Simulink/Lookup Tables)(Simulink/Lookup Tables).
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13

Double-click on the lookup table and specify 
the parameters as shown:

14

•The output of the part (Table data) is the motor torque. 

•The input to this part is the motor rpm. We already 
calculate the rpm in the model, so the connection is easy to 
make.
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15

Lecture 4 Exercise 1
• The motor model has a problem in that the 

effective torque we request changes as the 
available torque goes down. The effectively 
changes the loop gain of our system and the

16

changes the loop gain of our system and the 
motor rpm changes.

• We want to modify the model so that the torque 
request is always the maximum motor torque 
times the driver torque request. If the available 
motor torque is less than the torque requestmotor torque is less than the torque request, 
then the available motor torque is used. If the 
available motor torque is greater than the torque 
request, then the torque requested is used.

Demo___________
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Lecture 4 Exercise 2
• This motor has other problems:

– What happens if the motor rpm is negative? Surely 
we want to use the vehicle in reverse.

17

– What happens if the motor rpm exceeds the max rpm 
specified in the table?

• Fix the model so that the model works for 
negative values of rpm and that nothing 
catastrophic happens if the input rpm exceeds 
the ma specified in the data filethe max specified in the data file.

• You are not allowed to modify the data in 
the Excel file. Demo___________

Motor Efficiency
• Next we will add efficiency to the motor.
• When acting as a motor, the mechanical power 

output is less than the electrical power input. 

18

p p p
• When acting as a generator, the electrical power 

output is less than the mechanical power input.
• In our implementation, the output torque will be 

specified, and the corresponding electrical 
power will be calculated including efficiency.p g y

• We will start with a constant efficiency of 85%.
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19

• The part of the model that was modified to 
add the efficiency is shown enlarged below.

20
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Model Verification
• To see that this model behaves the way 

we think it should, we need to add a few 
diagnostic signals

21

diagnostic signals.
• Create signals for the mechanical and 

electrical power. These two signals should 
be related by the efficiency.

• Add the electrical and mechanical power 
signals to the diagnostic bus.

• Modify the model as shown.

22
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Model Verification

• Run a simulation and plot
– Vehicle Speed

23

– Mechanical Power
– Electrical Power

• Verify that when
– The vehicle speeds up, the mechanical power 

is less than the electrical power.
– When the vehicle slows down, the electrical 

power is less than the mechanical power.
– We will create this plot using the signal and 

scope manager.

Scope
• We need to create a viewer and attach the 

signals we wish to display.
• We want the vehicle speed to be displayed 

24

e a e e c e speed o be d sp ayed
on the top plot.

• Open the driver block and right click on the 
“Desired_Vehicle_Speed” signal line:

• Right click on the Desired_rpm signal line.
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Scope 25

Scope
• Select Create & Connect Viewer, 

Simulink, and then Scope from the 
menus:

26

menus:
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Scope
• A scope will be created with a single plot:

27

Scope
• Now we need to display the actual rpm on 

the same scope and on the same axis.
• Right click on the Vehicle Speed mph

28

• Right click on the Vehicle_Speed_mph
signal line:
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Scope
• Select Connect to Existing Viewer, then 

select Scope, then select Axis1.

29

Scope
• You will notice little glasses on your 

model.
• These glasses indicate that the associated

30

• These glasses indicate that the associated  
signal is being display on a scope.
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Scope
• If you hover the mouse pointer over the 

glasses, a box will appear and display the 
name of the viewer and the axis to which

31

name of the viewer and the axis to which 
the signal is connected:

• In this case, the name of the viewer is 
“Scope.”

Scope
• Next, we want to display two plots on the 

scope window.
• Left click on the Parameters button in

32

• Left-click on the Parameters      button in 
the scope menus:

Click here.
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Scope 33

Change this to 2 to 
display 2 plots in the 
Scope window.

Scope
• Typically a scope will only display the last 

7500 points of a simulation.
• We are not sure how many points our

34

• We are not sure how many points our 
simulation will have, so we will change this 
setting.

• Select the History tab and uncheck the 
option as shown.
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Scope 35

History tab selected. 

Option not selected. 

Click OK when done. 

Scope
• Next, we would like to name this scope.
• From the Simulink menus, select Tools

and then Signal and Scope Manager:

36

and then Signal and Scope Manager:
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Signal & Scope Manager
• The Signal and Scope Manager allows us to:

– Rename scopes
Change the number of plots on a scope

37

– Change the number of plots on a scope.
– Add and delete signals displayed on a scope.
– Delete Scopes

• Right-click on the text Scope to see the options 
you have in manipulating scopes

38

• Open parameters – opens the scope window.

Right-click  here! 

• Edit signal connects allows you to select 
signals to display on the scope.
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Signals & Scope Manager
• We just want to rename the scope, so 

select Rename and change the name to 
“Power and Efficiency ”

39

Power and Efficiency.

• This is all we 
will do wit the 
Signal and 
Scope 
MManager, so
click the Close
button.

Scope
• Next, we want to display the electrical and mechanical 

power signals from the motor.
• Open the Electric Motor subsystem.

40

Right-click here.

p _ y
• Right-click on the Motor_Mechanical_Power signal:
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Scope
• Select Connect to Existing Viewer, then 

Power and Efficency, and then Axis 2:

41

Scope
• The Motor_Mechanical_Power will now be 

displayed on the second plot in the Power 
and Efficiency viewer

42

and Efficiency viewer. 
• Repeat the process to display the 

Electrical power on the same axis as the 
mechanical power.

• Run the FU505 drive cycle and display the 
results.
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43

44

During accel, mechanical 
power input is greater than 
electrical power output

During accel, electrical 
power input is greater than 
mechanical power output. 

electrical power output. 
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Lecture 4 Exercise 3
• In our plot, we see that the label for the 

electrical and mechanical power are not 
displayed in the Scope window

45

displayed in the Scope window. 
• Fix this problem.

Demo___________

Model Verification
• The model appears to behave correctly for 

motoring and regen.
• Next instead of having a constant

46

• Next, instead of having a constant 
efficiency, we will make the efficiency a 
function of motor rpm and motor current.

• We will do this with a 2-D look up table.
• First, obtain the efficiency data from theFirst, obtain the efficiency data from the 

manufacturer or measure the efficiency.
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Manufacturer Supplied Efficiency Data
Current (Amps)

6 50 94 138 182 226 270 314 358 402

0 0.86 0.91 0.88 0.85 0.82 0.79 0.76 0.74 0.72 0.69

500 0.86 0.91 0.88 0.85 0.82 0.79 0.76 0.74 0.72 0.69

1000 0.82 0.92 0.91 0.89 0.88 0.86 0.84 0.83 0.81 0.80

47

r
p
m

1000 0.82 0.92 0.91 0.89 0.88 0.86 0.84 0.83 0.81 0.80

1500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

2000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

2500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

3000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

3500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

4000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

4500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

5000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

5500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

6000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

6500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

7000 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

7500 0.78 0.92 0.92 0.91 0.90 0.89 0.87 0.86 0.85 0.84

8000 0.74 0.92 0.92 0.92 0.91 0.90 0.89 0.88 0.87 0.86

8500 0.71 0.92 0.92 0.92 0.91 0.90 0.90 0.89 0.88 0.87

9000 0.68 0.92 0.92 0.92 0.91 0.91 0.90 0.89 0.88 0.88

9500 0.65 0.91 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.88

10000 0.63 0.91 0.92 0.92 0.91 0.91 0.90 0.89 0.89 0.88

Save Data in Excel
• One worksheet for the rpm axis.
• One worksheet for the current axis. 

O k h t f th ffi i t bl

48

• One worksheet for the efficiency table.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



25

49

Worksheet named 
“Motor_RPM_Axis.”

50

Worksheet named 
“Current_Axis.”
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51

Worksheet named 
“Eff_Data.”

Excel
• Next, we will read this data using the xlsread

function in MATLAB. Place these commands in 
your init file.

52

motor_eff_map = xlsread(Motor_PN,'Eff_Data');
motor_eff_rpm_axis = xlsread(Motor_PN,'Motor_RPM_Axis');
motor_eff_current_axis = xlsread(Motor_PN,'Current_Axis');

• In our motor model, we will replace the constant 
efficiency with a Lookup Table (2-D) y p ( )
(Simulink/Lookup Tables)

• Before continuing, run your init file to read in the 
table data.
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53
Constant block 
replaced with 2-D 
lookup table.

D bl li k h l k bl d fillDouble-click on the lookup table and fill 
in the parameters as shown:

54

If o ran the init file and the data for thisIf you ran the init file, and the data for this 
table is loaded into the MATLAB workspace, 
we can view the table by clicking the Edit
button.
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55

This editor shows us that we have defined the table 
correctly.

56
If you select Plot and then Mesh from the menus, you can view a plot of the table.
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57

This text description is 
important!

This dialog box also tells us:

•That the top input on the icon is the rpm axis

•The bottom input is the current axis.

Click the OK button and connect the part as shown:

58

Note that the motor current depends on the efficiency, and the efficiency depends on 
the motor current, so we probably have an algebraic loop. 
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59
When we run the simulation, we are told that we do indeed 
have an algebraic loop.

Eliminate the algebraic loop by adding a memory part 
(Simulink/Discrete) to the model as shown.

60
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Run the FU505 Cycle
61

Drive cycle OK.

Voltage spikes.

Current spikes.

62

Voltage spike.

Current spike.
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Problems
• What causes the voltage spike?
• Look at the battery model:

63

IBAT

+

VBAT

-

BAT

VBAT = VOC + IBAT*RSeries

Problems
• From our model, we realize that current 

spikes cause the battery voltage spikes.
• If we can control the current we can

64

• If we can control the current, we can 
control the voltage fluctuations.

• Future needs:
– Current limits (hard).
– Over/under voltage detection.g
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What Caused The Current Spikes? 65

Basic Math
• If we divide by a small number, we get a 

big number.
• When we calculate the current in our

66

When we calculate the current in our 
model, we divide in two places.

Divide by battery 
voltage here.

Divide by 
efficiency here.
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Problems

• The only time the battery voltage will become 
small is when there is a large current spike. 

67

• So the current spike causes the low battery 
voltage. 

• Without the current spike, the battery voltage 
would remain high, and would not cause the 
current spike.

• This sounds like an algebraic loop of reasoning.

Problems
• Focus on the other division.

68

Look at this 
division.
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Can the Efficiency Ever Become 0?
69

Can the Efficiency Ever Become 0? 70
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Table-Lookup
• What happens when the current is zero?
• What happens when the current is greater 

than 402 A?

71

than 402 A?
• What happens when the rpm is greater 

than 10000?
• We specify this in the lookup table 

dialog box:dialog box:

72

• So, what happens when the index is outside of the range of the 
table?

• I’m not sure, but you better make sure that you know, or limit the 
inputs to be within a specific range defined in the table.
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Lookup Tables
• To fix one problem, select Interpolation – Use End 

Values as the Lookup method.
• With this method, when we go outside of the range of 

73

, g g
data specified in the table, the values at the ends are 
used.

Interpolation – Use End 
V l l dValues selected. 

Problem
• Looking at the table of data reminds me of 

a problem.
• Hmm I remember something a while

74

• Hmm. I remember something a while 
ago…

• Can’t remember exactly what it was, but 
something I saw before doesn't quite jive 
with the table data…

• What was it.
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75

•The battery current is negative. 

Battery current 
negative.

•Is this OK? Yes – our motor normally acts as a motor or as 
a generator during regen braking.

•Our table is only defined for positive currents, but we are 
using it for both motoring and regen modes.

•The table does apply when the motor is used as a 
t b t did t t f th ti tgenerator, but we did not account for the negative current 

values in our model.

•Also note that the table applies for both positive and 
negative motor speed.

•Add the abs part (Simulink/Math Operators) as shown.

76

•Rerunning the simulation shows that the 
problem has been fixed.

•Question – How would you limit the table inputs 
to be within specified limits?
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77

78
Look at the efficiency plot to verify our model. How can we 
improve this plot to make it more useful?
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Motor Model
• We could add much more detail to the 

model, and you should as you make it 
more realistic We could add:

79

more realistic. We could add:
– Different regen and motoring efficiencies.
– Add separate current limits for regenerative 

braking and motoring. These limits are usually 
different due to battery limits.
Add a torque map that is based on battery– Add a torque map that is based on battery 
voltage and motor rpm.

Lecture 4 Exercise 4
• Demo of model working with motor 

efficiency and motor torque curve.

80

Demo___________
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Lecture 4 Exercise 5
Battery Model Improvements
• Different charge and discharge

81

Different charge and discharge 
resistances.

• Resistance a function of battery SOC and 
temperature.

• Battery open circuit voltage is a function of 

Demo___________

y p g
battery SOC and temperature. 

• Data contained in file “Battery Data.xls.”

82
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Advanced Model-Based-System 
Design

Lecture 5: Engine ModelingLecture 5: Engine Modeling

Outline
• Reasons for an IC Engine
• Intro to SimDriveline Engine Block

F l C ti

2

• Fuel Consumption
• Torque Curve
• Defueling
• Braking Torque
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The Need

• Thus far our vehicle has been able to 
follow various drive cycles using the motor

3

follow various drive cycles using the motor 
and battery

• The battery SOC has decreased, but 
never too much

The Need
• Eventually, however, the battery will reach 

a SOC where it needs to be recharged.
• There is also a critical low SOC which, if 

4

e e s a so a c ca o SOC c ,
exceeded, will decrease the battery 
lifetime or cause unsafe operation.

• We can pull the vehicle over and plug it in
– Or

• Have an on board power generation• Have an on-board power generation 
system using an internal combustion 
engine and a generator.
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The Need
• For this module we will develop our own 

model of a Diesel engine.
• First let’s see take a look at the

5

First, let s see take a look at the 
SimDriveline Diesel engine.

• Open a new empty model and place a 
Diesel Engine block in your model (library 
Simscape / SimDriveline / Vehicle 
Components).

The Need 6

Right-click on the 
Diesel Engine 
block. 

Select Look Under 
Mask.
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SimDriveline Engine 7

What does this 
do?

What happens 
here? 

What does this 
do? What does this 

do?

Lecture 5 Exercise 1
• What is the purpose of the switch?

8

Answers___________

• What is the purpose of the compare to 
constant block?

• What is the value of speed max and 

Answers___________

p _
where does it come from?

Answers___________
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SimDriveline Engine
• Question

– Does an engine produce torque at RPMs 
BELOW idle?

9

BELOW idle?
• Problem

– Double-click on the Peak torque lookup table.

Click This

SimDriveline Engine

• The model 
d t

10

• This model has some problems…

produces torque 
below idle and 
at zero rpm.

• What happens 
above 4500 rpm 
and below 0and below 0 
rpm?
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SimDriveline Engine 11

• Looking at the model we notice a few other 
things are missing that we need for our model.

SimDriveline Model
• We see that the model does not have an 

inertia for the engine.
• The model does not calculate fuel 

12

consumption. (Necessary since we are 
building a hybrid vehicle and our main 
motivation is reduced petroleum 
consumption.)

• The SimDriveline engine gives us insight as• The SimDriveline engine gives us insight as 
to how to build our own model. We shall use 
it as a starting point and then enhance the 
model.
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Fuel Curve
• At a given RPM we can inject various 

amounts of fuel, resulting at various 
consumption rates

13

consumption rates
• Check out the FantasyEngine_Data.xls file 

for the engine RPM and “throttle” axes as 
well as the fuel consumption data

• Using the skill gained with the motor, 
update the Vehicle_Init file accordingly

Engine Model
• We will create our own model.
• We will start by looking at the fuel 

consumption of a Diesel engine

14

consumption of a Diesel engine. 
• We will assume that you have measured 

or obtained the fuel map for your engine.
• Fuel consumption and torque maps for our 

fictitious engine have been measured andfictitious engine have been measured and 
saved in an excel file in the Component 
Data directory.
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Fuel Curve
• We can read this data with the xlsread

function

15

Fuel Curve

• Create a new 
model and

16

model and 
add a 2-D 
look up table.

• Awesome!
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Torque Curve
• By burning fuel, a Diesel engine produces 

torque.
• The torque is a function of RPM and

17

• The torque is a function of RPM and 
throttle.

• Read in the torque data from the 
FantasyEngine_Data.xls file
– call it engine_torque_datag _ q _

Torque Curve

• Pretty Cool!

18

• At a given 
RPM we 
can adjust 
the throttle 
to get ato get a 
desired 
torque
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Engine Model
• Create the model below with the following parts:

– Constant, Saturation, Transfer Fnc, Torque Actuator, 
Driveline Environment, Inertia

19

Engine Model
• The Laplace (continuous) transfer function 

delays the engine response with a time constant 
of 100 ms
Th li it th t ti t 0 d 1

20

• The limits on the saturation part are 0 and 1.
• The engine inertia is specified in the init file as 

“engine_inertia.”
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Engine Model
• Now add an RPM feedback loop to the 

data table

21

Why is this not an 
algebraic loop?

Engine Model

• Next we will add fuel consumption to the 
model

22

model.
• First, we will clean up the model by adding 

some signal routing From and Goto parts.
• Note that in our model, the fuel 

consumption data is in grams of fuel p g
consumed per second.
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Engine Model 23

Engine Model - Defuel
• Next, we will build an emergency defuel if 

we exceed the max engine speed
• This sets the throttle to zero shuts off fuel

24

• This sets the throttle to zero, shuts off fuel 
and kills the torque

• Add  the constant engine_max_rpm
• = 4500 to the init file
• Use a switch to set the throttle to zero if• Use a switch to set the throttle to zero if 

the engine speed exceeds 4500 rpm
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Engine Model - Defuel 25

Engine Model - Jake
• If the engine throttle is zero, engine 

braking will occur until idle is reached
• A constant torque will be applied opposite

26

• A constant torque will be applied opposite 
the direction of crankshaft rotation

• We’ll estimate the engine braking torque to 
be 10 Nm – add this to the init file
– engine_brake_torqueg _ _ q
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Engine Model - Jake

• Now, we could do some fancy stuff with switches 
in our model

27

– Or
• Modify our torque data by changing the zero 

throttle column from 0 Nm to -10 Nm for rows 
two through the last one

• Uncomment the last line in the engine section ofUncomment the last line in the engine section of 
the init file

Engine Model - Jake 28

This line 
uncommented.

When the throttle is zero, the torque will be equal to 
–engine_brake_torque.
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Engine Model - Jake
• The torque 

definitely goes 
negative

29

negative
• The output 

torque will be 
zero for a 
throttle slightly 
greater than 0.g

Engine Model - Testing
• Let’s test our model by forcing the engine to spin 

using a motion actuator.

30

• Add in a
– Motion actuator
– Ramp
– Gain
– Constant

• Put scopes on the rpm, fuel consumption rate 
and the torque output from the look-up table
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Engine Model - Testing
31

We will use a ramp to sweep 
the rpm  signal from 0 to 
5000 rpm.

With the acceleration set to zero, we are 
specifying that the engine shaft spins at the 
speed specified by the ramp signal. 

Engine Model - Testing
• The properties of the 

ramp specify a slope 
of 1

32

of 1.
• If we run the 

simulation for 5000 
seconds, the rpm will 
ramp from 0 to 5000.
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Engine Model - Testing
• Since we are asking for maximum torque, 

and the rpm is swept from 0 to 5000, we 
can generate a plot of maximum torque

33

can generate a plot of maximum torque 
versus rpm.

Throttle specified a 1. We are asking for 
maximum torque.

Engine Model - Testing
• We will generate plots of the fuel rate and 

the torque output:

34

This signal plotted on the 
top plot of the window.

This signal plotted on the 
bottom plot of the window.
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Engine Model - Testing
• Run the model for 5000 seconds of 

simulation time.

35

Engine Testing 36

Torque goes to zero atTorque goes to zero at 
850 rpm and below. This 
engine produces no 
torque at idle.

Torque goes to -10 Nm at 
4500 rpm because at over 
speed we cut the fuel and p
apply the engine braking 
torque.
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Engine Testing 37

Fuel consumption goes to 
zero at 4500 rpm because

In the fuel consumption 
table is 0.4 g/s when the 
throttle is 1 and the rpm is 
850 or less.

zero at 4500 rpm because 
we cut the fuel.

Engine Testing
• We see that the fuel consumption is non 

zero even when the engine rpm is less 
than 800

38

than 800.
• We will need to fix this later when we 

make an engine starting algorithm.
• We will have an engine on signal that 

turns on or off fuel consumption below 800 
rpm when the engine is off and at low rpm.
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Engine Testing
• Next, we will generate the same plot with 

the throttle set to 0 rather than 1:

39

Engine Testing 40

When the throttle is 0, the engine 
provides a negative braking torque. 

The fuel consumption is 
always zero.For low rpm, no braking torque is 

applied.  
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Engine Testing
• We do notice a few issues that  we need to fix 

later.
• The engine uses no fuel when the throttle is 

41

zero. This is because we are spinning the 
engine with an external source. Normally to spin 
the engine at this speed, a throttle will be 
required, and fuel will be consumed. Also, we 
may add in an idle controller that holds the 
throttle slightly above zero to keep the enginethrottle slightly above zero to keep the engine 
moving.

Engine Testing
• We also notice that the for an engine rpm 

less than 850, the torque is zero.
• We assume that the engine is off for this

42

• We assume that the engine is off for this 
range of rpm.

• Later, when we add an engine on signal, 
we will also add an engine off torque, that 
will oppose the starter when we need to 
start the engine.
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Lecture 5 Demo 1
• Engine demo at full throttle.

43

• Engine demo at zero throttle.

Demo___________

Demo___________

Engine Model
• We now wish to make a subsystem model 

out of our engine
• Add in an engine diagnostics bus and

44

• Add in an engine diagnostics bus and 
connect it to an output port.
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Engine Model
• Get rid of the Env block. (We already have 

an Env block in our vehicle model. We 
only need one.)

45

y )
• Replace the motion actuator, and 

associated ramp, constant, and gain block 
with an SimDriveline Connection Port.

• Replace the constant block used to specify 
the throttle with an inport:

Engine Model 46

Connection port

Env part removed.

Connection port 
added here.
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Engine Model 47

In port added here.

Complete Engine Model 48
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Engine Subsystem Model
• Type ctrl-A to select all of the components.
• Right-click on one of the components and 

select Create Subsystem from the menus

49

select Create Subsystem from the menus.
• Go up one level to view the subsystem:

Engine Subsystem Model
• Delete all of the ports and rename the 

subsystem as “Engine.”

50
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Lecture 5 Exercise 1
Engine Model Improvements
• Add an “Engine on” signal to the engine model. 

Wh th i i th f l t d th

51

When the engine is on, the fuel rate and the 
torque are determined by the lookup tables of 
the throttle cutoff.

• When the engine if off, the fuel rate is zero and 
the engine torque is a negative constant equal to 

15 Nm Demo– 15 Nm.
• Prove that your design works.
• Abrupt step changes in the output torque is not 

allowed.

Demo___________

Advanced Model-Based-System 
Design 

Elementary Control usingElementary Control using 
Stateflow
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Presentation Outline
• Simple charging logic
• Introduction to Stateflow

C l ti th d l

53

• Completing the model

The Need

• Thus far our vehicle has been able to 
follow various drive cycles using the motor

54

follow various drive cycles using the motor 
and battery.

• The battery SOC has decreased, but 
never too much.
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The Need
• Lets follow the 505 cycle a few times and 

see what happens.

55

pp
Negative battery 
state of charge. 
Either we need a 
larger battery of we 
need a was to put 
charge into the 
battery.

The Need
• We need some way to recharge the 

battery and some logic to determine when 
we do it

56

we do it.
• Our battery block has two motor ports –

one for the motor and one for a generator.
• The motor does charge the battery, but 

since we have aerodynamic drag and the 
motor is less that 100% efficient, charging 
through the motor only delays the time at 
whicg the battery will run out of energy.
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Simple Model
• Eventually we will create a “genset” where an 

engine will drive a generator that charges the 
battery.

57

• For now, we will model the “genset” as a current 
source that charges the battery.

• Open your latest vehicle model and rename it 
Lecture5_Model1. 

Vehicle Model 58

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



30

Simple Model

• We want to keep the SOC in a specified 
range.

59

– No over-charging.
– No over-discharging.

• This will require some logic to switch 
between a “No_Charge” state and a 
“Charge” state.

• We’ll build a Stateflow Controller in a new 
subsystem called “Controller.”

Controller Subsystem
• We will add a new block to our Model 

called “Controller.”
• Eventually all of the functions contained in

60

• Eventually, all of the functions contained in 
the Controller subsystem will be 
implemented on a real-time target.

• This target will be the supervisory 
controller for our vehicle.
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Controller Subsystem
• Inputs to the control subsystem are status 

signals from the various vehicle 
subsystems (motor battery engine

61

subsystems (motor, battery, engine, 
vehicle body, etc.)

• Outputs of the control subsystem tell each 
subsystem what to do.

• Inputs come over the vehicle system 
diagnostics bus (which will be the CAN 
bus in a vehicle).

Control Subsystem
• Add a subsystem to your model called 

“Controller.”
• The input to this system is the vehicle

62

• The input to this system is the vehicle 
system diagnostics bus.

• Hint: You may want to copy and paste the 
Display subsystem and rename it 
“Controller.”
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Controller Subsystem
• Inside the Controller subsystem, use a 

Bus Selector to extract battery SOC signal 
on the Vehicle System Diagnostic bus

63

on the Vehicle System Diagnostic bus.
• (If you copied the Display subsystem, you 

already have a head start.)
• The contents of the Controller subsystem 

are:

Introduction to Stateflow
• We will add a Stateflow chart to the 

Controller subsystem.
• This chart will be used to turn on and off

64

• This chart will be used to turn on and off 
charging current for our system.

• Initially, the Controller output will be a 
fictitious current that magically charges the 
battery.

• Later, the controller output will turn on an 
Engine/Generator genset that charges the 
battery.
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Stateflow 65

From the Stateflow library, 
drag in a Chart.

Then double click on it to 
open.

Stateflow 66

Click on the State 
button to add a new 
state that we will call the 

“No_Charge” state.
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Stateflow 67

Click here to enter 
text.

Stateflow 68

The first line is the name of the 
state. Name it “No_Charge”. 
Note that no spaces are allowed 
in the name.

This is going to be a Simulink 
output of the Stateflow chart. 
This output will specify the 
charging current for the battery.

The “en:” means that upon entering 
this state, execute the following 
command. In this case, when we 
enter this state, simulink output 
charge_current will be set to zero.
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Stateflow
69

Add in the “Charge” 
state . Set Simulink 

t toutput 
charge_current to 

15 amps upon 
entering the state.

Stateflow 70
Click and hold the left mouse 
button here.

To create the transition

This is called a 
i i

To create the transition, 
drag the mouse pointer 
here and then release the 
mouse button when you are 
at the edge of this state.

state transition.
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Stateflow
• We need to specify the “guard” for the 

transition. Click the left mouse button on 
the transition:

71

the transition:

Click  here! A 
i k h ldquestion mark should 

appear and the 
transition should turn 
red. 

Stateflow 72

Click on the ? To edit the 
guard. The ? will be replaced 
by a cursor. Enter the text 
“[SOC< SOC_Charge_On]”

Transition selected.
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Stateflow 73
SOC is a Simulink input to the 

chart. SOC_Charge_On is 
called a parameter and must 
be defined in the MATLAB 

workspace.

Stateflow 74
Add the guard and transition 
to turn off charging when the 
state of charge becomes high 

enough.
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Stateflow 
• The last thing we need to do is to specify 

in which state the chart wakes up when we 
first start the model

75

first start the model.
• This is done by clicking on the Default 

Transition button    and connecting the 
transition to the desired initial state.

• When you place the Default Transition 
part, it will be connected to a circle.

• Delete the circuit and connect the 
transition to the No_Charge state:

Stateflow 76

Default transition 
added here.

Click here to 
place the default 

transition.
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Stateflow
• Next, we need to specify SOC as an input from 

Simulink
• Select Add, Data, and then Input from 

Simulink from the Stateflow menus

77

Simulink from the Stateflow menus
Name of the data is 
“SOC.”

SOC specified as a 
Simulink input.

Stateflow
• We need to specify charge_current as a 

Simulink output
• Select Add, Data, and then Output to 

78

Simulink from the Stateflow menus:
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Stateflow
• We need to specify SOC_Charge_On and 

SOC_Charge_Off as parameters (which will 
be read in from the MATLAB workspace).

79

• Select Add, Data, Parameter from the 
Simulink menus twice:

Stateflow
• Use the Model Explorer to check your work:

80
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Stateflow
• Stateflow will only check guards and follow 

transitions when an event occurs.
• We will use the zero-crossing of a sinec

81

g
wave source as the event and call it a 
“Clock.”

• Select Add, Event, Input From Simulink 
from the Stateflow menus to add an event 
i t t h tinput to your chart.

• This input will come from Simulink.

Stateflow 
• Name the event clock:

82
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Stateflow
• When you close the chart, you will see the 

Simulink inputs and outputs that we 
specified

83

specified.

Input.

Clock.
Output.

Stateflow 84
Use a sine wave for the clock with an 

amplitude of 1 and a frequency of 
100*(2*pi) to get a 10 ms frequency.

Tie into the 
Battery_SOC signal. Create an Out Port.
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Stateflow 85

Connect the charge_current to 
the Generator_Current port.

Stateflow

• Update the Init file with the guard values of 
0 6 to start charging and 0 7 to stop

86

0.6 to start charging and 0.7 to stop.

• Run the FU505 five times:
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87

Lecture 5 Demo 2
• Demo of Stateflow controller charging the 

battery.

88

Demo___________
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Advanced Model-Based-System 
Design

Lecture 6: Creating a Genset andLecture 6: Creating a Genset and 
Building a Formal Controller

Building a Formal Controller
• Create a Engine/Generator “genset” to 

charge the battery.

2

charge the battery.
• Add engine speed control.
• Engine starting and stopping.
• Start with the previous model.
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Complete Model
• Copy the electric motor model and rename 

it “Generator.” 
• We will use the same model for the motor

3

• We will use the same model for the motor 
and generator. 

• If we want different properties for the 
motor and generator, we can use the 
same “motor” block but use different 
lookup tables to give the motor different 
properties.

Complete Model
• Copy the engine model subsystem we 

created earlier and place it in the model.
• Make connections as shown

4

• Make connections as shown.
• Connect the drive lines with the shared 

environment block.
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5

Modify the Generator Subsystem
• Change the names of ports from “Motor” to 

“Generator.”
C f

6

• Change the name of signals on the bus 
from “Motor” to “Generator.”
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7

Changed.

Changed.

Changed.

Changed.

Model Connections
• Connect the Generator to the Battery 

voltage.
• Connect “Generator” current on the

8

• Connect Generator  current on the 
Battery to the Generator Current

• Connect the Engine and Generator 
Diagnostic Ports to the 
Vehicle_System_Diagnostics bus. 
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9
Model Connections

10

Vehicle System 
Bus Changes
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Control System Design
• We now have the system to a point where 

we can start to build our control system.
• The electric motor drives the vehicle

11

• The electric motor drives the vehicle.
• When necessary, the engine can be 

started with the generator and then charge 
the battery.

Engine Speed Control
• We will first develop a method to start the engine 

and control the engine speed.
• We have a generator directly connected to the 

12

g y
engine. This generator can act either as a motor 
or as a generator.

• We can use motor/generator to spin up the 
engine to start the engine.

• We can use the motor/generator to apply a g pp y
torque in the opposite direction to the engine 
torque to regulate the engine speed.
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Engine Speed Control
• We will use classical feedback control with 

proportional feedback.
• The engine throttle will be held constant

13

• The engine throttle will be held constant.
• Monitor the engine speed.

– If the engine speed is to slow, reduce the 
opposing M/G torque.

– If the engine speed is too high, increase the 
opposing M/G torque.

Engine Speed Control

• This is a classical feedback system.

14

• In our case, the plant is the system 
comprised of the Engine coupled to the 
Motor/Generator.
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Engine Speed Control
• Modify the controller as shown next.
• For the moment, we will not use the 

Stateflow chart.

15

S a e o c a
• Note that our torque request to the M/G is 

constrained between -1 and +1.
• We will pick an arbitrary value for the 

engine throttle.
Charging Engine rpm is a constant• Charging_Engine_rpm is a constant 
defined in the init file and is 1800 rpm.

16
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Engine Speed Control – Top Level
• Modify the top level block diagram as 

shown.

17

Engine Speed Control
• When we run a simulation

– The engine should speed up to 1800 rpm 
immediately and as fast as possible.

18

y p
– The generator should charge the battery at some 

current determined by the engine throttle.

• Run a simulation 
and plot the engine 
speed and M/Gspeed and M/G 
current.
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19

Battery Current 
M l P i iMostly Positive.

SOC Increasing.

RPM constant at 
~1860.

Engine Speed Control
• We see that the feedback loop does 

control the engine rpm very well, and that 
the generator charges that battery

20

the generator charges that battery.
• If we zoon in on the engine rpm at the 

beginning of the simulation, we see that 
the rpm ramps up from 0 to 1800 rpm very 
quickly.
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21

Here the generator acts as 
a motor. Energy is 

removed from the battery 
to overcome compression 
and spin up the engine. 

Engine rpm goes from 0 to 
1800 in about 140 ms. This 

isquite fast.

p p g

Engine Speed Control
• There are a few issues with the controller 

that we must fix.
• We need to modify our control scheme to:

22

• We need to modify our control scheme to:
– Turn on the engine only when necessary.
– Ramp up engine speed in a controlled ramp.
– Turn on the engine when it reaches the 

appropriate speed.
– Ramp down the engine when we no longer 

need to charge.
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Stateflow Engine Control
• Read Charging_Engine_rpm from the 

workspace. From Stateflow select Add, 
Data and then Parameter

23

Data, and then Parameter

Stateflow Engine Control
• We will need to know the measured 

Engine rpm from the Simulink model. 
From Stateflow select Add Data and

24

From Stateflow select Add, Data, and 
then Input from Simulink
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Stateflow Engine Control
• Stateflow will need to output the Engine 

Throttle and Desired Engine rpm to our 
Simulink controller From Stateflow select

25

Simulink controller. From Stateflow, select 
Add, Data, and then Output to Simulink

Stateflow Engine Control
• Next, modify the Stateflow chart.
• When we need to charge

– Enable Motor/Generator.

26

– Change the Desired Engine rpm to the value of 
constant Charging_Engine_rpm.

– When the engine reaches this rpm, change the 
throttle from 0 to a specified value.

• When we need to stop charging
– Change the throttle to 0.
– Change the Desired Engine rpm to 0.
– When rpm reaches 10 rpm, disable motor/generator.
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Stateflow Engine Control

• Oops, we need another output to enable the 
Motor/Generator. From Stateflow select Add, 
D t d th O t t t Si li k

27

Data, and then Output to Simulink.

Create The Stateflow Chart Below
28
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Controller Modifications
29

Rate Limiter
• The rate limiter in the previous slide is used to 

generate a ramp from the stepped signal coming 
from Stateflow.

• A rate limiter specifies the maximum positive and

30

• A rate limiter specifies the maximum positive and 
maximum negative rates at which a signal can 
change.

• Specifying rates of ±900 will cause the engine 
rpm to ramp up from 0 to 1800 or down from 
1800 to zero in 2 seconds1800 to zero in 2 seconds.

• Our engine turn-on time will be 2 seconds.
• Part located in the Simulink/Discontinuities

library.
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Rate Limiter Settings 31

Don’t forget this.

•Run a simulation first for the AVL drive cycle, then the FU505.

•Plot both the Engine rpm and the M/G current.

32

Zoom in here.
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33

Engine is up to speed, 
but the generator is 

using power, not Here, the generator is g p ,
generating power. 
The generator is not 
charging the battery.

g
charging the battery.

Engine appears to be 
up to speed here.

Lecture 6 Exercise 1
• The generator appears to spin up the 

engine to the appropriate speed, the 
generator does not immediately start

34
Demo___________

generator does not immediately start 
charging the battery. Instead there is a 
long delay before charging starts. This is 
an error.

• Fix the error so that charging starts as 
soon as the generators is up to speed.

• Your fixed model should have a plot as 
shown next.
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35

Zoom in here.

36

Generator current 
charges battery.

Negative current 
speeds up 

engine while off.

Controlled start. Controlled stop.
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37

Throttle turns off before 
ramp down.

Throttle turns on 
after engine 

reaches speed.

Lecture 6 Demo 1
• Demo the working controller.

38

Demo___________
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Advanced Model-Based-System 
Design

Lecture 7: Multi Loop ControlLecture 7: Multi-Loop Control
Post Processing

2
Results from previous model.

Generator current not controlled 
and changes with battery 

voltage (which changed with  
motor torque request).
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More Control Fun
• Form the last simulation, we notice that the 

generator current is whatever it is, and it 
changes as the battery voltage changes.

3

• Let’s add another feedback loop to control the 
current.

• Note that the throttle increases or decreases the 
engine power.

• More engine power produces more generator g p p g
current.

• Less engine power produces less generator 
current. 

Classic Feedback - Again
• We can think of the result of the system 

created in lecture 6 as a plant where the 
input signal is the engine throttle and the

4

input signal is the engine throttle and the 
output is the generator current.

• By changing the throttle signal, we can 
control the generator current.
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Charging Current Control
5

• Modify the Stateflow chart as shown next.
• Note that the Engine Throttle output has 

been deleted from Stateflow.
T d l t St t fl t t ill d• To delete a Stateflow output, you will need 
to use the Model Explorer. (Tools and 
then Explore from the Stateflow menus.)

6

Line added.

Line added.
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7

Engine Off – No charge

Start engine.

Line added.

Start charging when the 
engine has reached the 

appropriate speed.

Controller Modifications
• Modifications to the Simulink portion controller 

are shown on the next slide.
• Note that we are keeping the proportional 

8

p g p p
feedback loop that  holds the engine speed 
constant at 1800 rpm.

• We are adding a second proportional feedback 
loop that holds the generator current constant. 

• This second loop assumes that the two loops p p
are independent and that the first loop does hold 
the engine speed constant.
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9
Enlargements of various 
parts are shown on the 
next two slides.

10
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11

Charging Current
• The signal for the charging current coming out of the 

Stateflow chart is a step function.
• To produce a controlled rate of change, the desired 

current signal is passed through a rate limiter that

12

current signal is passed through a rate limiter that 
has a slew rate ±50. 

• The signal out of Stateflow is a steep that goes from 
0 to 50 A. 

• The signal out of the rate limiter is a signal that goes 
from 0 to 50 A in 1 secondfrom 0 to 50 A in 1 second.

• We will use the rate limiter to control the rate at 
which the desired charging current changes.
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Saturation Block
• The output of the error amplifier can be a 

large signal and either positive or 
negative

13

negative.
• We have defined our throttle signal to be 

between 0 (no throttle)  and 1 (full throttle).
• The saturation block is used to limit the 

throttle signal to appropriate values.
• The properties of the saturation and rate 

limiter block are shown on the next slide.

Component Settings 14

• Run the simulation and observe the 
throttle and generator current signals.
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15

Constant charging 
current.

Constant engine 
rpm.

Oscillation in 
throttle control.

Current Control
• We see a lot of problems with the engine throttle 

signal. 
• We will address them one at a time and see if 

16

we can fix the problems, or if a change is 
required in the design of the physical system.

• First, we will address problems in the throttle 
signal. The generator current is constant, but we 
notice noise and oscillations on the engine 
throttle signal.

• We will reduce the gain of the current control 
feedback loop.
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Reduce the Gain 17

Changed to 0.1.
(Just guessing.)

18

What is going on 
here?

Oscillation 
reduced.

here?
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Current Control
• We have reduced the oscillations in the 

throttle signal a little bit. We will call it good 
for now and fix a few other problems first

19

for now and fix a few other problems first.
• If the problem still persists, we will address 

it later.
• We will zoom in on the spike in the throttle 

signal that occurs when we first start the 
engine and commence charging.

20

The current ramps 
up after the engine 
speed has reached 

1800. This is 
correct.

The throttle is wrong 
here. There should 

t b th ttl i l

Want the throttle to 
ramp up here, after the 
engine has reached a 

certain speed.

not be a throttle signal 
when the engine rpm 
is too low.
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21

(3) Since actual current 
is less than desired 
current of zero the

(2) Generator current is 
negative because it 

uses battery power to 
speed up and start the 

engine.

current of zero, the 
control loop increases 

the throttle.

(1) During this time, 
Stateflow sets the 

desired current to zero.

Charging Current Control
• We see that the desired generator current is zero but 

the actual generator current is negative.
• Because the actual current is less than desired, the 

22

,
current control feedback loop increases the throttle. 
This is incorrect because the engine is not yet on.

• We need to disable the throttle until the engine 
reaches the desired speed.

• Create another Stateflow output called p
Throttle_Enable.

• Modify the Stateflow diagram as shown next.
• Modify the Controller as shown next.
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23

Line added.

Line added. Disable the 
feedback when we want 

to stop chargingto stop charging.

Line added. Enable the feedback 
loop once the engine has reached 

the desired operating speed.

24

Modified.

Modified.

Modified.

Modified.
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25

Big spike.
This can’t be 

good.

Zoom in.

26

The problem where the 
throttle was non-zero 

before the engine was up 
to speed has been fixed.

This big spike is a 
new problem. Zoom 

in further.
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27

Lots of 
problems!

(2) The generator current is negative 
because it is the generator was 
using battery energy to keep the 

engine at 1790 rpm (the throttle is 
not yet non-zero).

(3) Because the gen 
current is less than the 
desired current and the 
feedback loop is 
enabled, the throttle 
signal goes to the max 
limit. 

(1) Speed huts 1790 rpm 
so current feedback 

loop is enabled.

Current Control
• Since the generator uses power to speed 

up the engine, when we close the loop the 
throttle signal maxes out because it tries to

28

throttle signal maxes out because it tries to 
change the generator current from a 
negative current to the desired current, 
which is zero or positive.

• We can fix this problem by using the 
throttle to assist the generator in speeding 
up the engine.

• We are not yet using the engine on signal.
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Current Control
• We will modify the control to do the following.
• For engine speeds below 800 rpm, the engine is 

off.

29

• When the engine speed hits 800 rpm, turn on 
the engine.

• Apply a constant throttle to speed up the engine.
• We will determine this constant experimentally.
• We will need to add “Engine On” and• We will need to add Engine_On  and 

“Throttle_Offset” Signals to the Stateflow chart.
• Modify the Stateflow chart as shown:

30

(1) Initialize Values.

(4) We do not have an 
idle circuit yet. 
However, with no 
external throttle 
applied the speed will

(3) When we disable 
the current feedback

applied, the speed will 
return to the idle speed. 
Turn off the engine 
once it is just slightly 
above the idle speed.

(2) When the engine speed reaches 800 
rpm, turn on the engine and apply a 
throttle of 0.2.

the current feedback 
loop, remove the 
offset to allow the 
engine to slow down 
to idle.
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Controller Modifications
• The current feedback loop has been 

modified as shown:

31

Controller Modifications
• The Stateflow chart has been modified as 

shown:

32

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



17

Top-Level Model Changes
• The opt level model has been modified to add 

the connection for the Engine_On signal.

33

34

Looks good. Zoom 
in here.

Still a bit of hash.
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35

What is this spike? p
Look at this later.

Looks good. Zoom 
in here.

• This looks good and is acceptable. But 
there are a few interesting glitches that we 
wish to understand or examine.

36

Zoom in here

Step change in 
throttle. May want to 
slow this down. Step 
changes break things.
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37
(1) Because the throttle is 
too big, the engine speed 
is larger than needed, so 
the generator applies a 
negative torque to slow it 
down. The result is a small 
amount of charging. Note 
th t th i d l

(2) What is this? This 
is where the current 
feedback loop kicks in.

that the engine speed loop 
is closed here.

(3) Do not understand this. 
Future work.

• The engine turnoff transient is shown below.
• There is a slight bump in charging current when 

we turn off the engine.

38

What is this bump? Let’s 
Zoom in. 
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39

Not sure what this bump 
is in generator current.  

40
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Controller
• Overall the current feedback and engine speed 

lops are working well. 
• There are a few things that we do not

41

• There are a few things that we do not 
understand, and need to understand.

• Even though this is appears to be a fairly simple 
system, we see that it does require a bit of 
attention to control even a simple system.

• We will add more later in the course.

Controller
• The last thing we will do is add a rate 

limiter to the throttle signal.
• At the moment this does not appear to

42

• At the moment, this does not appear to 
cause a problem. However, step changes 
ion any power or energy source can cause 
problems, in this case a torque spike.

• So, we will eliminate this step change with 
a rate limiter.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



22

Current Control Problems
• Add a rate limiter to the throttle signal. 
• This will add delay to our current control 

43

y
circuit that may cause an instability.

• Specify the rate as ±1 per second. (Guess)
• Too fast of a slew rate will pass the spike.
• Too slow of a rate will cause instabilities.

44

Looks 
Good!
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45

Engine 
Turn On

This used to be aThis used to be a 
step. 

This used to be a 
step. 

46

Engine 
Turn Off

This bump is still 
here.

This used to be a 
step. 
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Run Simulations and Verify
• You might want to use the accelerator or 

rapid accelerator to speed up the longer runs.

47

This is where we 
specify using an 
accelerator or not.

Run Simulations and Verify
• For simulations with long runs and short 

sample times, the scope plots will display a 
large amount of data and on occasion

48

large amount of data, and on occasion, 
MATLAB will run out of memory. 

• To prevent this problem, we can add a sample 
time to the scopes.

• Note that this will not work for scopes set up 
with Signal & Scope Manager.
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Sample Time
• In the Init File, define a variable

49

• Open a scope and click on the parameters icon:

Click here.

Sample Time
• Set the Sample Time to variable Sample_Time

as shown:

50

Specify sample 
time here. 

Enter variable 
Sample_Time here, 
which we define in 
the init file as 0.1 
secondsseconds.
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Sample Time
• By setting the sample time to 0.1 seconds, we 

greatly limit the amount of data required to 
display a plot

51

display a plot.
• Without this setting, the plot will use a huge 

amount of data, especially if step sizes 
become very small.

• Set the sample time for all scopes in your 
system.

Lecture 7 Demo 1
• Demo of System running the FU505 drive 

cycle five times

52

Demo___________

• Demo of model running the Consumer 
Reports drive cycle

• Demo of model running the Trip EPA

Demo___________

• Demo of model running the Trip EPA 
Combined drive cycle.

Demo___________
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FU505 Five Times

54

Voltage 
S ik

Voltage 

Consumer 
Reports 
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g
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55

Trip EPA Combined

Lecture 7 Exercise 1
• In the consumer reports drive cycle, we noticed 

large voltage spikes. The spikes we observed in 
the previous Consumer Reports slide are 
reduced because we used a large sample time 
and since the spikes were so fast. 

• The next slide sets the Sample_Time to 0.01, 
and we see huge voltage spikes.

• Figure out the reason for the battery voltage 
spikes and update the model to prevent the 
problem, and show the drive cycle with the 
problem eliminated. Demo___________
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Advanced Model-Based-System 
Design

Lecture 8: Post ProcessingLecture 8: Post Processing

Post Processing
• Now that we have a model for the entire 

car, and a simple controller, we would like 
to make some efficiency calculations for

2

to make some efficiency calculations for 
the vehicle.

• These calculations will be done after the 
model runs.

• We will need to collect data from the 
simulation, and then use MATLAB to 
perform calculations on the data.
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Post Processing
• We would like to calculate the fuel efficiency of 

our vehicle.
• If our engine used gas, this would be easy: 

3

g g , y
efficiency (mile per gallon) is the distance 
travelled divided by the amount of fuel used in 
gallons.

• You might then ask, what about the electrical 
energy used to move the car? If we ran off the 
battery only, does the car get an infinite value of 
efficiency (mpg) since no gas is used?

Post Processing
• Furthermore, we will be using a fuel other than 

gasoline.
• In the future, vehicles will run off of a variety of 

diff t f l d ld lik t b bl t

4

different fuels, and we would like to be able to 
compare the efficiency of all of these vehicle in an 
apples-to-apples comparison.

• We will use a method called miles per gallon, gas 
equivalent (mpgge) where the mileage of our vehicle 
is converted to the equivalent miles per gallon hadis converted to the equivalent miles per gallon had 
reformulated gasoline (RFG) been the fuel stock.

• We will also use state of charge correction to include 
the energy used from the battery.
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Post Processing
• For our vehicle, we will assume that we are using 

20% biodiesel fuel (B-20).
• This is 20 percent biodiesel, 80 percent petroleum 

5

p , p p
diesel. 

• We will first calculate conventional mpg for B-20.
• This is easy: mpg = distance travelled divided by 

the amount of B-20 fuel consumed (in gallons)
– We already know the amount of fuel consumed in grams.We already know the amount of fuel consumed in grams.
– We do not know how far the vehicle has travelled in 

miles.

Post Processing
• We can have the model calculate the 

distance travelled by integrating the 
vehicle speed

6

vehicle speed.
• We will convert the fuel consumed in 

grams to fuel consumed in gallons in the 
post processing file.

• Add an integrator and gain block to the 
Rear Diff and Body subsystem as shown.

• Add the distance signal to the diagnostics 
bus as shown.
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Post Processing
• To convert from meters to miles per hour, 

divide meters by 1609.34.

7

Post Processing
• We are already calculating fuel consumed in 

the model, so we do not need to add a signal 
for that

8

for that.
• In order to use the data calculated during the 

simulation in a MATLAB file, we need to save 
the calculated data in the MATLAB workspace. 

• This is done with the MATLAB To Workspace
part (Simulink / Sinks library).

• We will place the To Workspace parts in the 
Display_and_Logging subsystem:
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Display_and_Logging Subsystem
• For the moment, we will only place two To Workspace 

parts.
– One will be used to log the vehicle speed, and simulation 

9

time.
– The second will only be used to log vehicle distance.
– The second one will be copied for all of the other signals we 

want to log.

Speed and Time
• Double-Click on the To Workspace block 

for the Vehicle_Speed_mph signal. Fill in 
the parameters as shown:

10

The data will be saved in 
the MATLAB workspace 
with the variable name 
Vehicle_Speed_mph_str.

Date for the entire 
simulation will be savedsimulation will be saved 
in the structure.

No decimation. Every 
data point will be saved.
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Speed and Time 11

To reduce the amount of data we save in 
the workspace, we will use the sample 
time to specify that we only save a data at 
a fixed and specified sample rate. Variable 
Sample_Time was specified previously in 
the init file as 0 1 seconds Since all ofthe init file as 0.1 seconds.  Since all of 
our scopes and To Workspace blocks will 
use  the Sample_Time variable, we can 
change the data collection sample rate for 
all of our blocks at the same time.

We will save this variable as a structure 
with time. This will save both the data for 
the signal and the time vector at which 
the data points were collected.

Although we will not be using the time 
vector in the mpgge calculation, we will 
use it later for more involved post 
processing.

Post Processing File
• We can extract the time and the vehicle 

speed data from the structure by using the 
lines below in the post processing file:

12

• Note that the post processing file is just an p p g j
m-file that we run after the simulation has 
been completed.

• Save the file as Vehicle_Post_File.m
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Distance_Miles
• The Distance_Miles signal will be saved 

as an array:

13

• Notice that we are usingNotice that we are using 
the Sample_Time variable 
to reduce the size of the 
array.

• The format is specified as 
an array. A 1-dimensional y
array will be created that 
contains only the data for 
the specified signal.

To Workspace
• When you close the dialog boxes, you will notice 

that the To Workspace blocks no display the 
variable name under which the data will be saved in 

14

the MATLAB workspace.
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Post Processing
• Eventually we will add To Workspace blocks for 

all sigals in our model. 
• For the MPGGE calculation, we need the 

15

,
following signals:
– Battery_SOC
– Battery_Voltage_V
– Battery_Current_A
– Engine_Fuel_Consumed_g

• Copy the Distance_Miles To Workspace block 
for all of the other signals (they all will be saved 
as an array and use the Sample_Time).

Display and Logging Subsystem 16
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Post Processing File
• We will now create the post processing file 

for our model.
• The first thing we will do is define a few

17

• The first thing we will do is define a few 
constants for the conversion:

Constants
• Fuel heating values are the amount of energy 

contained in the fuel. Note that a gallon of 
diesel fuel contains more energy than a

18

diesel fuel contains more energy than a 
gallon of reformulated gasoline. This is one of 
the reasons why diesel costs more that 
gasoline.

• The heating values are in BTU/gal. (Sorry 
)about that…)
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Constants
• Remember that our battery model was a 

voltage source (referred to as the open 
circuit voltage)  in series with a resistor:

19

IBAT

VOC

RSeries

+

VBAT

-
VBAT = VOC + IBAT*RSeries

Constants
• To calculate the energy stored in the battery or 

the energy supplied by the battery, we need to 
know the battery open circuit voltage. 
I d l th i it lt i

20

• In our model, the open circuit voltage is a 
function of the battery state of charge, which 
changes during the simulation.

• Later we will calculate the battery open circuit 
voltage from an V-I plot generated from the 
modelmodel.

• For now, we will assume that the open circuit 
voltage is constant equal to 366 V.
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Constants
• We cannot just take energy from the battery and 

assume that it is free.
• Any energy take from the battery must be replaced 

21

y gy y p
or the battery will eventually become discharged. 

• If we do use some of the energy from the battery 
to move the vehicle, we need to know the amount 
of fuel that it will take replace that energy. 

• A conversion efficiency of fuel energy to electrical y gy
energy of 25% is assumed. (Later on, we may run 
simulations to verify this calculation).

Fuel and Distance
• The amount of B20 fuel consumed for the entire simulation is 

the last value saved in the Engine_Fuel_Consumed_g array.
• The fuel consumed is converted from grams to gallons by 

dividing by 3215. This conversion constant was provided by 

22

g y p y
Argonne National Labs for a specific type of B-20 used in the 
Challenge X competitions.

• The total distance travelled in the simulation is the last value 
saved in the Distance_Miles array.
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Battery State of Charge (SOC)
• If we remove energy from the battery 

during the drive cycle, we must calculate 
the additional amount of fuel required to

23

the additional amount of fuel required to 
replace it.

• If we added energy to the battery, we must 
calculate the amount of fuel required to 
produce that energy and subtract the fuel 
ffrom our total.

Battery State of Charge (SOC)
• The amount of charge added or removed from 

the battery is equal to the change in battery SOC 
times the battery amp-hour rating.

24

• We will assume that the ending battery SOC is 
less that the initial SOC, so that charge has 
been removed from the battery. 

• Thus, we will call this amount, 
Amp_Hours_Consumed:
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Battery State of Charge (SOC)
• The energy removed from the battery is equal to 

the Amp-hours consumed times the battery open 
circuit voltage. (Note that Amp-Hours times volts is 

25

equal to Watt-Hours.)
• Note that in our battery model, the open-circuit 

voltage source is the energy storage portion of the 
model. The series resistance accounts for battery 
losses.

Battery State of Charge (SOC)
• We now know how much electrical energy was 

used in moving the vehicle. To calculate the 
amount of fuel the vehicle would use to replace 

26

that energy, we divide by the the
Conversion_Efficiency.

• Finally, we will be using BTUs as the unit of 
energy for all post processing MPGGE 
calculations. To convert Watt-Hours to BTUs, 

lti l b 3 412multiply by 3.412.
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Battery State of Charge (SOC)
• Note that if, at the end of a simulation, the battery final SOC 

is less that the battery initial SOC, electrical energy will have 
been removed from the battery.

• In our calculation this will result in a negative value for the

27

In our calculation, this will result in a negative value for the 
Electrical_Energy_BTU.

• Since this energy was removed from the battery and used to 
move the vehicle, we need to add this amount of energy to 
the actual amount of fuel consumed by the vehicle.

• Since energy removed from the battery is calculated as 
negative energy we have to subtract this amount of energynegative energy, we have to subtract this amount of energy 
from the fuel consumed energy so that the two actually 
add.(This is done later when we calculate the total energy 
consumed.)

Fuel Energy
• Next we calculate the amount of energy contained 

in the fuel that was consumed by the vehicle.
• We will assume B-20. If we are using a different 

28

g
value, we use the fuel heating value for that fuel.

• We know the amount of fuel consumed in gallons.
• The fuel heating value is the amount of energy in 

BTUs a fuel contains in BTU per gallon:
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Total Energy
• The total energy is the electrical energy 

consumed plus the fuel energy consumed.
• As mentioned earlier if electrical energy is

29

• As mentioned earlier, if electrical energy is 
consumed, it is calculated as a negative 
quantity, so to add it to the total fuel 
consumed, we need to subtract: 

RFG Consumed
• We now know the total energy consumed by the 

vehicle for it to complete the drive cycle.
• Next, calculate the amount of reformulated 

30

,
gasoline (RFG) that would be required to supply 
the same amount of energy.

• Divide the total energy consumed (in BTS) by the 
fuel heating value of RFG in BTU per gallon:
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MPGGE
• Finally, to calculate the efficiency, divide the 

distance travelled by the amount of RFG 
consumed:

31

• Note that this is “gas equivalent” because we 
converted the energy into the amount of RFG 
required.

• The number is state of charge corrected because 
we included the amount of energy removed from 
the battery.

MPGGE
• Step 4 – Fuel Energy BTU

– Fuel_Energy_BTU = Fuel_Consumed_Gallons* 
133393 1102

32

133393.1102
• Step 5 – Total Energy BTU

– Total_Energy_BTU = Electrical_Energy_BTU + 
Fuel_Energy_BTU

• 133393.1102 BTU/Gal is the fuel heating value 
of B-20.of B 20.

• Awesome – We now know the total energy 
consumed by our vehicle over the drive cycle.
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Vehicle_Post_File.m File 33

Vehicle_Post_File.m File 34
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Msgbox
• The last thing we need to do is create a 

spiffy display for our calculations:

35

Post Processing File
• If you would like this file to run after every 

simulation, we can specify it as a callback 
that runs when the model stops..

36

• Right click on the model and
– Select Model Properties
– Select the Callbacks Tab
– Select StopFnc
– Enter the name of theEnter the name of the                                 

post processing file                                 
without the .m.
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Simulation Results 37

Demo___________

Open Circuit Voltage
• In our previous calculation, we assumed a 

value for the open circuit voltage.
• This value can be calculated from the

38

• This value can be calculated from the 
battery voltage and current data collected 
during the simulation.

• If you remember, our model for the 
battery, the terminal voltage is equal to the 
open circuit voltage plus the battery 
current times the series resistance:
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39

IBAT

VOC

RSeries

+

V

Battery Model

• The battery terminal voltage is a linear function

VOC

-

VBAT

VBAT = VOC + IBAT*RSeries

The battery terminal voltage is a linear function 
of the battery current.

• The equation is a straight line where the y-
intercept is the battery open-circuit voltage. 

Battery Open-Circuit Voltage
• We can determine the battery open-circuit 

voltage by plotting the battery voltage 
versus battery current (a V-I plot)

40

versus battery current (a V I plot).
• We can fit a first order polynomial to the 

measured data.
• The y-intercept of the fitted curve is the 

battery open-circuit voltage.
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Battery Open-Circuit Voltage
• The lines below plot the battery V-I curve:

41

Battery Open-Circuit Voltage
• The measured V-I curve for the FU505 drive cycle is:

42

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



22

Battery Open-Circuit Voltage
• We could eye-ball the curve and estimate that 

the open-circuit voltage is around 320 V. 
• Instead we will use a first order polynomial

43

• Instead, we will use a first-order polynomial 
curve fit to the measured data.

• We will use the MATLAB polyfit command:

Polyfit
• The polyfit function calculates a polynomial fit to the 

measured data.
• The value is returned in a polymomial.

Si k d f fi d fi h l i l i i h

44

• Since we asked for a first order fit, the polynomial is in the 
form poly= [a1 a2].

• The 1st order polynomial equation would be in the form  y = 
a1*x + a2.

• Thus, the second coefficient of the returned polynomial is 
the y-intercept, and in this example, the battery open circuit 
voltage.

• For the FU505 drive cycle, the open circuit voltage is 
calculated as 318.441. A bit off from our estimate of 366 V.
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Updated MPGGE Results
• With the updated Battery SOC, the 

MPGGE calculations are as shown:

45

Demo___________
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Advanced Model-Based-System 
Design

Lecture 9: Improving Simulation SpeedLecture 9: Improving Simulation Speed
Brake Models

Simulation Speed
• By now you should have noticed that our model 

has the annoying problem that at zero speed, 
the simulation becomes exceedingly slow.

2

• This is bothersome because:
– It takes so long to run.
– The simulation appears to run slowly when the 

desired vehicle speed is zero. (For some reason, this 
seems wrong. We expect the simulation to require 
more computation when the vehicle is performingmore computation when the vehicle is performing 
maneuvers rater than sitting still and not moving. 
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Simulation Speed
• The problem becomes obvious when we 

run the Consumer Reports City drive cycle 
which has high acceleration and

3

which has high acceleration and 
deceleration portions, and several portions 
at zero speed.

• The simulation runs fast during the 
acceleration and deceleration portions of 
the drive cycle, but slows to a crawl when 
the vehicle is at zero speed.

Simulation Speed
• We have been dealing with this problem with several 

different vehicle models for a long time.
• The method presented here to discover the problem may 

not present a method of how the solution to the problem

4

not present a method of how the solution to the problem 
was discovered.

• The solution was discovered as a result of the model 
used in this course, however, the realization of the 
solution took several models and several years (yes, we 
are slow). 
W t th d t di th f th• We suggest a method to discover the reason for the 
problem, but the method presented to discover the 
solution may not really describe the troubleshooting 
method that uncovered the solution.
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Simulation speed
• If we run the simulation with the Consumer 

Reports City Cycle (not the whole thing, it 
takes too long) and plot the

5

takes too long) and plot the
– Desired and actual vehicle speed
– Driver torque request
– Motor torque

• We might get some insight into the 
problem (or maybe not).

6Simulation runs 
very slow here, 
even in accelerator 
mode. 

Driver torque requestDriver torque request 
appears to be zero, 
as it should be. We 
will zoom in here.

Driver torque q
appears to be zero, 
as it should be. We 
will zoom in here.
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7

Vehicle speed is 
zero

Tiny oscillations in the driver 
torque request around zero.

Tiny oscillations in the motor 
torque around zero.

Simulation Speed
• We see that there are small oscillations (10-30

size oscillations) around zero.
• We conclude that in order to keep the vehicle 

8

p
speed at zero, the proportional feedback system 
(the driver block feedback loop) gives the 
vehicle a small negative torque bump to slow the 
vehicle down.

• This bump, however causes the vehicle speed to 
become slightly negative. The feedback 
controller detects this and gives the  motor a 
small positive torque bump to correct this.
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Simulation Speed
• The vehicle speed has tiny oscillations around 

zero speed, and the system and the system 
feedback system and motor use tiny positive and 
negative torque pulses to push the vehicle

9

negative torque pulses to push the vehicle 
speed slightly positive or slightly negative.

• Because there is no damping, the vehicle never 
settles down to zero.

• Tiny time steps are required because the 
MATLAB solver tries to get close to zero within aMATLAB solver tries to get close to zero within a 
specified tolerance.

• These tiny time steps make the simulation run 
slowly.

Simulation Speed
• You might ask, if this is a proportional feedback 

system, why do we not see the same problem 
when the vehicle attempts to maintain a constant 

10

speed at say 30 mph?
• A possible explanation is that the vehicle model 

has aerodynamic drag built into the vehicle solver.
• Drag increases as the square of the velocity. At 30 

mph the amount of drag is significant.
• To increase speed, a torque bump from the motor 

is necessary. If the vehicle speed is too high, aero 
drag will slow it down.
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Simulation Speed
• Thus, to maintain a constant speed only 

positive motor torque requests are 
needed Drag ends up decreasing vehicle

11

needed. Drag ends up decreasing vehicle 
speed.

• Thus, the torque request signal will not 
oscillate around some bias.

Solution 1
• So, we think we know the reason for the 

simulation to slow down when the vehicle 
speed is zero

12

speed is zero.
• A solution to this problem is to never allow 

the vehicle to reach zero.
• We will add a small constant offset to the 

desired speed in the driver block.
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Solution 1
• We see that we have added a 0.3 mph constant 

offset to the desired speed signal.

13

• With this modification, the simulation now runs very 
fast:

14

Speed never goes to 
zero, as designed.
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Solution 1 – Speed Offset
• Te simulation now take about a minute to run, 

where it used to take about 9 minutes.
• We do notice the offset as we see that the vehicle 

15

speed never reaches 0.
• The solution is acceptable, but could cause 

problems when we add a shifter to our system 
and have the vehicle go forward and reverse.

• The solution does support our hypothesis that the pp yp
driver feedback loop may be the cause of the 
problem.

Solution 2
• Since we are hypothesizing that the driver 

block is emitting small positive and negative 
torque requests to keep the vehicle at zero

16

torque requests to keep the vehicle at zero 
speed, we come up with a new idea:
– Since tiny torque requests will not significantly 

move the vehicle, why not just prevent torque 
requests below a certain threshold from being 
emitted by the controlleremitted by the controller.

– We can do this with a dead zone block.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



9

Solution 2: Dead Zone Clipper
• Remove the offset we added previously.
• Add a Dead Zone block (Simulink / 

Discontinuities) to the controller as

17

Discontinuities)  to the controller as 
shown.

Solution 2: Dead Zone Clipper
• The properties of the Dead Zone Clipper are:

18
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Solution 2: Dead Zone Clipper
• The Dead Zone clipper is set to eliminate any 

torque requests between -0.001 and +0.001. 
• These limits were chosen as a first guess

19

• These limits were chosen as a first guess.
• The values are small enough to not 

significantly affect the torque request.
• However, ting torque requests will be 

blocked, and hopefully solve the problem.blocked, and hopefully solve the problem.
• When we run this solution, the model appears 

to run as fast as the first solution.

20

Speed offset now gone. 
Simulation runs fast.
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Solution 2 – Dead Zone Clipper
• The Dead Zone solution fixes the simulation speed 

problem, and does not give the vehicle speed an 
arbitrary constant offset.

21

• Simulation speed tests were run using the Consumer 
Reports City cycle. The time to complete the 
simulation for the various methods were:
– No Solution – Original Model: 529 Seconds
– Constant 0.3 mph Offset: 70 Seconds
– Dead Zone Clipper: 67 Seconds

• We will use the Dead Zone Solution because it does 
not ad an arbitrary offset to the vehicle speed.

Brake Models
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Brake Models
• At this point the only method of slowing the 

vehicle is to use the motor to apply a negative 
torque to the rear wheels.

23

• The benefit is that we recapture all of the 
possible regenerative braking energy available.

• There are two problems with this method, one 
fairly obvious, the other a bit subtle.

• The first problem is that if the motor, motor p ,
controller, or powertrain fail, there is no way to 
slow the vehicle. Thus, we need a backup.

Brake Models
• The second, less obvious problem, is that the 

motor slows the vehicle by applying a negative 
torque to the powertrain.  This raises two issues:

24

– If a tire breaks free, the wheel will actually spin at high 
speed in the opposite direction of vehicle movement. 
(With mechanical friction brakes, when there is too 
much braking torque, the wheel just locks).

– At low vehicle speeds, since braking applies a 
negative torque, if we are not careful, pressing the g q p g
brake could cause the vehicle to move backwards. 
(To prevent this problem, we do not allow 
regenerative braking below certain vehicle speeds.)
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Braking Methods
• We will show two brake models:

– The first method uses a torque actuator and 
applies a torque to the half shaft in the

25

applies a torque to the half shaft in the 
opposite direction of tire rotational velocity. 
(This method has the problem of causing the 
tire to spin backwards during hard braking).

– The second method uses a friction clutch to 
apply a torque between the half shaft and an pp y q
immovable object. (This method locks the 
wheel during hard braking.)

Braking Methods
• Both methods will cause problems around 

vehicle speed.
– This causes the simulation to run slowly just as

26

– This causes the simulation to run slowly just as 
it did with the problem in the driver feedback 
loop around zero vehicle speed.

– We will employ a similar solution to mitigate this 
problem.
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Method 1 – Opposing Torque
• The first model will sense the direction of 

rotation and apply a torque in the opposite 
direction The basic model is shown below:

27

direction. The basic model is shown below:

SimDriveline motion 
sensor used to 
measure rotational 
velocity.

1-D Lookup 
table.

Method 1 – Opposing Torque
• The 1-D lookup table is used to output the direction of 

rotation. 
• If the rotational velocity is negative, the table outputs 

a 1 If the rotational velocity is positive the table

28

a -1. If the rotational velocity is positive, the table 
outputs a +1.

• This lookup table is used to switch the direction of 
applied torque based on the direction of shaft 
rotation.
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29
Torque actuator 
applies braking torque 
to the shaft.

Maximum available 
braking torque.Braking input signal, expected to 

be between 0 and 1.

Method 1 – Opposing Torque
• There are some issues with this model, some of 

which might be obvious.
• First, when the shaft is near zero speed, we can 

30

, p ,
foresee the output of the motion detector 
flipping back and forth around zero. As it flips, 
the output of the lookup table will flip causing 
the braking torque to flip in the opporite
direction.

• We should expect that the braking torque will 
oscillate rapidly between positive and negative 
torques as the tire speed reaches zero.
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Method 1 – Opposing Torque
• To prevent wild oscillations, we will slow down 

the output of the lookup table with a rate limiter.

31

Method 1 – Opposing Torque
• The rate limiter has positive and negative slew 

rates of 10 per second.
• Since the output of the lookup table flips 

32

p p p
between -1 and +1, the brake can swing from 
full positive torque to full negative torque (or 
vise versa) in 0.2 seconds (2/10).

• This reduce slew rate prevents wild oscillations 
in the applied braking torque when the tire 
speed is zero.
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Method 1 – Opposing Torque
• Next, we need to limit the controlling input signal to be 

between 0 and 1. 
• We expect this range of inputs, but we will add a 

saturation block just in case the user of the brake

33

saturation block just in case the user of the brake 
subsystem makes a mistake:

Saturation block added.

Method 1 – Opposing Torque
• If the user slams on the brakes, we do not 

want to apply a step change in torque to 
the brakes

34

the brakes.
• Large step changes in torque brake shafts.
• To prevent this, we will add a rate limiter 

that reduces the rate at which we can 
apply torque with the brake.

• We will use a positive slew rate of 4 and a 
negative slew rate of -10.
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Method 1 – Opposing Torque
• The control signal goes from 0 to 1. Having a 

positive slew rate of 4 means that the signal will 
travel from 0 to 1 in ¼ seconds, or 250 ms.
Th t i d t th t h i t t

35

• The auto industry says that humans interpret a 
response time of 250 ms as instantaneous.

• Thus a slew rate of +4 on the brake signal will not 
appear to have a delay to a human operator.

• A negative going slew rate of 10 was chosen so 
h h b k l i kl hi ithat the brake releases quickly, as this is not a 

change in torque that will  break a shaft. (Re 
removal of torque rather than applying a step 
increase in torque.)

Method 1 – Opposing Torque
• The rate limiter is added as shown below:

36

Rate limiter block 
added.
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Method 1 – Opposing Torque
• The last problem we need to address is the same 

problem we observed with the driver feedback loop.
• When the vehicle speed is zero, the previously 

h b k d l ld th i l ti t

37

shown brake model would cause the simulation to 
run extremely slowly.

• The cause is the same. The brake would attempt to 
hold the vehicle at zero speed by applying a torque 
to the shaft that would oscillate between positive to 
negative valuesnegative values.

• The solution is the same. We will use a lookup 
table to reduce the torque to zero when the vehicle 
speed is zero.

38

Absolute value block.

1-D lookup table.
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Method 1 – Opposing Torque
• The 1-D lookup table reduces the braking torque to 

zero at low speeds.
– For speeds 3 mph and higher, the output of the table is 1 

and the braking torque is the torque requested by the

39

and the braking torque is the torque requested by the 
driver.

– As the vehicle speed drops from 3 mph to 1 mph, the 
braking torque is linearly reduced to zero.

Method 1 – Opposing Torque
• We will place the brake model within a subsystem 

so that we can use it several times within the same 
model.

40
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Brake Testing
• We will test the brake with the testing harness 

shown below:

41

Brake Testing
• The basic idea is to give a large inertia an initial 

velocity with the IC block and then use the brake 
to slow the speed down to zero.

42

• We will also do a lot of testing with the brakes in 
the vehicle model. However, it will take a lot of 
work to incorporate the brake into our model, so 
we will use the testing harness as a preliminary 
test.

• The blocks have the values shown on the next 
slide.
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43

Brake Testing
• For an Initial condition of -1000 rad/sec, the plot 

of the speed is shown below:

44

We see that the speed 
decreases (in absolute 
value) and eventually the 
shaft locks at 0.

Demo___________
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Brake Testing
• For an Initial condition of +1000 rad/sec, the plot 

of the speed is shown below:

45

We see that the speed 
decreases and eventually 
the shaft locks at 0.

Demo___________

Brake Model – Method 2
• The second method uses many of the same 

components as the first method except that we use a 
clutch rather than a torque actuator:

46
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Method 2
• This model uses a friction clutch to apply 

torque in the form of friction between the 
rotating shaft (input port of the brake) and

47

rotating shaft (input port of the brake) and 
an immovable object (in this case the 
housing).

• The housing can be thought of an in 
infinite inertia. It takes in infinite amount of 
toque to make it spin.

• The properties of the friction clutch are 
shown on the next slide.

Brake Method 2
• The applied torque is 

equal to the normal 
force times the times 
the radius of the

48

the radius of the 
friction surface times 
the number of friction 
surfaces. In our case 
the peak torque we 
can apply is 6000 Nm, 
the same as in 
method 1.
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Clutch Model
• The clutch has a pressure input (P).
• Allowable values are 0 to 1. 

A th i l f 0 t 1

49

• As the pressure signal goes from 0 to 1, 
the applied frictional torque goes from 0 to 
6000 Nm (for our settings).

• Next, we will test this brake using the 
same harness we developed earlier.

Brake Testing – Method 2
• We will test the brake with the testing harness 

shown below:

50
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Brake Testing
• For an Initial condition of -1000 rad/sec, the plot 

of the speed is shown below:

52

We see that the speed 
decreases (in absolute 
value) and eventually the 
shaft locks at 0.

Demo___________
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Brakes
• The two models appear to behave in a 

similar fashion.
• We will use the clutch model in the

53

• We will use the clutch model in the 
vehicle.

• Don’t ask why….. 

Brake Testing
• For an Initial condition of +1000 rad/sec, the plot 

of the speed is shown below:

54

We see that the speed 
decreases and eventually 
the shaft locks at 0.

Demo___________
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Advanced Model-Based-System 
Design

Lecture 9:Lecture 9: 
Brakes Part 2: Brake Controller

Incorporating the Brake Model
• Now that we have a mechanical friction brake 

model, we need to incorporate the brake mdoel
into our vehicle. This will require three steps:

2

– Connecting the brakes to the half-shafts
– Modifying the driver model to emit acceleration and 

braking signals.
– Designing a brake controller so  choose between the 

foundation brakes (mechanical friction brakes) and 
the regen braking (the electric motor).the regen braking (the electric motor).
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Connecting the Brakes
• The brakes are connected to the rear half-

shafts (the shafts between the rear 
differential and the wheels

3

differential and the wheels.
• We will start with model Lectue9_Model3 

that we modified in Lecture 9 and 
improved the simulation speed.

• Save this mode as Lecture10_Model1.
• Add the mechanical brakes as shown:

4
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Connecting the Brakes
• The brake model has:

– Been resized to fit in a small space.
– Two Inports that are labeled as “1”:

5

p

Inport 1.

Inport 1.

Inports
• We notice that both Inports are labeled as 

port 1. 
– This means that the ports are the same port

6

– This means that the ports are the same port. 
The Rear Diff and  Body subsystem will 

only have a single Simulink (not two).
– We can use these duplicated Inports instead 

of using From and Goto blocks.
– The duplicated port was created using the– The duplicated port was created using the 

following procedure.
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Inports
• Place a single Inport in your drawing:

7

Inport 1 
added here.added here.

Inport 1 not  
added here.

Inports
• Right-click and drag the Inport you want to 

duplicate:

8

Right-click on thisRight click on this 
Inport and drag it 
somewhere.

Dragged Inport:
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Inports
• Drag the port 

next to the lower 
brake 

9

subsystem and 
release the 
mouse button.

• Simulink will ask 
if you want to 
C fCopy of 
Duplicate the 
port.

Inports
• Selecting Copy will create a new port (number 2 

in this case) and will name it with the same 
name as the original port and append a 1 to the 

10

name.
• Selecting Duplicate Inport will create a port with 

the same number (1 in this case) and will name 
it with the same name as the original port and 
append a 1 to the name. 

• Duplicating a port does not create a new port. It 
creates a connection to an existing port without 
using From and Goto blocks.
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Inports
• Select Duplicate Inport and connect the 

port as shown:

11

Inports
• When we go top-level block diagram, we will see 

that the Rear Diff and Body subsystem only has 
a single Brake_Request input:

12

Single Simulink 
input.
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Driver Model
• We now need to update the driver subsystem.
• The driver block knows what the desired and actual 

vehicle speeds are and emits the driver torque 

13

p q
request to try to make the actual vehicle speed 
equal the desired speed:
– The emitted driver torque request is a number between -1 

and +1. 
– If the vehicle speed is too slow, the driver block emits a 

positive signal to accelerate the vehiclepositive signal to accelerate the vehicle.
– If the vehicle speed is too high, the driver block emits a 

negative signal to decelerate the vehicle.

Driver Model
• Thus, we see that positive driver torque 

requests are acceleration requests and 
negative torque requests are braking requests

14

negative torque requests are braking requests.
• We can easily split the driver torque request 

into two separate signals:
– The driver accelerator request which are the 

positive values of the driver torque request signal.
– Driver brake request which are the negative values 

of the driver torque request. 
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Driver Model
• We will use saturation blocks to split the signal in 

half. The Driver_Accel_Request is the positive 
portions of the driver torque request signal.

15

Driver torque request signal. It has 
both positive and negative values. 

Driver_Accel_Requests are always positive. 
The sat block passes only the positive 
portions of the driver torque request.

Driver Model
• The Driver_Brake_Request signal is the negative 

portions of the driver torque request signal.

16

Driver_Brake_Requests are always 
positive. The sat block passes only the 
negative portions of the driver torque 
request and then we multiply by -1 because 
the brake model requires a positive signal 
as well.
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Driver Signals
• Note that:

– A positive value in the Driver_Brake_Request
means slow down the vehicle.

17

means slow down the vehicle. 
– A positive value in the Driver_Accel_Request

means speed up the vehicle. 
• These two signals are one step in preparing 

our model for the Hardware-in-the-Loop (HIL) 
i l ti ill d l t h th tsimulations we will do later where these two 

inputs will come from actual brake and 
acceleration pedals.

Driver Block
• Also note that our driver block now has a 

single output.
– The Driver Accel Request and

18

– The Driver_Accel_Request and 
Driver_Brake_Request signals are not 
contained in the Vehicle_System_Diagnostics
bus.
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Brake Controller
• The meat of this section is the development of a 

brake controller.
• We have both regen brakes (using the electric 

19

g ( g
motor to slow down the vehicle) and foundation 
brakes (mechanical friction brakes).

• Foundation brakes result in 100% energy loss
all of the braking energy goes into generating 
heat.

• Regen braking allows you to recapture some of 
the vehicles kinetic energy and store it in the 
battery.

Brake Controller
• Several different concerns will be included in our 

braking control strategy:
– Fuel efficiency – We will create a strategy that uses 

regen braking before foundation brakes so that we 

20

maximize the energy we recapture.
– Safety

• Both regen and foundation brakes are required in case one 
method fails.

• We need to prohibit regen barking when the battery state of 
charge is too high (When the battery is charged, it cannot 
accept charge)accept charge).

– Driver feel – We will be switching between regen and 
foundation brakes as the vehicle changes speed. We 
do not want the driver to notice a difference as we 
switch between the two methods.
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Brake Controller
• We will add a new subsystem to the 

Controller called 
Acceleration and Braking

21

Acceleration_and_Braking
• The input to this subsystem will be the 

Vehicle_System_Daignostic bus.
• The Outputs of the system will be: 

– Motor_Torque_Request (responsible for _ q _ q ( p
acceleration and regen braking).

– Brake_Request (foundation brake signal)
• The Controller is shown on the next slide:

22

Added subsystem.
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Accel and Brake Controller
• An enlargement is shown below.
• Note that the outputs of the 

Acceleration_and_Braking subsystem are also the 
t t f th C t ll b t

23

outputs of the Controller subsystem. 

Accel and Brake Controller
• Before we build the subsystem, we note that the 

motor is responsible for both acceleration and 
regenerative braking.

24

• Thus, the motor torque request signal is a 
combination of the acceleration request and the 
braking request.
– A positive acceleration request will be passed to the 

motor as a positive torque request.
A iti b ki t ill b d t th t– A positive braking request will be passed to the motor 
as a negative torque request.
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Acceleration Signal
• We will first look at extracting the appropriate signals from the 

bus and forming the Motor Torque Request Signal. The 
model is shown below:

25

• The Driver_Accel_Trequest is passed directly on to the motor 
as the motor is the only component responsible for 
accelerating the vehicle. Thus, we will not modify the signal 
(yet… Later we may do some signal conditioning on the 
signal to prevent damage to the vehicle to do driver 
enthusiasm…)

Acceleration Signal 26

• Note that we can add the accel request to the brakeNote that we can add the accel request to the brake 
request because when there is a brake request the accel
request is zero, and when there is an accel request the 
brake request is zero. 

• Even though motor accel requests are positive and 
motor regen requests are negative, they wioll not cancel 
when we add them because because one is alwayswhen we add them because because one is always 
zero.

• Thus, we can form the complete motor torque request 
signal by adding together acceleration and braking 
requests.
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Braking Method
• We will now create a simple braking metho to 

increase energy recovery.
– When the driver braking request goes from 0 to 50% 

27

pedal position, the regen braking request will go from 
0 to 100%. That is, we will ask for full regen braking 
when the brake pedal is 50% depressed.

– When the driver braking request goes from 0 to 25% 
pedal position, No Mechanical brake request will be 
generated. 

– When the driver braking request goes from 25 to 
100% pedal position, the foundation braking request 
will go from 0 to 100%. 

Braking Method
• This method:

– Allows us to use 100% regenerative braking 
for light braking requests.(No foundation

28

for light braking requests.(No foundation 
brakes.)

– Uses both the foundation and regen brakes 
for safety through the use of both braking 
systems at the same time.

– Creates a dead spot in the brake pedal withCreates a dead spot in the brake pedal with 
no braking regen braking is disabled (whill wil
happen quite frequently. Need to fix this.)
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Braking Method
• We will use look-up tables to implement 

this method. The Simulink block diagram 
is shown below:

29

Braking Method
• The parameters for the two look-up tables are:

30
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Braking Method
• Note that a negative brake request is 

passed to the motor as a negative torque 
request

31

request.
• We have now created a simple braking 

controller.
• The last thing we need to do is connect 

the Brake_Request and 
Motor_Torque_Request signals at the top-
level block diagram:

32
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Brake Model Test
• To test the braking method we will run the FU505 

model and plot:
– Vehicle, Passenger Tire, and Driver Tire Speeds

33

– The Driver_Accel_Request and Driver_Brake_Request
– Battery Voltage
– Motor and Generator Currents
– Battery SOC
– Regen Brake Request and Foundation Brake Request

• Show tat your model uses both regen abd
foundation braking.

Lecture 10 Demo 1 34Demo___________
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Braking Results
• Note the following from the results of the 

previous simulation:
– We successfully split the driver torque request

35

– We successfully split the driver torque request 
into acceleration and Braking requests.

– For the FU505, most of the braking is done 
through regen braking (which suggests that a 
25% pedal throw is only needed for this drive 
cycle.cycle.

• Just for fun, run the Consumer Reports 
City cycle and observe the amount of 
regen and foundation braking:

Braking Results
• The Consumer Reports Drive Cycle has 

instances of much harder  acceleration 
and braking than does the FU505

36

and braking  than does the FU505.
• The simulation crashes after a while due 

to too many zero crossings, which 
suggests that the solver is having trouble 
simulating the system.

• We do see that there are more foundation 
braking requests than in the FU505 cycle 
because of the heavier braking.
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37

More foundation 
braking.

Braking Problem
• We do notice a problem with the simulation now.
• We see this hash that we did no see earlier.

38

What is this.
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Lecture 10 Exercise 1
• What is the “hash” that you are seeing in 

the previous slide?
• What is the cause of the problem?

39

• What is the cause of the problem?
• Determine a way to fix the problem and 

demo the Consumer Reposts City drive 
cycle showing that the problem has been 
eliminated.

Demo___________

Lecture 10 Exercise 2
• In Lecture 8 we calculated the fuel efficiency of a 

model that used only regen braking to slow the 
vehicle.

40

• In this lecture, we have now added foundation 
brakes, which can only reduce the efficiency of 
our vehicle.

• Compare the efficiency of your vehicle from 
lecture 8 to the efficiency of this vehicle using of 
the FU505 and Consumer Reports City drive 
cycles.

Demo___________
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Regen Braking and SOC
• As the battery SOC increases, the battery’s capability 

of accepting charge decreases. (A fully charged 
battery cannot accept charge.)

41

• There are two things we need to consider:
– Our control strategy needs to be designed (optimized) so 

that the battery remains somewhat discharged so that we 
can always take advantage of regen braking (we will not 
address this here).

– If the battery SOC becomes too high, we need to disableIf the battery SOC becomes too high, we need to disable 
regen braking.

• We will now reduce and, if necessary, disable regen 
braking if the Battery SOC becomes too high.
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Advanced Model-Based-System 
Design

Lecture 11:Lecture 11: 
Partitioning the System

High-Level Control

Incorporating the Brake Model
• We now have a fairly large and complex system.
• We would like to arrange it more like a classical 

control system and also arrange it to easily 
facilitate deploying the models on our Hardware

2

facilitate deploying the models on our Hardware-
In-the-Loop (HIL) system.

• We would like to set up the system in the form of 
a controller and a plant. In this case the plant is 
everything in our vehicle model except for the 
controller and driver blockcontroller and driver block.

• The controller receives commands from the 
driver block and coordinates the subsystem 
compoonents inside theplant.
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Partitioning the System
• We would like to set up a classic-looking control 

system.
• We will have the driver subsystem interface to 

3

y
the controller, and then the controller interface to 
the plant which contains all of the other 
subsystem components of the vehicle except the 
logging and visualization subsystem.

• We will start with the last model developed in 
Lecture 10 and rename it as Lecture11_Model1.

• This model is shown next:

4
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Partitioning the System
• Separate the subsystem components as shown:

5

Partitioning the System
• We want to make a subsystem out of the 

Diagnostic bus, Battery, Electric Motor, 
Rear Diff and Body Generator Engine

6

Rear Diff and Body, Generator, Engine 
subsystems.

• Select all of these components and then 
right-click on one of the selected 
components and select Create 
SSubsystem:
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7

Partitioning the System
• When you select Create Subsystem, all of 

the selected subsystems will be grouped 
into a single subsystem

8

into a single subsystem.
• Rename that subsystem “Vehicle_Plant.”
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Partitioning the System
• We now need to do a fair amount of 

reorganization and rerouting of some 
control signals

9

control signals.

• We will start with the driver. The output 
signals will be grouped together in what 
we will now call the “Driver_Controls_Bus.”

• The model does not need to be modified, 
but is shown next:

Driver Block
• Note that the only reason the driver block needs the 

Vehicle_System_Diagnostiocs is because the feedback 
system that tracks a drive cycle needs to know the vehicle 
speed In a future lecture the driver block will have only

10

speed. In a future lecture, the driver block will have only 
outputs unless we implement a cruise control.
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Controller Modifications
• The Driver_Diagnostics will no longer be part of 

the Vehicle_System_Diagnostics bus.
• Instead, the driver control signal go directly to 

11

, g g y
the controller, and the controller issues the 
appropriate commands to the subsystem 
components based on the inputs provided.

• Modify the controller as shown next. The only 
change on the top level of the Controller is that 
the driver controls connect to the controller 
through a separate port.

Controller Top Level Changes
• The changes to the top level of the 

controller are shown next:

12

Ports replaced by Goto blocks. 
These signals will be placed in the 
Control Signals bus.Goto and From blocks 

added.

Driver_Cojntrol_Signals is now an input and goes 
directly to the Acceleration and Braking subsystem.
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Controller Top-Level Changes 13

Goto and From blocks 
added.

“Control_Signals” 
bus added.

Top Level Changes
• On the top level, we need to connect the 

Driver Controls Bus

14
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Vehicle_Plant Chaqnges
• We now need to make some changes in the 

plant.
• The only input to the Plant is the 

15

y p
Vehicle_Control_Signals bus.

• We will leave this signal as a bus because it will 
go to every subsystem in the Vehicle_Plant.

• Plus, we will be adding many more control 
signals in the future. Using the Control Signalsg g _ g
but will clean things up a bit.

• The Vehicle_Plant has been modified as shown 
next:

Vehicle_Plant
• Note that we are immediately assign a Goto block to the 

Control_Signal input.
• Note that we have also removed the Driver_Diagnostics

from the Vehicle System Diagnostics bus

16

from the Vehicle_System_Diagnostics bus.

• We will be adding additional signals to theWe will be adding additional signals to the 
Control_Signals bus, so we will leave it as a bus and 
then it will be an input to all subsystem blocks in the 
plant.
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Vehicle Plant – Battery Subsystem
• We will modify one plant subsystem at a time.
• At the moment, the battery has now control 

signals. This will change when we do our wake-

17

g g
up sequence for the vehicle.

• For now, we will add that Control_Signals bus as 
an input to the battery, and then terminate that 
signal inside the battery subsystem. This way, 
the control signals will be ready to use within the 
subsystem once the appropriate logic has been 
discovered.

Battery Model
• The battery has been modified by adding a new 

port to connect the Control_Signals but to:

18

• At the plant level, we connect the control signal 
bus to the battery Controls_Singal input:
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Plant Mods – Electric Motor
• The Torque Request for the electric motor 

will come from the Motor_Torque_Request
bus

19

bus.
• We will change the input of the 

Torque_Request port to a Control_Signals
port. Inside the model, we will need to 
extract the motor torque from the Bus.

• Inside the electric motor, we need to extract the 
Motor_Torque_Request signal from the bus:

Electric Motor 20

• And then connect this signal to the torque 
request portion of the model:
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More Changes
• We can make similar changes to all remaining 

subsystems within the Vehicle plant:
– For the Rear Diff and Body: replace the Brake Request 

21

input by the Control_Signals input and extract the 
Brake_Request signal inside the subsystem.

– For the Generator : replace the Generator_Torque input by 
the Control_Signals input and extract the 
Generator_Torque signal inside the subsystem.

– For the Engine: replace the Throttle and Engine_On inputs g p g _ p
by a single Control_Signals input and extract the Throttle 
and Engine_On signals inside the subsystem.

Plant Model
• We now have a pretty clean plant model:

22
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Top Level
• We can now connect the system together at the top level:

23

• This now looks like a classical control system top-level block 
diagram: 
– The controller gets its commands from the driver block and then– The controller gets its commands from the driver block and then 

issues commands to the plant.
– The controller monitors the plant output and modifies its output so that 

the plant achieves certain performance criteria.

Top Level
• For the moment, the Driver block needs the 

vehicle speed as well, and this signal is 
contained within the 

24

Vehicle_Systems_Diagnostics bus, so we need 
to connect this bus to the driver block as well:
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Top Level
• The last thing we need to do is modify the 

Display_and_Logging subsystem.
• We will place this subsystem at the top

25

• We will place this subsystem at the top 
level so that we can display and log 
signals in all three busses.

Display and Logging Subsystem
• This system now has three bus inputs.
• We will log every signal in all three 

busses

26

busses.
• You will need to rearrange some of the 

signals from one bus to another as signals 
that were originally in the 
Vehicle_System_Diagnostics bus have 
been moved to one of the other busses.
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Display and Logging Subsystem 27

Enlargements of each 
portion of this subsystem 
are shown ion the next 
few slides.

Display and Logging Subsystem 28
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Display and Logging Subsystem 29

Display and Logging Subsystem 30

You cannot see any of the 
signals in this slide. This 
portion displays all of the 
signals in the bus.
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System Test
• We will now run a test to see that we 

connected everything correctly.
• We have not changed the model

31

• We have not changed the model 
physically, so the results should be the 
same as in Lecture 10. 

• If there are differences, it is because we 
made a mistake in connecting signals.

System Test
• When we run a simulation, we get an error 

that says that we have an algebraic loop!

32
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System Test
• Upon further investigation, we find that the algebraic 

loop includes the SimDriveline Env, and clutch, and 
tire models.
It t t th t i th l t h

33

• It turns out that using the clutch can cause an 
algebraic loop.

• There are three ways to fix this:
– First Method: Do not use a clutch. The only place we are 

using a clutch is for the brakes. We can use the brake 
model that used the torque actuator rather than themodel that used the torque actuator rather than the 
clutch.

– Method 2: Add a memory block       somewhere in the 
mode to break the algebraic loop.

Clutch Algebraic Loop
• In the Simulation

/ Configuration 
Parameters

34

Change these to items to 
“warning.”

dialog box we can 
change the 
diagnostics for 
Algebraic loops 
from error to 
warning (This didwarning. (This did 
not work in this 
case…)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



18

System Test
• Pick the method you would like to use and 

run a simulation and vetrify that it 
produces the same results for the FU505

35

produces the same results for the FU505 
as in lecture 10.

Lecture 11 Demo 1
• Demo the working model of the rearranged system.

36
Demo___________
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Manual Controls
• Next, we would like to replace the driver 

block with manual controls. 
• Eventually we will drive the vehicle with

37

• Eventually, we will drive the vehicle with 
these controls in real-time.

• For now, we will just add acceleration and 
braking signals. 

• Later, we will add signals for turning on theLater, we will add signals for turning on the 
vehicle and the gear shift.

Driver Block
• We will replace the contents of the driver 

block with the manual controls shown below:

38
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Driver Block
• We did not delete the Desired_Vehicle_Speed

signal because it would require extra work on 
our part to search through the model and locate 

39

all instances of where this signal is is used.
• Instead, we set the driver speed to a constant of 

0 so that we can continue to use all of our plots 
and post processing files without modification.

• The new blocks used in the driver subsystem 
are Slider Gain blocks located in the Simulink / 
Math Operations library.

Slider Gain
• If you double-click on one of the slider gain blocks, you 

will notice that limits are specified:

40

• This part is a gain block that is controlled by the slider 
shown above. The limits on the slider are specified in the 
block.

• This is a gain block. The output is the input times the g p p
gain, where the gain is determined by the slider.

• Note that the slider can be changed during a simulation, 
allowing you to change the gain on-the-fly.
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Slider Gain 41

Lower limit of slider
Upper limit of slider 
gain

• Since the limits on the slider gain are 0 and 1, 
and the input to the slider is 1, the output of the 
slider varies between 0 and 1 as we move the 
slider

Lower limit of slider 
gain.

gain.

slider.
• We will use these sliders as the accelerator and 

brake pedals for driving our vehicle.

Driver Block
• Note that the driver block no longer needs the 

vehicle speed information, so we can delete the 
Vehicle_Systems_Diagnostics bus:

42
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Accel and Brake Pedals
• We would like to add some logic to protect 

the driver from himself and protect the 
vehicle from a rogue driver

43

vehicle from a rogue driver.
• We will ad some logic that prevents the 

accelerator pedal and brake pedal from 
being depressed at the same time.

Accel and Brake Pedals
• We will implement the following rules:

– If the brake pedal is depressed, the accelerator 
pedal signal is set to zero, even if the accelerator

44

pedal signal is set to zero, even if the accelerator 
pedal is being depressed. (We will always brake 
and disable the accelerator pedal whenever the 
brake pedal is depressed.)

– If the brake pedal is not depressed, the value of 
the accelerator pedal is passed to the system.p p y
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Controller Modifications
• The accelerator and brake signals are 

passed directly to the 
Acceleration and Braking subsystem that

45

Acceleration_and_Braking subsystem that 
is contained within the controller.

• We will add a signal conditioning block 
where the signals first enter the 
Acceleration_and_Braking Subsystem:

Acceleration and Braking Subsystem
46

• The contends of the Pedal_Conditioning
subsystem are
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Acceleration and Braking Subsystem
• We see that the Brake_Pedal signal is basically passed 

to the system with little modifications. 
• Saturation blocks are used to limit the signals from 0 to 1 

in case we make a mistake and put in too large of a

47

in case we make a mistake and put in too large of a 
signal.

• The Slew rate of the limiter is set to +/-10 per second to 
eliminate very sharp braking and acceleration requests.

• The threshold of the switch is set to 0.05. The switch 
sets the acceleration pedal signal to zero if the Brake 

d l i d d th 5% (th 0 05 th h ld)pedal is depressed more than 5% (the 0.05 threshold).

Test Drive
• We are now ready to drive the vehicle with the 

manual controls.
– Set the simulation time to inf

48

– Set the simulation time to inf.
– Set the simulation to “Normal.” (Not the accelerator 

or rapid accelerator.
– In the scope plot you which to use, se thet Tiome

range to 100.
S t i d h t d d i• Set up your windows as shown next and drive 
the vehicle and verify the logic of the accel and 
brake pedals:
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Lecture 11 Demo 2 49

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Advanced Model Based SystemAdvanced Model-Based-System 
Design

Lecture 12: 
System Initialization

Shifting LogicShifting Logic
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System Initialization 2

• We now have a vehicle that we can drive 
with manual accelerator and brake pedals.

• With most vehicles, you cannot just hump 
in and press the accelerator pedal and p p
drive away. The following usually occurs
– You turn the key to start the vehicle.You turn the key to start the vehicle.
– The vehicle goes through a component check.
– The vehicle systems are enabledThe vehicle systems are enabled.
– You must then shift the vehicle out of park into 

forward or reverse.forward or reverse.
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System Initialization 3

• We will add a parallel Stateflow chart to go 
through the vehicle startup and shifting 
procedures. 

• This Stateflow chart will enable the 
charge-control Stateflow chart that 
controls the engine-generator charging g g g g
system.

• We will start with modelWe will start with model 
Lecture12_Model0, which will be passed 
out in classout in class.
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System Initialization 4

• First, we will add a switch to the driver block that 
simulates the key switch of a conventional 

hi lvehicle.
• Our vehicle does not have a starter, so all we 

need is an off on switchneed is an off-on switch.
• We will use a manual switch to switch the signal 

between 0 and 1between 0 and 1. 
• We will add this to the Driver_Controlls bus, and 

this signal will go directly to the controllerthis signal will go directly to the controller.
• We will Name the signal Vehicle_Key.
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Driver Subsystem 5
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Controller
• Next we will add a second Stateflow chart

6

• Next, we will add a second Stateflow chart. 
• The only inputs to this chart will be the 

Vehicle Key signal and a clock which is theVehicle_Key signal and a clock, which is the 
same clock as used for the charge controller.

• This chart has a single output, which is theThis chart has a single output, which is the 
Vehicle_Ready signal.

• The value of this signal is initialized to zero and g
will remain zero until we check the status of the 
battery, motor, generator, and engine.

• We will also add a variable called State for 
debugging purposes.

• Add a Stateflow chart as shown:
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Controller
• The contents of the chart only check to see the

8

• The contents of the chart only check to see the 
status of the Vehicle_Key switch.

• Note that for the moment the vehicle KeyNote that, for the moment, the vehicle_Key
switch only tells the vehicle to turn on. It is not 
capable of turning the vehicle off. p g

• (We will implement this later because we need 
to do a controlled shut-down procedure.)

• The beginning of the Startup_and_Shifting chart 
are shown next:
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There is an error in this 
diagram. Something was left 
out. You may find it later…
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• The Charge Controller Stateflow chart must also
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• The Charge_Controller Stateflow chart must also 
be modified.

• We want to specify that the engine andWe want to specify that the engine and 
generator not be enabled until until the 
Startup_and_Shifting chart check out all of the p_ _ g
components and signals that the vehicle is 
ready.

• We will need to add the Vehicle_Ready signal as 
an input to this chart.
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• Modify the Charge Controller chart as shown:

11

• Modify the Charge_Controller chart as shown:
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• We will add an exit condition to the 
initialization state of the Charge-Controller 
Stateflow chart that will not allow the 
vehicle to enter the normal 
charge/discharge cycle until the vheicle is 
ready.

• Note that this modification does not 
address the issue of a graceful shutdown.g
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This state transition guard 
added.
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• Next we will add a startup handshake for the battery and 
some operational details.

• The battery has a control signal that must be sent to it and a• The battery has a control signal that must be sent to it and a 
status signal that it sends to indicate its state. 

• The battery has an internal contactor. When the contactor is 
open, the battery voltage is zero and the pack is 
disconnected from the system. 

• When the contactor is closed the battery is connected to• When the contactor is closed, the battery is connected to 
the system (motor and generator in our case) and the output 
voltage is that indicated by our model.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Battery Model 15

• Connect Command – Input signal received by 
the battery
– 1 – Close the contactor.
– 0 – Open Contactor.

Pack State o tp t signal sent b the Batter• Pack State – output signal sent by the Battery
– 0 – Unavailable

1 Idle– 1 – Idle
– 2 – Disconnected (Contactor Open)
– 3 – Prechargingg g
– 4 – Connected (Contactor Closed).
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• The battery model needs to be modified as follows
– The Connect Command must be added as part of the Control_Signals bus.
– A switch is added to the model so that the battery voltage is switched between zero 

and the model voltage depending on the value of signal “Connect Command ”and the model voltage depending on the value of signal Connect Command.
– When the battery receives the a connect command of 1, after a 3 second delay, the 

contactor switch will close and the battery voltage will be equal to the model 
voltage.

– If the connect command goes to zero, the contactor should open immediately.

• A diagnostic output should be added that contains the Pack state 
signal. The pack state signal should have the following values 
d di th t t f th b tt d ldepending on the state of the battery model:

– 2 – The contactor is open, the battery is disconnected, and the battery voltage is 
zero.

– 3 – During the three second delay when the battery is connecting3 During the three second delay when the battery is connecting.
– 4 – The contactor is closed. The battery is connected, and the voltage is equal to 

the modeled voltage.
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• The Startup_and_Shifting Controller must be 
modified as follows:
– After Vehicle_Key = 1, the controller must issue the 

connect command. 
– Before proceeding to the next state the controllerBefore proceeding to the next state, the controller 

waits for the Pack state to Equal 4. 
– If the pack state does not go to 4, do not proceed and 

do not allow the driver to use the vehicle. (Indicate an 
error and hold in an error state.)

– If the pack state changes to 4 allow the controller toIf the pack state changes to 4, allow the controller to 
proceed to the next state. 
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• Demonstrate the operation of the Vehicle 
Key Switch and the Battery Connect 

d Sh th f ll icommand. Show the following:
– Startup_and_Shifting chart as it walks through 

th t t dthe startup procedure.
– The battery voltage showing the operation of 

the contactorthe contactor.
– The battery status signal showing the various 

statesstates.
– Show a plot similar to the one shown on the 

next two slides Demo___________next two slides. ___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Lecture12 – Exercise 1 19

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Battery Model – Exercise 1 20

P k t t t t

Pack was commanded to connect, 
but there was an error and it never 
closed the contactor. Pack state stays at 

2.

closed the contactor.

Contactor never 
closes.

State goes to 4 
indicating an error.
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Next we need to add the handshake and status

21

• Next, we need to add the handshake and status 
signals for the Motor and generator models.

• The Motor and Generator models have a control• The Motor and Generator models have a control 
signal that must be sent to it and a status signal that 
it sends to indicate its state.it sends to indicate its state. 

• Enable Command – Received by Motor or Generator
– 1 – Enable Component.p
– 0 – Disable Component.

• Motor/Generator State – Sent by Motor or Generatory
– 0 – Motor/generator Not Ready
– 1 – Motor/generator Ready
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• The Motor and Generator models need to be modified 
as follows
– The Enable Command must be added as part of the vehicle p

Control_Signals bus.
– The motor/ or generator will only be ready after it receives 

th bl d d th b tt lt i t ththe enable command and the battery voltage is greater than 
200 V.

– The motor or generator can produce no torque if they are notThe motor or generator can produce no torque if they are not 
enabled or the battery voltage is below 200 V.

– A diagnostic output should be added for the motor or 
t t t i l Thi i l h ld h th f ll igenerator state signal. This signal should have the following 

values:
• 1 – Component OK and enabled.p
• 0 – The component is disabled. This occurs if the enable signal goes 

to zero or the battery voltage drops below 200 V.
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• The start-up sequence must be modified:
– After the battery has passed its start-up test 

the enable command should be sent to the 
motor.  The controller then waits to receive 
th t t f th tthe status of the motor.

• If the status is 1, proceed to the generator check.
• If the status does not change to 1 after 1 5• If the status does not change to 1 after 1.5 

seconds, enter an error state and hold.
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• The start-up sequence must be modified:
– After the motor has passed its start-up test the 

enable command should be sent to the 
generator.  The controller then waits to 

i th t t f th treceive the status of the generator.
• If the status is 1, set Vehicle_Ready to 1 and go to 

the Park State (for now do nothing in this statethe Park State (for now do nothing in this state 
except set Vehicle_Ready to 1).

• If the status does not change to 1 after 1.5 
seconds, enter an error state and hold.

• You might want to use the After command in 
St t flStateflow.
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• Demonstrate the operation of the Vehicle Key 
Switch, Battery Connect, Motor Enable, and 
G t E bl C d Sh thGenerator Enable Commands. Show the 
following:

S d Shif i h i lk h h h– Startup_and_Shifting chart as it walks through the 
startup procedure.
Th t t i l h i th i t t f– The status signals showing the various states of 
each component.
Show a plot similar to the one shown on the next– Show a plot similar to the one shown on the next 
two slides.
Plots are shown on the next two slides

Demo___________

– Plots are shown on the next two slides
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• We now wish to add shifting logic to our model.
• We will need to add three pushbuttons for forward, 

reverse and park These switches go in the Driverreverse, and park. These switches go in the Driver 
block.
– Park – When the driver presses this push-button, it p p

indicates that the driver wants to have the transmission 
enter the park state. In this state, the accelerator pedal 
input is ignoredinput is ignored.

– Forward - When the driver presses this push-button, it 
indicates that the driver wants the vehicle to move 
forward when the accelerator pedal is pressed.

– Reverse - When the driver presses this push-button, it 
indicates that the driver wants the vehicle to moveindicates that the driver wants the vehicle to move 
backwards when the accelerator pedal is pressed.
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• We also need some dashboard indicator lights for 
the driver.
– Park LED – This LED is illuminated when the vehicle is in 

Park.
– Forward LED – This LED is illuminated when the vehicleForward LED This LED is illuminated when the vehicle 

is in Forward.
– Reverse LED – This LED is illuminated when the vehicle 

is in Reverse.
– Error LED – This LED illuminates to alert the driver if 

there is a problemthere is a problem.
– Vehicle Ready LED – This light illuminates when the 

vehicle has passed all component checks.
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• Note that the controller determines when 
we are in park, forward or reverse.

• We will place these indicators in a new 
subsystem within the Vehicle Plant called y _
Dashboard.
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• All logic for the accelerator pedal, brake pedal and push-
buttons resides in the controller The controller emits signals for
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buttons resides in the controller. The controller emits signals for 
the traction motor torque and foundation brakes. The driver 
block just contains the driver input sensors.

• At vehicle startup, after checking that the status of each 
component is correct, the vehicle should enter the park state.

• To shift out of park into either forward or reverse the following• To shift out of park into either forward or reverse, the following 
sequence must occur:
– The driver must depress the brake pedal by 50% or more. 
– The driver can then press the forward or reverse buttons. 
– When the button is pressed, the appropriate indicator light is illuminated 

and the vehicle shifts into either forward or reverse.
– If the vehicle is in park and the brake pedal is depressed less than 50% 

and the forward or reverse buttons are pressed, nothing happens and 
the vehicle remains in Park.
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• Forward State
– The controller takes the accelerator pedal and 
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p
brake pedal signals and modifies them 
appropriately so that 

• The traction motor increases the vehicle speed in the 
forward direction when the accelerator pedal is 
depresseddepressed.

• The traction motor and foundation brakes decrease 
speed in the forward direction when the brake pedal is 
depressed.

• To exit the forward state, the following items must be true 
simultaneously:simultaneously:

– The brake pedal must be depressed by more 50% or more.
– The vehicle speed should be less than 1 mph.
– The driver must press the Park or Reverse buttons.
– If the Park, Reverse, or Forward buttons are pressed while the above 

conditions are not true, the buttons are ignored.
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– The controller takes the accelerator pedal and 
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p
brake pedal signals and modifies them 
appropriately so that 

• The traction motor increases the vehicle speed in the 
reverse direction when the accelerator pedal is 
depresseddepressed.

• The traction motor and foundation brakes decrease 
speed in the reverse direction when the brake pedal is 
depressed.

• To exit the reverse state, the following items must be true 
simultaneously:simultaneously:

– The brake pedal must be depressed by more 50% or more.
– The vehicle speed should be less than 1 mph.
– The driver must press the Park or Forward buttons.
– If the Park, Reverse, or Forward buttons are pressed while the above 

conditions are not true, the buttons are ignored.
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• Demo of everything working.
• I will try to brake your model.

Demo___________
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1

Introduction to Model-Based 
Systems Design

Lecture HIL1:Lecture HIL1:
Introduction to Hardware-in-the-

Loop

HIL
• HIL is a simulation method that allows us 

to test our controller, controller hardware, 
and the wiring interface on a virtual plant

2

and the wiring interface on a virtual plant 
before testing the controller, controller 
hardware, and wiring interface on the real 
plant.

• This is yet another level of testing we can 
fdo before deploying our design in the real 

world.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



4/22/2009

2

HIL
• Remember that our goal is to design and 

implement a controller for real and 
complicated physical system

3

complicated physical system.

Controller Interface Plant

We are designing and 
implementing this.

We are controlling physical 
devices within this plant.

HIL
• The plant is very complicated and difficult 

to understand, expensive to fix if we break 
something and could be dangerous if

4

something, and could be dangerous if 
controlled improperly.

• HIL allows us to test our controller on the 
target hardware we will be using, with the 
wiring interface we will be using. 
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3

HIL
• Instead of taking our controller and seeing 

if it works by connecting it to the actual 
plant to be controlled we will connect it to

5

plant to be controlled, we will connect it to 
a computer running a model of the plant.

• The model of the plant will have the same 
interface as the physical plant. It will 
have the same physical inputs and outputs 
as the physical plant. 

HIL
• So, instead of connecting our controller to 

the real plant, we will connect it to a 
computer running a model of the plant (a

6

computer running a model of the plant (a 
computer pretending to be the plant).

• We can then test our controller without 
worry of damaging the physical plant.
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HIL
• HIL will allow us to test:

– The control algorithm.
The controller hardware (the target computer

7

– The controller hardware (the target computer 
on which the controller is deployed).

– The control algorithm as it runs on the target 
hardware. 

– The physical interface between the Controller 
and the plant (Assuming that the harness weand the plant. (Assuming that the harness we 
use in the test is the same harness we will 
use when we connect to the physical plant.)

HIL
• Up to now we tested the control algorithm 

on:
– A Windows system running on a PC -

8

– A Windows system running on a PC -
essentially using a continuous system with a 
time step that is variable and can become 
very small when needed, and floating point 
calculations.

– Using xPC target – Using a fixed time stepUsing xPC target Using a fixed time step 
and possibly discrete control blocks, but using 
a more powerful computer than will be used 
for the target.
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HIL
• HIL simulations allow us to test the control 

algorithm on the hardware that will be 
used to implement the controller

9

used to implement the controller.
• The benefit is that we can test the 

controller using a model of the plant so 
that there is no danger of personal injury 
or physical damage to the plant.

HIL
• We will be using the test platform below:

10

Controller Interface Computer Model of the 
Plant

Controller deployed on an 
MPC5554 computer.

National Instruments PXI real-time 
computer running a model of the 

l tplant.
Same physical interface as 

in the actual system 
(Wiring for analog signals 

in our example.)
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HIL
• Once controller testing is complete and the 

controller passes all tests and satisfied all 
requirements we just plug the controller

11

requirements, we just plug the controller 
into the physical plant.

• If the models are accurate and the 
interface is the same, the controller should 
be able to control the physical plant as 

fwell as it controlled the model of the plant.

HIL
• Completed System:

12

Controller Interface Physical Plant

Controller deployed on an 
MPC5554 computer.

The actual plant that we wish to 
control.

Physical interface of the 
actual system
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HIL
• We will deploy the controller on an 

MPC5554 computer and the plant on a 
National Instruments PXI real-time

13

National Instruments PXI real time 
computer.

• This requires us to learn National 
Instruments hardware and software.

• We will break the process into two steps.
• First, we will simulate the entire model in 

real-time on a National Instruments PXI 
computer.

HIL
• This model will be similar to what we did 

with xPC, except we will use National 
Instruments tools

14

Instruments tools. 
• We will learn how to use:

– National Instruments Simulation Interface 
toolkit.

– National Instruments LabVIEW
– National Instruments Measurement and 

Automation Explorer (MAX)
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HIL
• In this step, we will not split apart the plant 

and controller. Both will remain in the 
same model and be simulated on the

15

same model and be simulated on the 
same real-time target (National 
Instruments PXI Computer).

• This will allow us to learn the National 
Instruments tools and how to use 
MathWorks models with hardware and 
software from other vendors.

HIL
• In the Second step, we will split the controller and 

plant into separate models. 
• The Plant will run on a National Instruments PXI 

t t

16

target.
• The controller will run a Freescale MPC5554 

target.
• The Plant will run on a National Instruments PXI 

target.
• We will connect the two targets with a wiring 

harness and some interface electronics (a low 
pass filter).
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HIL
• We will use the RAppID toolbox and 

associated Freescale tools to deploy the 
controller on the Freescale target

17

controller on the Freescale target.
• We will use the Simulation Interface 

Toolkit and associated National 
Instruments tools to deploy the plant on 
the National Instruments target.

• The plant and controller models are 
mature and have been developed with 
MathWorks tools.

HIL
• To learn the National Instruments tools We 

will deploy a small model developed in a 
previous class on a PXI Target

18

previous class on a PXI Target.
• Create a new folder called Lecture13.
• Copy file Lecture13_Model0.mdl into this 

directory and rename the model 
Lecture13_Model1.mdl.

• Copy the init file as well.
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Stand-Alone Model
• This model was created to run on an xPC

target, so we need to make a few 
changes

19

changes.
• The starting model is shown below:

Model Modifications
• The controls for the desired speed and number 

of bulbs will be front panel LabVIEW controls, so 
we can eliminate  the Simulink sliders for Speed 

20

and Number of Bulbs:

Slider deleted. Slider deleted.
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Top-Level Modifications
• We would like to display the real time in 

our front panel.  To do this, we will create 
an integrator at the top level of our model

21

an integrator at the top level of our model 
and integrate a constant (equal to 1). 

• The value of the integral will be the 
elapsed time since the simulation started.

• Add the blocks below to your top-level 
model:

Top-Level Modifications
• The sample time of the 

integrator should be set 
to the fixed step size 

22

specified in the simulation 
configuration parameters. 

• This was a value that we 
specified in the init file. 
Set the parameters for 
th i t t hthe integrator as shown:

Sample_Time specified here.
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Top-Level Model
• Your top-level Model should be as shown:

23

Note that this signal is labeled.

Controller Modifications
• The controller contains a number of blocks that 

were added do display information for xPC. These 
blocks are no longer needed and can be deleted:

24

Delete these components.
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Controller Modifications
• To make connections between the LabVIEW 

front panel and the Simulink model easier, we 
will add two gain blocks to the model as

25

will add two gain blocks to the model as 
shown next.

• These gain blocks will make it easy to identify 
signals and label front panel controls:

Controller Modifications 26

Gain block added and 
renamed to “Desired rpm.”

Gain block added and 
renamed to “Scaled rpm.”
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Plant Model Modifications
• The only changes we need to make to the 

plant are in the encoder model.
• This model contains an xPC Target Scope

27

• This model contains an xPC Target Scope 
block that must be deleted:

Delete this block.

Plant Model Modifcations
• Label the signal at the encoder output 

“Plant_RPM.”

28

This signal was labeled.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



4/22/2009

15

Model Modifications
• We are now done with modifications to the plant 

model.
• We need to make some changes to specify that 

29

g p y
the MathWorks Real-Time Workshop creates a 
DLL for the National Instruments PXI target 
rather than the xPC Target.

• From the Simulink menus, select Simulation
and the Configuration Parameters (or type Ctrl 
e.)

Model Modifications 30

Solver
selected.

Fixed Step solver 
selected because we 

Step size set to 
Sample Time. This 

will be running in real-
time on a target.

Sa p e_ e s
value is set in the init 

file.
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Model Modifications 31

Real-Time 
Workshop 

nidll.tlc specified for 
the target file.

• Nidll.tlc specified that when we build the model, 
a dll file that can run on an National Instruments 
target will be created.

selected.

Creating the DLL File
• Click the OK button.
• We are now ready to create the Dynamic-Link 

Library (dll). 

32

y ( )
• A dll file is a compiled version of the model that can 

be executed on the target. The dll has no inputs or 
outputs, and we will need to create a LabVIEW 
shell to connect to the inputs and outputs.

• Type ctrl-d to check your model for errors.yp y
• If there are no errors, type  ctrl-b to build the model 

and create the dll file.
• You will see the dialog shown in the next 2 screen 

captures.
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33

34

Build was 
successful.
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Creating a DLL file
• If the build was successful, a dll file will be 

created in a new sub-directory. My model 
was named Lecture13 Model1

35

was named Lecture13_Model1.
– The new directory that was created is named 

Lecture13_Model1_nidll_rtw.
– The dll is located in this directory and is called 

Lecture13_Model1.dll.
W ill d t i t t thi fil h• We will need to point to this file when we 
set up our LabVIEW front panel.

National Instruments Targets
• Now that we have created the DLL for our 

model, we need to create a LabVIEW shell 
to specify the inputs to the model and

36

to specify the inputs to the model and 
display the model output.

• We can also use the LabVIEW shell to 
tune the controller parameters.

• Before we create our LabVIEW shell, we 
need to identify the PXI target on which we 
will run the model.
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National Instruments Targets
• We will assume that you have already set 

up your National Instruments PXI target, it 
is running properly it has the correct

37

is running properly, it has the correct 
software installed, and it is plugged into 
the network.

• For this exercise, we need to discover the 
IP address of your PXI target.

• There are three ways to discover the IP 
address of a PXI target connected to the 
network.

National Instruments Targets
• Ask someone that knows the IP address.
• Some PXI controllers have a VGA output 

for a monitor When the system starts up

38

for a monitor. When the system starts up, 
it will display the IP address.

• Use the National Instruments 
Measurement & Automation Explorer 
(MAX)
– MAX can be used to discover all PXI targets 

on the local subnet.
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National Instruments MAX
• Run the National 

Instruments 
Measurement and

39

Measurement and 
Automation Explorer

National Instruments MAX 40

• MAX is the software that allows National 
Instruments hardware and software to 
work together seamlesslywork together seamlessly.

• We will only show how to use MAX to 
discover systems on your local subnet and 
to add remote systems for which you 
already know the IP address.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



4/22/2009

21

National Instruments MAX 41

• We will assume that this is the first time 
that you have run MAX. 

• If this is the case MAX will only show you• If this is the case, MAX will only show you 
Real-Time targets on your local Subnet.

• When MAX runs, you will see the next 
screen:

42

Click on this plus sign to 
expand the tree and view 

National Instruments Real-
Time targets on your local 

subnet.
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National Instruments MAX
• My MAX shows a single system on the 

local subnet:

43

Click on this plus sign to 
d th t dexpand the tree and 

properties of this target.

National Instruments MAX
• We would like to view the network settings 

for this target:

44

Click on this text to see the 
network properties of the 

target.
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National Instruments MAX
• The properties of our target are shown 

below:

45

In a future exercise, we will ,
use part of the tree to 

configure the cards installed 
on the target.

You can view and install software on 
the Target in this part of the tree. The 
versions of software on your PC mustversions of software on your PC must 
match the versions of software 
installed on the target. We will 
assume that the software has been 
set up correctly. 

46

Target Selected.

The IP address of this target is 
192.168.1.107. We will need 

thi dd i d tthis address in order to run our 
model on this target.
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National Instruments MAX
• If you know the IP address of a target that 

is not on your local subnet, you can view 
the target by adding it as a remote target

47

the target by adding it as a remote target.
• In MAX, right click on Remote Systems

and then select Create New:

National Instruments MAX 48

• Select Remote Device and then click the Next
button.

• Enter the IP address 
of the known system 
and click the Finish 
button.
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National Instruments MAX
• If you have access to the system (and 

there is not a firewall set up to block 
access) you can view your remote target

49

access) you can view your remote target.

• Once you add remote systems, 
MAX will remember those 
systems the next time you run 
itit.

• For our example, all we need to 
know is the IP address of our 
target.

National Instruments LabVIEW
• Next, we want to run LabVIEW and create a 

shell to communicate with our model DLL.
• Run LabVIEW:

50
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National Instruments LabVIEW 51

Click here to create 
bl k VIa new blank VI.

National Instruments LabVIEW 52
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LabVIEW
• Before we begin, we would like to save the 

VI.
• Select File and then Save from the

53

• Select File and then Save from the 
LabVIEW menus.

• Save the file in the directory where you 
saved your Simulink model.

• Save the VI as Motor Generator Shell.VISave the VI as Motor Generator Shell.VI

Motor Generator Shell
• Our motor-generator system has two user 

inputs (desired speed and number of light 
bulbs) and one output (motor speed at 2 5

54

bulbs) and one output (motor speed at 2.5 
V per 1000 rpm).

• We will place two controls and one chart in 
the LabVIEW front panel and connect 
them with the Simulink model signals.
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55

Right-click here. 

Left-click here to 
select this controlselect this control. 

Hover here. 

Motor-Controller Shell
• When you left click on the control, it becomes 

attached to the mouse and the menu 
disappears.

56

• Place the control in your  front panel by left 
clicking on the location you wish to place it:
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Motor Generator Shell
• Note that the name is highlighted, so that we can 

easily rename it.
• Change the name to Number of Bulbs.

57

Motor Generator Shell
• Next, we want to select the entire 

indicator.
• Click and drag the left mouse as shown

58

• Click and drag the left mouse as shown

Click and hold the 
left mouse button 

h
Drag the mouse to 

here. here.
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Motor Generator Shell
• When you release the mouse button, the 

entire indicator will be selected (both the 
label and the indicator field)

59

label and the indicator field).

Entire control 
selected.

• Click on the font pull-down menu as 
shown next:

Motor Generator Shell 60

• Change the font to 18 pt, bold, and Arial.
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Motor Generator Shell
• Next, we want to change the control to 

select and display an integer between 0 
and 6

61

and 6.
• Right click on the control and select 

properties:

• You are encouraged to play with the 
settings in this tab to see their effect on 
the  display of the control.

62

Select the
Display Format 

tab.
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• There are several ways we could display a 
single digit. We will only show one here.

63

Click here to 
select the 
Advanced 

editing mode.

64

Replace this text with 
%2.0f. This means 

display a floating point 
number with  a total of 

2 digits and 0 digits 
displayed after the 

decimal point.
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65

Format string changed.

Next, select the Data 
Entry tab and fill it in as 
shown on the next slide.

• The selected settings for the control force 
the choice of an integer between 0 and 6.

66

Option is not selected.

• Click the OK button 
to apply the 
changes and return 
to the front panel.
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LabVIEW Front Panel 67

Try entering a number 

• The display may look unchanged, but if 
you enter a number into the field, you will 
notice that you can only specify an integer 
b t 0 d 6

here.

between 0 and 6.

LabVIEW Front Panel
• Next, we would like to create a control for 

the desired speed.
• We will use a fill slide and constrain it to

68

• We will use a fill slide and constrain it to 
have a value between 0 and 1 with 0.1 
step increments.
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69

Right-click here. 

Left-click here to 
select this controlselect this control. 

Hover here. 

Motor-Controller Front Panel
• When you left click on the control, it becomes 

attached to the mouse and the menu 
disappears.

70
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Motor-Controller Front Panel
• Place the control in your  front panel by left 

clicking on the location you wish to place it:

71

Motor-Generator Front Panel
• Change the name of the control to 

“Desired Speed.”
• Change the font to 18 pt Arial bold using

72

• Change the font to 18 pt Arial bold using 
the same techniques we used for the 
numerical control.
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Motor-Generator Shell
• Next, we want to change the control to 

select a number between 0 and 1 with 0.1 
steps

73

steps.
• Right click on the control and select 

properties:

• You are encouraged to play with the 
settings in this tab to see their effect on 
the  display of the control.

74

Select the Data 
Entry tab.
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• The selected settings for the control force 
the selection of a value between 0 and 1 
with 0.1 size steps.

75

Option is not selected.

• Select the Scale tab and change the 
maximum value to 1.

• Click the OK button when done.

76

Select the Scale 
tab.

Maximum 
specified as 1.
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Front Panel

• Click on the control and use the

77

• Click on the control and use the 
handlebars to resize the fill slide:

Motor-Generator Front Panel
• The last thing we want to do 

is add a chart to display the 
Motor RPM.

7878

Right-click here. 

Left-click here to 
select Chart icon. 

Hover here. 
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Motor-Controller Front Panel
• When you left click on the chart, it becomes 

attached to the mouse and the menu 
disappears.

79

Motor-Controller Front Panel
• Place the control in your  front panel by left 

clicking on the location you wish to place it:

80
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Motor-Generator Front Panel
• Change the name of 

the chart to “Motor 
Speed (2.5 V per 1000 
rpm) ”

81

rpm).
• Change the font to 18 

pt Arial bold using the 
same techniques we 
used for the numerical 
controls.

• Resize the chart to fit• Resize the chart to fit 
the available space in 
the window:

Motor-Generator Shell
• Next, we want to change the chart to 

display 20 seconds of data and change 
the y-axis to have a scale of 0 to 8

82

the y axis to have a scale of 0 to 8.
• Right click on the chart and select 

properties:
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• The first thing we will do is change the line 
thickness and color of the trace. Select the 
Plots tab and make the selections shown 
below:

83

Select the Plots 
tab.

Yellow line color 
selectedselected.

Thicker line 
selected.

• Select the Scales tab and make the 
changes shown below to specify that the 
time axis have a range of 20 seconds:

84

Select the
Scales tab.

X-Axis selected.

Time range 
specified as 0 to 

20.
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• Next, make the changes shown below to 
specify that the Y-axis have a range of 0 to 
8:

85

Autoscale notAutoscale not 
selected.

Y-Axis selected.

Range specified 
as 0 to 8.

• We are done 
with the 
changes for 
the chart..

• Click the OK

86

Click the OK
button when 
done.
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Motor-Generator Shell
• We have now constructed a basic front 

panel for our Motor-Generator system.
• The next step is to use the National

87

• The next step is to use the National 
Instruments Simulation Interface Toolkit 
(SIT) to connect the front panel controls 
and chart to the DLL we created with 
Simulink.

• Save your LabVIEW model before 
continuing.

Simulation Interface Toolkit
• We are now 

ready to connect 
our front panel to 
the Simulink

88

the Simulink 
model compiled 
into a DLL.

• From the 
LabVIEW menus, 
select Tools and 
then SITthen SIT 
Connection 
Manager:
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SIT Connection Manager 89

We will be running our model on a National 
Instruments PXI real-time target, so click 

here to select Real-Time Target. 

We need to specify the DLL we 
created for the Simulink model. Its 

h ld b HIL M d l1 dllname should be HIL_Model1.dll 
and it is located in directory 

Lecture13_Model1_nidll_rtw. 

SIT Connection Manager 90

Model 
selected. 

We must now select our target. If your 
PXI target is on the local subnet, you 

can use this option. You do not need to 
know the IP address of the target for

If the target is not on the local 
subnet and you know the IP 

address of the target, you can use 
this option. 

know the IP address of the target for 
this option. 
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SIT Connection Manager
• My target is on the local subnet:

91

I will select this option.

To detect PXI systems on the local 
subnet, click on this + sign. (Make sure 

that your local PXI systems are 
plugged in to the network and that theplugged in to the network and that the 

power is turned on.)

Sit Connection Manager
• In my system, the SIT Connection 

Manager located one PXI system:

92

Click on the PXI target that you want to 
use and then click the OK button. If you 

do not have any PXI systems listed 
here you may need use the option forhere, you may need use the option for 

remote systems and specify the IP 
address of the target manually.
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SIT Connection Manager
• After selecting the target, we return to the 

SIT main dialog box with the target and 
model specified:

93

model specified:

SIT Connection Manager
• The last step we need to take is to specify 

connections between our front panel and 
the Simulink model

94

the Simulink model.

Click on the Mappings
category to specify 

connections between 
the Simulink model and 

the front panel.
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SIT Connection Manager
• The dialog box now lists the LabVIEW 

controls and charts in the front panel. We 
need to manually connect each to a signal

95

need to manually connect each to a signal 
in the Simulink model.

Controls and charts on The control we labeled asthe front panel. The control we labeled as 
“Number of Bulbs” is selected.

Simulink Model
• We would like to connect this to the 

constant block in the top level of our 
Simulink model The model is shown

96

Simulink model. The model is shown 
below as a reminder:

Looks like we want to connect the 
control in the front panel we 

labeled as “Number of Bulbs” to 
this constant in the Simulink 

model called “One Bulb”.
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SIT Connection Manager 97

Font panel control “Number of 
Bulbs” is selected.

Click this button.

We want to connect 
to this constant (One 

Bulb).

Click on this + sign to 
see the properties we 

can connect to in 
constant “One Bulb.”

Sit Connection Manager
• We can connect the front panel control to the 

value of the constant.  This will allow us to 
change the value of the constant with the front 

98

panel control.

The value of constant “One Bulb” 
is selected. Click the OK button to 

connect this to the front panel 
control we called “Number ofcontrol we called Number of 

Bulbs.”
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SIT Connection Manager
• The Dialog box now shows that we have 

connected the front panel control to the 
Simulink constant

99

Simulink constant.

LabVIEW front panel control 
“Number of Bulbs” connected to 
the value of  Simulink constant 

“One Bulb.”

SIT Connection Manager
• Repeat the process to connect the front panel 

control called “Desired Speed” to the value of 
the Simulink constant named “Desired Speed 

100

(RPM):
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SIT Connection Manager
• The last thing we need to do is connect the 

Motor Speed chart to the encoder output signal 
in the Simulink model. The Simulink encoder 

101

model is shown below:

• This shows us that we need to connect the chart 
to the output of he gain block labeled “Gain” in 
the “Encoder” subsystem of the Simulink model.

SIT Connection Manager
• Select the Motor Speed chart and click the 

Change Mapping button: 

102

Motor Speed chart (it is classified 
as an indicator) is selected. Click here.
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Encoder Mapping
• Expand the Plant subsystem and then the Encoder 

subsystem until you see the gain with the output 
port labeled as “Plant_RPM.” If you recall, we 

103

labeled the signal out of the gain block in the 
Encoder as “Plant_RPM.”

Output port of the 
encoder gain block 

selected.

Click the OK button to map the 
LabVIEW front panel chart to 

this signal in the Simulink 
model.

SIT Connection Manager
• We have now mapped all of the LabVIEW 

front panel objects to the Simulink DLL.

104

• When we click the OK button, the SIT 
Connection Manager will write the LabVIEW VI 
to run the Simulink DLL on the remote target and 
establish communication between the front 
panel and the real-Time target.
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LabVIEW Front Panel
• The front panel has been modified with 

controls to run the model.

105

Controls added by 
the SIT Connection 

Manager.

Block Diagram
• If you open the block diagram window, you will 

see the block diagram created by the SIT 
Connection Manager. We will not discuss the 
operation of the various components

106

operation of the various components.
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Front Panel Controls
• The front panel controls added by the SIT 

Connection Manager have the following 
functions:

107

• Run the Simulation.
• Pause the simulation.
• Stop the Simulation.
• Edit parameters.
• Remap front panel controls and indicators• Remap front panel controls and indicators.
• Show simulation details
• Stop the front panel VI but allow the DLL to keep 

running on the remote target.

Running the Model
• We are now ready to run the model. Click 

on the RUN button as shown:

108

Click here.
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Running the Model
• When you click the Run button, 

LabVIEW will connect to the target and 
begin downloading the model and

109

begin downloading the model and 
related VIs:

Running the Model
• You might get the notification:

110

• This message is notifying us that there are 
already some VIs that are present on the target 
that are not needed for the project we want to 
run. This is not a problem, so click the OK
button.
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Running the VI
• The model will continue to download:

111

Running the Model
• When the download is complete, the front 

panel will look a little different:

112

The grid is gone. This 
indicates that the VI is 

running on our local PC.

The Simulink DLL is not, 
however, running on the 

remote target. 

Click here to run the 
Simulink DLL on the remote 

PXI target. 
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Running the Model
• When you click the Run button, the 

Simulink DLL will run in real-time on the 
remote target

113

remote target. 

Desired Speed control is 
set to max.

Model takes off and goes 
past 8 because the 

Desired Speed control is 
set to max.

Running the Model
• You can now change the number of bulbs 

and the desired speed and watch the 
system respond in real-time

114

system respond in real time.
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Stopping the Simulation
• To stop the simulation on both the remote 

target and your local computer (which is 
running the display panel) click the Stop

115

running the display panel), click the Stop 
Simulation button    :

Click here to stop theClick here to stop the 
simulation on both the 

remote target and your local 
PC. 

Demo
• Demonstrate the working model running in 

real-time.

116

Demo___________
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Exercise 1
• Modify the front panel so that the current simulation time 

is displayed as shown. The time should display a total of 
4 digits, one of which shows time to the tenth of a 
second Note that Bauhaus font is being used

117

second. Note that Bauhaus font is being used.

Demo___________

Exercise 2
• Create the front panel shown below. The controls created earlier are 

unchanged. Added items are listed in the following few slides.

118
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Exercise 2 119

Displays the desired and 
measured speeds in the 

controller subsystem. 

Exercise 2 120

Displays the proportional 
gain control signal and the 

integral gain control signal in 
the controller. 
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Exercise 2 121

Changes the value of the 
integral gain. 

Changes the value of the 
proportional gain. 

Exercise 2 122

Decoration. 
Decoration. 

Decoration. 
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Exercise 2 123

Demo___________
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Advanced Model-Based-System 
Design

Lecture 14:Lecture 14:
Real-Time Vehicle Model

Models
• We now have a good model of the vehicle 

that runs in the Simulink environment.
• We know how to use the National

2

• We know how to use the National 
Instruments Simulation Interface Toolkit to 
run Simulink models in real-time.

• Next, we will put the two together and run 
our vehicle model in real-time on the PXI 
platform and have a cool display to show 
vehicle performance. 
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Foreshadowing
• We will need to make some modifications 

to the model.
• We will need to create the LabVIEW front

3

• We will need to create the LabVIEW front 
panel from scratch.

• We will run into some numerical solver 
issues that will make the system behave 
badly.

Models
• We will start with model Lecture_14_Model0.mdl that will 

be passed out to the class.
• This is a Simulink model with push-buttons and slider 

gain blocks in the driver subsystem

4

gain blocks in the driver subsystem.
• The driver block can be used to drive the vehicle, but it is 

kind of clunky.
• We will replace the Simulink driver controls with 

LabVIEW controls to make the vehicle easier to drive.
• We will use the Display_and_Logging subsystem to 

monitor the model outputs in which we are interested.
• Save the model as Lecture14_Model1 and make the 

changes to the driver block as a show on the next slide.
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Driver Block Modifications
• We have replaced all of the controls by constants.

5

• Note that the names of the 
constant blocks have been 
changed to the name of the 
signal in the bus.

• This makes the constants 
easy to identify when 
connecting signals with the 
LabVIEW SIT.

• Note that the constants 
have a value of 0. This sets 
the default value of the lv
controls when the 
simulations starts.

Driver Block
• Even though we are setting the driver 

controls to a constant value of zero, we 
will be able to drive the vehicle because

6

will be able to drive the vehicle because 
we will connect the constant blocks to 
LabVIEW controls. 

• The LabVIEW controls will specify the 
value of the constants and thus change 
the driver input to the vehicle. 
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Display_and_Logging
• The other subsystem that has to change is the 

Display_and_Logging subsystem.
• We need to:

7

– Remove all scopes.
– Delete all “To Workspace Blocks”
– Terminate all outputs in which we have no interest.
– Add gain blocks and signal probes to the signals that 

we wish to monitor.
• The next few slides show the modifications to 

the Logging_and_Display Subsystem.

8
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9
We will not display this signal, so 

we can terminate it.

We want to display this signal on the 
front panel. Add a gain block with a gain 
of 1. Name the gain block the same as 
the signal name to make it easy to 
recognizerecognize.

These blue things are 
probes. To add a Test 
point:
•Right-click on a signal line 
and select Signaland select Signal 
Properties.
•In the dialog box that 
appears, check the box 
next to Test point to add a 
test point.

Logging and Display Block
• The only signals from the controller that 

we will be display are the forward, reverse, 
and park LED indicators

10

and park LED indicators. 
• We will connect these signals to front 

panel indicators so show when the vehicle 
is actually in park, forward, or reverse.

• The State signal is displayed for 
debugging purposes so that we can tell 
which state we are in on the 
Startup_and_Shifting Stateflow chart.
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11All signals shown are 
from the 
Vehicle_System_Diagn
ostics bus.
We are moniotring the 
following signals:
•Vehicle_Speed_mpg
•Battery_Current_A
•Battery_Voltage_V
•Battery_SOC
•Motor_Current_A
•Generator_Current_A
•Measured_Engine_rp
m

Solver
• The last things we need to do are setup 

the simulation configuration parameters 
and:

12

and:
– Specify a fixed step solver type.
– Pick a fixed step solver.
– Choose the fixed step size.
– In the Real-Time Workshop section, specify 

NIDLL tl th S t t t filNIDLL.tlc as the System target file.
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Lecture14 Exercise 1
• Build the dll for the model.
• Create the front panel shown on the next 

slide

13

slide.
• Use National Instruments SIT to connect 

the front panel controls and indicators to 
the Simulink model.

• Determine the solver and fixed step size,Determine the solver and fixed step size, 
so that the model runs in real-time. 

• For real-time operation, the cpu processor 
utilization should be less than 70%.

14

Demo___________

CPU Utilization_______ %Lecture14 Exercise 1
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Lecture 14 Exercise 2
• We notice that the generator current 

bounces all around, independent of the 
step size and integration methods

15

step size and integration methods.
• To get a better idea of the system 

behavior, add the graphs to the front panel 
as shown next:

16

Demo___________

CPU Utilization_______ %
Lecture14 Exercise 2
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Model Problems
• We notice one obvious problem in that the motor 

current bounces all around even though we are asking 
for a constant acceleration.

17

• Occasionally the model goes wild and the vehicle 
speed goes to infinity and some of the displays show a 
value of NaN rather than a real numerical value. (NaN
stands for Not a Number.)

• Both of these problems can be solved by using the 
ODE14x solver with a small time step.

Model Problems
• The problem with using a small time step is that the 

model must be executed once each time step.  It does 
not matter what our time step is, the same calculations 

18

occur whether we use a time step of 0.1 or a time step 
of 0.001.

• The problem with a smaller time step is that all of the 
model calculations must be completed by the next 
time step.

• Complex models with small time steps will require a 
fast real-time computer to complete the required 
calculations in the specified time step.
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Lecture 14 Exercise 3
• As a first fix, we will use the ODE14x 

solver and a time step of 0.001 seconds. 
• The problem with this solution is that it

19

• The problem with this solution is that it 
may take too much CPU power to run the 
model.

Demo___________

CPU Utilization_______ %

Model Problems
• The ODE14x solver was designed for stiff systems 

that require small time steps.
• Most of our model is pretty simple. Either we are 

20

p y p
integrating a slowly changing force with a large mass, 
or a slowly changing torque with a large inertia. In 
either case, the time scale is such that a small time 
step is not required.

• The elements in our model that require a small time 
step are the tires. 

• The tires model tire slip. Under hard braking it is 
possible that the wheels will lock and the tires will skid. 
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Model Problems
• We noticed under hard braking that occasionally the 

model blew up and the vehicle speed went to infinity.
• Determining the boundary between when the tire is 

21

g y
skidding and rolling can take a very small time step.

• To get a small enough time step to simulate the tires, 
we go past 100% processor utilization on the real-time 
target and bad things happen.

• A fix is to replace the SimDriveline tire with a simplified p p
tire model that has no slip.

• Create the tire model shown next and use it for both 
tires on the vehicle

22

New 
Tire Model
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New Tire Model 23

• Given an input torque, the model calculates the force applied to 
the vehicle by dividing by the radius of the tire.

• Given an input linear velocity of the vehicle, the model 
calculates the rotational velocity of the tire by dividing by the y y g y
radius.

• This rotational velocity is then imposed on the driveline by the 
motion actuator.

New Tire Model
• This model has a problem in that it 

imposes a dynamic constraint on the drive 
line It fixes the velocity of the drive line

24

line. It fixes the velocity of the drive line 
to which the tire is connected.

• If we have another block in the model that 
also fixes the speed of the same drive line, 
we will get an error that states that we 

(have a redundant dynamic constraint. (We 
cannot have two blocks that specify the 
velocity of the same drive line.) 
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Lecture 14 Exercise 4a
• Create a subsystem for the new tire 

model.
• Create a mask for the subsystem that:

25

• Create a mask for the subsystem that:
– Specifies the tire radius as an input parameter 

to the model.
– Displays the tire picture as shown.
– Displays the name “RHIT Tire Model” rather 

“Sthan “Subsystem.”
Tire Masked Subsystem 
____________

Lecture 14 Exercise 4b
• With this new tire model, the model should 

behave well using a large step size (0.01 
or larger) and the ODE14x solver is note

26

or larger) and the ODE14x solver is note 
needed.

• We will notice
– Low processor utilization.
– The model does not blow up any more.

Demo___________

CPU Utilization_______ %

– The motor current now behaves.
• A screen capture of this model running in 

real-time is shown on the next slide.
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27

Model Debugging
• Now that we have the model running in real time, we 

can run the model and find out any other problems 
that it may have.

28

• One problem that we notice is that under hard 
acceleration, the motor will draw more than 50 amps.

• In our present scheme the generator only puts out 50 
amps constant when it charges.

• Thus, under extended hard acceleration, we will , ,
discharge the battery completely leading to safety and 
lifetime issues.

• We need to modify our control scheme.
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Lecture 14 Exercise 5
• Modify the control algorithm as follows:

– Under normal conditions, the generator will charge the battery at 
50 A.

– If the battery SOC goes below a value of 0.58, a new algorithm

29

If the battery SOC goes below a value of 0.58, a new algorithm 
kicks in where the battery charges at the motor current plus 20% 
with some averaging. (What should happen if regen braking 
kicks in and the motor current flips?)

– The minimum charging current in this mode is 50 A.
– This method continues until the battery is charged back up to 

0.7.
– Once the battery is charged to 0 7 the normal chargingOnce the battery is charged to 0.7, the normal charging 

algorithm kicks back in.

Demo___________

CPU Utilization_______ %

Lecture 14 Exercise 6
• One of the modifications we made to the model is that we 

reduce the braking torque at vehicle speeds below 3 mph.
• As we drive the vehicle in real-time, this becomes very 

annoying because the vehicle takes a long time to slow down

30

annoying because the vehicle takes a long time to slow down 
below 3 mph.

• We made this modification because we had numerical 
problems with the brakes at low speed.

• With the new tire model, the braking problem may no longer be 
an issue.

• Modify the brakes so that we can apply full braking torque at 
speeds of 0.25 mph and higher.

• Verify your design and prove that it works.

Demo___________

CPU Utilization_______ %
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Advanced Model-Based-System 
Design 

Lecture 15:Lecture 15:
Number Systems

Outline
• Binary
• Hexadecimal

M tl b F ti

2

• Matlab Functions
• Unsigned Integers
• Signed Integers
• Floating Point Numbers
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Number Systems

• There are two kinds of engineers in this 
world

3

– Those who know binary and those who don’t.
– That was a joke.
– If you don’t know binary, you probably didn’t 

get it.
• This section is for the engineers that didn’t• This section is for the engineers that didn t 

get it.

Base 10
• Most of us are familiar with base 10 

number systems.
• Valid digits are 0 through 9 (Hey! There

4

• Valid digits are 0 through 9 (Hey! There 
are 10 values!)

• The base is also referred to as the radix.
• An example is:

0123 1041081031077384 ×+×+×+×=

Radix = 10 Radix = 10 
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Binary
• Binary uses a radix of 2.
• Valid values of a digit are 0 and 1.

5

( ) ( ) ( ) ( ) ( )01234 202121202110110 ×+×+×+×+×=

Radix = 2 

( ) ( ) ( ) ( ) 22021418016110110 =+×+×+×+×=

Binary
6

10110
0’s place

2’s place

4’s place

8’s place16’s place
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Binary
• Historically and physically our choice of 0 

and 1 for a binary digit comes from:
– Switches which can be on or off

7

– Switches which can be on or off.
– Digital logic circuits that produce either a low 

voltage or a high voltage.
• Typical 5 V logic circuits 

– Low = logic 0 Voltage from 0 to 0.8 Volts.
– High = Logic 1 Voltage from 3.4 to 5 Volts.

• Synonyms 
– 1 = logic 1 = “high” = “True”
– 0 = logic 0 = “low” = “False”

Terminology
• A single  binary digit is referred to as a bit.
• A group of 4 binary digits is referred to as 

a nibble (1011 1110) is two nibbles

8

a nibble. (1011 1110) is two nibbles.
• A group of 8 binary digits is referred to as 

a byte (10111110) is one byte.
• 1k (for digital guys) is 210 = 1024
• 1M (for digital guys) is 1k * 1k = 210 *210=• 1M (for digital guys) is 1k  1k = 2 2 = 

1048576.
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Hexadecimal – Radix = 16
• We will be dealing with long strings of bits. 
• It is convenient to group those bits in 

groups of 4

9

groups of 4.
Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Hexadecimal
• In decimal every digit can have ten values, 

0 through 9.
• In hexadecimal each digit can have16 

10

g
values ranging from 0 to 15.

• Hey, we need a single symbol for each 
digit!

• How do we do this with only 10 numeric 
symbols in our mathematical vernacular.
– For numbers 0 through 9, use 0 through 9.
– For numbers 10 through 15, use letters A 

through F.
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Hexadecimal 11

{{ { { {
3

0011
7

01111101
6

01101011
DB

( ) ( ) ( ) ( ) ( )01234 16316716131661611736 ×+×+×+×+×=DB

10162 74891573601011100111011011011 == DB

Useful Matlab Functions
• Bin2dec – Converts a binary text string to 

a decimal number:

12

>> bin2dec('10110110110101110011')
ans =

• Dec2bin – Converts a decimal number to a 
binary text string.

ans =
748915

>> dec2bin(748915)
ans =
10110110110101110011
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Useful Matlab Functions
• Hex2dec – Converts a hexadecimal string 

to a decimal number:

13

>> hex2dec('B6D73')

• Dec2hex – Converts a decimal number to 
a hexadecimal text string.

ans =
748915

>> dec2hex(748915)
ans =
B6D73

Matlab
• How do we convert from binary to hex?

14

>> dec2hex(bin2dec('10110110110101110011'))

• How do we convert from hex to binary?

( ( ))
ans =
B6D73

>> dec2bin(hex2dec('B6D73'))
ans =
10110110110101110011
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Hexadecimal Numbers
• If we see a number like 123, how do we 

know if it is a hexadecimal or decimal 
number? (It could actually be any base 

15

( y y
greater than 3, but we won’t go there.)

• Ways of indicating a number is a 
hexadecimal number
hex 123  - saying it.
$123 di th b ith $ i$123   - preceding the number with a $ sign.
x123   - preceding the number with an x which 

is short for “hex.”
12316 – Indicating the base explicitly.

Basic Data Types in Simulink
• Boolean – True or False (not 0 or 1 numerically)
• Uint8 – Unsigned 8-bit integer. Can represent 

values from 0 to 255.

16

111111112

= 27+26+25+24+23+22+21+20

= 28-1 = 25510

• Uint16 – Unsigned 16-bit integer. Can represent 
values from 0 to 65535.

11111111111111112

= 215+214+213+ … + 22+21+20

= 216-1 = 6553510
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Basic Data Types in Simulink
• Uint32 – Unsigned 32-bit integer. Can represent 

values from 0 to 4294967295.
111111111111111111111111111111112

31 30 29 2 1 0

17

= 231+230+229+ … + 22+21+20

=  232-1 = 429496729510

Signed Integers 
• There are three common ways of 

representing signed numbers
– Sign and magnitude: The most significant bit

18

– Sign and magnitude: The most significant bit 
represents the sign. (1 is negative, 0 is 
positive)

• 10001 would represent the number -1.
• 11111 would represent the number -15.
• 00001 would represent the number 1.p
• 01111 would represent the number +15.
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Signed Integers Sign and Magnitude

• With sign and magnitude representation:
– There are an equal number of positive and 

negative values that can be represented.

19

negative values that can be represented.
– There are two ways to represent 0:

• 1000000
• 0000000

• We will not be using this method to 
represent signed integersrepresent signed integers.

Signed Integers Biased Values
• With biased values, to calculate the 

numerical value of the code, calculate the 
magnitude of the code and then subtract

20

magnitude of the code and then subtract 
off a fixed bias.

• Example: 5-bit codes, bias = 15.
00000 value = 0 – 15 = -15
00001 value = 1 – 15 = -14
01111 value = 15 – 15 = 0
10000 value = 16 – 15 = 1
11111 value = 31 – 15 = 16
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Signed Integers – 2’s Complement
• We will be using a method called two’s 

complement to represent positive and 
negative integers

21

negative integers.
• With 2’s complement, the most significant 

bit has a negative weight.

( ) ( ) ( ) ( ) ( )

Note this (-) sign. 

( ) ( ) ( ) ( ) ( )

10
616

202121202110110 01234

−=
+−=

×+×+×+×+×−=

2’s complement Numbers 22

( ) ( ) ( ) ( ) ( )
60

202121202000110 01234

+=
×+×+×+×+×−=

• With 2’s complement
– If the most significant bit is a 1, the number is 

negative

6
60

=
+−=

negative.
– If the most significant bit is a 0, the number 

will be positive.
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2’s complement Numbers
• We will do some 8-bit examples.
• The most negative number is

10000000 = 27 = 128

23

10000000 = -27 = -128
• The most positive number is 

011111111 = 127
• The code for -1 is 

111111111 = -27+127111111111 = -2 +127

-27
127

2’s complement
• There is only one representation for 0

– 00000000

24
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Signed Integer Types in Simulink
• Int8 – 2’s complement signed 8-bit integer. Can 

represent values from -128 to 127.
10000000 = -27 = -128

25

011111111 = 127
• Int16 – 2’s complement signed 16-bit integer. Can 

represent values from -32768 to 32767.
1000000000000000 = -215 = - 32768
0111111111111111 = 32767

• Int32 – 2’s complement signed 32-bit integer. 
Represents values from - 2147483648 to 2147483647.
– 10000000000000000000000000000000 = -231 = - 2147483648
– 01111111111111111111111111111111 = 2147483647

Floating Point Numbers
• The MathWorks help facility has a good 

section on floating point numbers.
• The following few slides were generated

26

• The following few slides were generated 
from the information contained in the 
MathWorks help facility.

• Search for the topic, “floating-point 
numbers” in the MathWorks help facility to 
find more in-depth information.
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Floating Point Numbers 27

Floating Point Numbers
• Fixed-point numbers are limited in that they 

cannot simultaneously represent very large or 
very small numbers using a reasonable word 

28

size.
• This limitation can be overcome by using 

scientific notation.
• With scientific notation, you can dynamically 

place the binary point at a convenient location 
and use powers of the binary to keep track of 
that location.
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Scientific Notation (Decimal)
• Most of us are familiar with scientific 

notation.
– d is a decimal digit with values from 0 to 9

29

– d is a decimal digit with values from 0 to 9.
– We can move the decimal point right or left by 

decreasing or increasing the power of 10 by 
which we multiply.

410010 −±± pp dddddddddd
1

4

10.0
100.10.

+×±=
×±=×±

p

pp

ddddd
dddddddddd

Decimal point.

Binary Point
• Binary numbers can have a fractional part 

just like decimal numbers:

30

2101 10410810310784.73 −− ×+×+×+×=
Decimal point.

( ) ( ) ( ) ( ) ( )21012 212121202111.101 −− ×+×+×+×+×=

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) 75.51111204111.101 4
1

2
1 =×+×+×+×+×=

Binary point.
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Radix Point Notation (Binary)
• Radix point notation is similar. Here we 

show radix notation for binary (radix = 2).
– b is a binary digit with values of 0 or 1

31

– b is a binary digit with values of 0 or 1.
– We can move the binary point right or left by 

decreasing or increasing the power of 2 by 
which we multiply.

4202 −×±=×± pp bbbbbbbbbb
12.0

20.2.
+×±=

×±=×±
pbbbbb

bbbbbbbbbb
Binary point.

IEEE Floating Point Standard 754
• Single Precision – 32 bits

32

( ) ( ) ( )
( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

>=⋅⋅−
≥≤≤⋅⋅−

= −

−

valuelexceptiona
feeddenormalisf

fenormalisedf
Value es

es

0,0,;.021
0,2550,;.121

126

127

• Exceptional values: NaN, inf.

⎩

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



17

32-bit Floating point example
• 1 10111101 10100000000000000000000

s e f
1 h ti b

33

• s = 1 we have a negative number.
• e = 10111101=18910

•
• f = 10100000000000000000000

f

( ) ( ) ( )62127189127 222 == −−e

• 1.f = 1.10100000000000000000000
=
= 1.625

( ) ( ) ( ) ( ) ( ) ( ) ....202021202121 543210 +×+×+×+×+×+× −−−−−

32-bit Floating Point Example
• Our number is 
• -1.62510 + 262

7 493989779944505 1018 (d i l)

34

• = -7.493989779944505 x 1018 (decimal)
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IEEE Floating Point Standard 754
• Double Precision – 64 bits

35

( ) ( ) ( )
( ) ( ) ( )
⎪
⎩

⎪
⎨

⎧

>=⋅⋅−
≥≤≤⋅⋅−

= −

−

valuelexceptiona
feeddenormalisf

fenormalisedf
Value es

es

0,0,;.021
0,20470,;.121

1022

1023

• Exceptional values: NaN, inf.

⎩

Floating Point Numbers 36

Data Type Low Limit High Limit Exponent
Bias

Precision

Single 2-126≈10-38 2128≈3x1038 127 2-23≈10-7

• Inf - Defined as those values outside the 
range of representable numbers. 

Double 2-1022≈2x10-308 21024≈2x10308 1023 2-52≈10-16

• Any arithmetic operation involving Inf 
yields Inf.
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Floating Point Numbers
• NaN – Not a number.
• There are two types of NaN: 

A signaling NaN signals an invalid operation

37

– A signaling NaN signals an invalid operation 
exception. 

– A quiet NaN propagates through almost every 
arithmetic operation without signaling an 
exception. 

Th f ll i ti lt i N N• The following operations result in a NaN: 

∞∞
∞×

∞+∞∞−∞

/
0/00

Questions?
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Advanced Model-Based-System 
Design 

Lecture 16:Lecture 16:
Introduction to MotoTron ECUs 

and MotoHawk

Outline
• Physical Connections
• Creating a MotoTron MotoHawk Project
• Flashing LED Project (Digital Output)

2

• Flashing LED Project (Digital Output)
• Changing CAN Speed
• Motor Speed Controller

– Analog Input
– Digital Output

• Using MotoTune
– MotoHawk Probes
– MotoHawk Calibration
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3

Connecting MotoTron Hardware

80-Pin Development Cable 4
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80-Pin Development Cable 5

Main power relay (MPRD)

12V In-line fuse (25A).

80-Pin Development Cable 6

Harness +12 V Connection

Harness ground 
connection

ECU CAN connector.
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ECU555-80 7

Plug these in to the ECU. 
They only fit one way.

ECU555-80

80-Pin Connectors

ECU555-80 Connections 8
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12V Power Connection 9

Connect the power 
connectors. For our 

application we only need 
a 1 A 12V power supply.

CAN Hub 10
On/Key switch. This 
switch passes 12V to the 
ECUP input of the ECU. 
This is an old style 
switch.

6 port CAN hub.

Development cable CAN 
connection
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CAN Hub 11

Development cable CAN 
connection

6 port CAN hub.

New style On/Key switch. 
This switch passes 12V 
to the ECUP input of the 
ECU. 

MotoTron Yellow CAN Cables 12

Some of the CAN cables 
have an internal 120 Ω
terminator on one end. 
Others do not.
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MotoTron Yellow CAN Cables 13

This end is terminated.
This end is not terminated.

Can Connections 14

If you have a terminated CAN cable, you 
can plug in the terminated end into the 6-
port hub.
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Can Connections 15

120 Ω terminator.

If you don not have a terminated CAN 
cable, you can still use it if you plug in a 
120 Ω terminator into the hub.

120Ω Terminator 16
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Kavaser CAN to USB 17

Non-terminated side 
of CAN cable 
connected here.

Terminated side of CAN cable connected here. (Or non-
terminated cable with terminator plugged into hub.)

Isolated USB Hub 18

Isolated USB Hub. This 
hub will eliminate 

Plug in MotoHawk 
dongle here.

ub e ate
ground loops between 
your computer and the 
vehicle system. It will 
also help prevent faults 
in one system from 
damaging the other 
(your PC or MotoHawk 
ECU).Connect this to your computer’s USB Port.
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Complete Setup 19

Creating a MotoHawk Project
• Run Matlab.
• Change to your working directory.

At th M tl b t t th d

20

• At the Matlab prompt enter the command
– motohawk_project('Motor_Control_MH1')

• This will:
– Create a directory called Motor_Control_MH1
– Change to that directory– Change to that directory.
– Create support sub directories.
– Create a model file called Motor_Control_MH1.mdl
– Open the model named Motor_Control_MH1.mdl
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Directory Structure 21

Support directories.

New model file.
New directory.

New Simulink Model Created 22

Title block.

Target definition.

Main power relay.

Foreground trigger.

Subsystem that will 
contain our model.
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Title Block 23

Revision number This number willRevision number. This number will 
increment every time we build this model 
(automatically generate code).

MotoHawk Target Definition Block 24

Selected ECU

Double-click on 
this block to 
change the ECU.

These numbers will 
fill in when we build 
the project.
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25

We will be using a 
ECU555-80 target for this 
example. If you have a 
different target, specify it 
herehere.

Click the OK button after 
making any changes. You 
will return to the Simulink 
model.

MotoHawk Blocks 26
This block controls the main power 
relay. (See picture on next slide.) 
The main power relay will close 
100 ms after power is applied to 
the ECUP line of the ECU. The 
relay will open 250 ms after 12 V is 
removed from the ECUP signal. 
See next slide for moreSee next slide for more 
information.

Foreground real-time interrupt 
trigger. By default, this block 
generates a trigger signal every 5 
ms. We will show how to change 
the time laterthe time later.

Triggered subsystem. We will put 
our controller in here. Our 
controller will execute once every 
5 ms.
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MotoHawk Development Harness 27

VBATT power line.

Main power relay.

ECU555-80 Data Sheet 28
Main power relay. 
Closes 100 ms 
after key switch 
closes. Opens 
250 ms after key 
switch opens. 
These delays 
ll f f lRed wire in 

development 
harness.

allow for graceful 
starting and 
shutdown 
procedures.

Key switch.
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Simulation Configuration Parameters

• We have one last item to look at before we 
start creating our model.

• From the Simulink menus select

29

• From the Simulink menus, select 
Simulation and then Configuration 
Parameters.

• You will see the following dialog box:

30

Simulation Configuration Parameters

Discrete solver 
selectedFixed step solver selected.

Simulink will pick 
our step size.

Fixed step solver 
selected.

Solver option 
selected.
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31

Simulation Configuration Parameters

MotoHawk target 
selected.

Real-Time Workshop 
option selected.

Simulation Configuration Parameters

• We notice that the Simulation 
Configuration Parameters are set up 
correctly for our project

32

correctly for our project.
• The parameters are set up correctly 

because we initially created the project 
using the command 
motohawk_project('Motor_Control_MH1').

• We do not need to make any changes.
• Click the OK or Cancel button.
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Foreground Process
• We are now ready to create our controller.
• Our first controller will just turn on and off 

the LEDs

33

the LEDs.
• These LEDs tell us that the ECU is alive.

Double-click on 
the foreground 
block to open it.

Default Foreground Block 34

•Default foreground 
process. 
•We will not use this 
stuff. 
•Delete the controller 
and plantand plant.
•Your foreground 
subsystem should 
look as shown on the 
next slide.
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New Foreground Subsystem 35

Flashing Light Controller
• We will now create a controller that turns 

on and off two LEDs at a one second rate.
• Place a part called Pulse Generator

36

• Place a part called Pulse Generator
(located in the Simulink / Sources library).

• Place a part called Compare to Constant
located in Simulink \ Logic and Bit 
Operations library

Double-click on this 
block to open it. 
Change it as sown 
next.
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Pulse Generator 37
Select sample based. 
The sample time is 5 ms 
since we are in a 
triggered subsystem that 
is triggered every 5 ms. 

The output pulse goes 
from 0 to 1. 

The period is 200 samples. 
Since the sample time is 5 
ms, the period is 200 times 
5 ms, or 1 second.

Pulse width is 100 samples 
of 0.5 seconds. This is the 
time the pulse is 1.

Inherit the sample time. This 
will be 5 ms since we are in a 
triggered subsystem.

Click OK when done.

Compare To Constant
• We want the Compare To Constant block to 

perform a logical inversion function. 
• To do this, we can change the comparison to 

38

, g p
<=0.5. 

• When the pulse output is 1, the comparison will 
be false and the block will output false.

• When the pulse output is 0, the comparison will 
be true and the block will output true.p

• Double-click on the block and change the dialog 
box as shown:
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Compare To Constant 39

Change to 0.5.

Change to boolean. We’ll 
see why in a few slides.

MotoHawk Digital Output
• We now need to add blocks to access the 

digital outputs of the MotoTron ECU.
• Place two blocks called MotoHawk Dout

40

• Place two blocks called MotoHawk_Dout
in your model. These blocks are located in 
the MotoHawk \ Digital I/O Blocks
library.

• Connect the blocks as shown:
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MotoHawk Digital Output 41

This block requires a Boolean data type for 
the input. This is why we specified that the 
output data type of the  Compare To 
Constant block as Boolean.

We need to specify which pin of the ECU 
we want to use.

MotoTron ECU Resources
• The MotoTron ECU has several digital outputs.
• We will use the data sheet to select one.
• Our LED will draw about 50 mA of current

42

Our LED will draw about 50 mA of current.
• The digital outputs of the MotoTron ECU have 

high current drivers, so this should not be an 
issue.

• Open the data sheet for your ECU.
• We will use the FUELP and TACH outputs• We will use the FUELP and TACH outputs. 
• The data sheet detailing these outputs is shown 

next:
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FUELP 43

The TACH output 
uses pin B12. Output connected to the 

development harness. 
This output can sink 1.5 
A of current.

The FUELP output 
uses pin B11. 

Output connected to the 
development harness. 
This output can sink 1.5 
A of current.

FUELP and TACH Outputs
• To determine which wires in the 

development harness we should use, we 
need to scroll down further in the data

44

need to scroll down further in the data 
sheet.
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45

FUELP and TACH 46

The FUELP output is an Orange wire and is 
numbered 43. 

The TACH output is an Orange wire and is 
numbered 44. 
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Digital Output
• In the 

Simulink 
model, 

47

double-
click on the 
Discrete 
Output 
block and 
change thechange the 
Resource
to TACH:

Digital Output
• Change 

the 
Resource

48

Resource
of the 
other 
digital 
output 
block toblock to  
FUELP:
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Blinky Lights Model
• Your Simulink model should appear as 

shown:

49

TACH resource specified.

FUELP resource specified.

Data Type Conversion
• There is one last step we need to take.
• The output of the Pulse Generator block is a 

double precision data type (even though it only 

50

p yp ( g y
outputs a value of 0 or 1.

• The input data type for the Discrete Output block 
is Boolean.

• We need to convert the double precision data 
type to a Boolean.yp

• Place a Data Type Conversion block as shown. 
This block is in the Simulink \ Commonly Used 
Blocks library.
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Data Type Conversion 51

Double-click on this 
block to open it. 

Data Type Conversion 52

This setting will allow 
Simulink to choose the 

output data type.

Since we know that we 
want a Boolean data type, 

select Boolean.
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Data Type Conversion 53

Boolean output 
data type selected.

Data Types
• It is always a good idea to check your 

model for errors periodically.
• We would also like to display data types 

54

e ou d a so e o d sp ay da a ypes
on the signal lines to help spot any errors.

• Data type mismatches can cause erratic 
behavior of your controller and be difficult 
to diagnose.

• To display data types on your schematic• To display data types on your schematic, 
select Format, Port/Signal Display, and 
then Port Data Types from the Simulink 
menus.
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55

56

Data types now 
shown on model.
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Updating the Model
• When you make changes to your model, the 

data types are not automatically updated on the 
schematic.
W ld l lik t h k d l f

57

• We would also like to check our model for errors.
• To accomplish both of the above, type ctrl-d in 

the Simulink window. 
• Any errors will be listed and the data types will 

be updated.
• My model was already up to date and there• My model was already up to date and there 

were no errors, so there is nothing to show.
• However, you should use the ctrl-d command 

frequently.

Wiring
• The next thing we need 

to do is wire up our 
circuit.

58

5V

XDRP (A23)
Wire No. 23
Purple/Yellow

• The LED  circuit is 
shown to the right.

• We have already 
identified the wires for 
the TACH and FUELP 

D1
LED

D2

LED

R1
100

R2

100

Signals.
• We need to find a 5V 

reference.
TACH (B12) FUELP (B11)

Wire Number 44
Gray

Wire Number 43
Orange

LED1 LED2
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Wiring
• MotoTron ECU provide a +5V reference 

for use in sensors.
• Two signal lines are available called

59

• Two signal lines are available called 
XDRP and XDRP_B (Pins A23 and B24)

Wiring
• Looking further down the datasheet for our 

ECU, we find
– XDRP (A23) is wire number 23 and is

60

– XDRP (A23) is wire number 23 and is 
Purple/Yellow

– XDRP_B (B24) is wire number 56 and is 
P rple/PinkPurple/Pink
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Wiring
• We need to make 

connections as shown.
• Physical Connections 

61

y
are Shown on the next 
slide.

Wiring 62
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Project Build
• We are now ready to build the Project.
• If you typed ctrl-d in the Simulink window 

and received no errors you should be able

63

and received no errors, you should be able 
to build the project without any errors.

• Before we build, notice in the MotoHawk 
title block that we are at revision 000.

Revision 000.

Project Build
• In the Simulink window, type ctrl-b to build 

the project.
• You can also select Tools Real Time

64

• You can also select Tools, Real-Time 
Workshop, and then Build Model from 
the Simulink menus.

• After typing ctrl-b, switch to the Matlab 
command window to observe the 
progress.
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Matlab Command Window 65

66

Total memory usage.

Model memory usage.

Look at this more closely.
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Project Build 67

This is the file we will 
download to the ECU.

This build was created 
with rev 000 of the model.

Project Build
• The build files we just created are stored in directory 

C:\ECUFiles.
• The .srz files are located in directory 

C:\ECUFiles\Programs

68

C:\ECUFiles\Programs
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Project Build
• When we switch back to our model, we 

notice that the revision number in the 
header has been incremented

69

header has been incremented. 

Revision 001.

MotoTune
• To download our controller to the 

MotoTron ECU we will use MotoTune.
• Run MotoTune It is located in the

70

• Run MotoTune. It is located in the 
MotoTools folder in your Start menu.
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MotoServer
• Before we download our model, we will 

check the CAN port settings in 
MotoServer

71

MotoServer.
• The MotoServer icon       should be 

located in your windows tray.
MotoServer icon.

MotorServer
• Right-click on the MotoServer icon and 

select Ports

72
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MotorServer
• You should have a port labeled PCM-1. 

The correct settings are:
– Kavaser CAN

73

– Kavaser CAN
– Access 4
– Baud Rate 250000

This port should 
be enabled.

MotoServer
• The CAN Baud rate default setting of the 

ECU modules is 250k. 
• If you have never changed the baud rate

74

• If you have never changed the baud rate 
of your ECU, then it is probably set to 250 
k.

• If your port settings are not as shown on 
the previous slide, or you know that your 
ECU was programmed previously with a 
different Baud rate, we will need to change 
the port settings.
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MotoServer – Only if Necessary
• Skip to slide 84 if your port settings are 

correct as shown in slide 74.
• If you need to change the port settings

75

• If you need to change the port settings, 
select PCM-1 and click the Modify button.

Port selected.
Click the Modify
button.

MotoServer – Only if Necessary
• Change the settings as needed to match 

your CAN baud rate or the settings shown:

76

Click the OK button to accept the changes• Click the OK button to accept the changes.
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MotoServer – – Only if Necessary
• If your port settings are now correct, skip 

to slide 84.
• If your window does not show PCM 1 you

77

• If your window does not show PCM-1, you 
must do the following:

• Click the Edit Names button

Click here.

MotoServer – Only if Necessary 78

Click this Add
button.

Select CAN Kingdom and 
then click the Next button.
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MotoServer – Only if Necessary
• Fill in the dialog box as shown and click 

the Finish button.

79

Name is PCM-1.

CityID is 11.

CAN Bus 1.

MotoServer – Only if Necessary
• PCM-1 should be added to the CAN Bus 

Mappings.

80

Name listed here.

• Click the OK button.
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MotoServer – Only if Necessary 81

Click this Add
button.

Fill in properties as shown.
•Type – Kavaser CAN
•Location PCM-1
•Access Level 4
•Baud Rate 250000

•Click the OK button when done.

MotoServer – Only if Necessary 82

The port should 
be added withbe added with 
the proper 
settings.

Port is selected.

Click the OK button. We 
are ready to go.
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MotoTune
• We now have the ports set correctly and 

can program our ECU!
• In the MotoTune window select File and

83

• In the MotoTune window select File and 
then Program, or select the program 
button:

MotoTune 84

Select the most 
recent .srz file for 
your model (or the 
srz file you want to.srz file you want to 

download to your 
ECU).
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MotoTune 85

File selected. Click 
the Open button.

Note that we are using port PCM-1.  If 
this port is not selected, use the pull-
down menu to choose port PCM-1.

MotoTune
• If you are successful, you will see  the 

series of dialog boxes below:

86

If you do not see this 
box, you may need to 
turn on your key switch 
and/or turn on your 12 V 
power supply.
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MotoTune
• Our model should now be programmed on the 

ECU.
• You should see the LEDs flashing on and off.

87

g
• As you cycle the key switch, the ECU should 

automatically power off and on and start the 
program (which flashes the LEDs).

• MotoTune has many more capabilities which we 
will show in our next example.p

• Here, we only show how to program the ECU 
with MotoTune.

Build Process
• If you make any changes to the model, 

you will need to go through the following 
steps to run the new model on the ECU:

88

steps to run the new model on the ECU:
– Build the model in Simulink (ctrl-b)
– Program the ECU with MotoTune
– That is it!
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CAN Baud Rate
• As a last part of this example, we will show 

how to change the CAN Baud rate of our 
ECU.

89

• We will increase the Baud rate to 500 K. 
• All future examples will use a Baud rate of 

500 k.
• Place a part called CAN Definition in your 

modelmodel.
• This block is located in the MotoHawk /

CAN library.

90

CAN Definition block 
placed in the top level of 
our model.

Double-click on this 
block to change its 
parameters.
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91

MotoTron ECUs have two CAN 
ports available. We can change 
the properties of each CAN port 
independently.

Default CAN Baud rate is 250K. If 
we do not change the Baud rate 
with a CAN Definition block, the 
baud rate will be 250k.

Note that the City ID is 11 (hex B). 
R b th t th Cit ID fRemember that the City ID for 
PCM-1 was also set to 11. This 
enables MotoTune to communicate 
with your ECU.

92

The only change we will make is to 
change the Baud rate to 500 k.

Make this change and click the OK
button.
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CAN Baud Rate 93

•Note that the Baud rate 
change is reflected here.
S d l d th t•Save your model and the type 

ctrl-b to build it.
•View the Matlab window to 
observe the build progress.

CAN Baud Rate 94

•Since this is the second time 
we have built the model, the 
executable file is now called 

001 srz Each time we build…001.srz. Each time we build 
the model, we will get a new 
.srz file. 

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



48

CAN Baud Rate
• We now need to program the ECU with 

the new executable (.srz file).
• Note that the ECU is still running at 250 K

95

• Note that the ECU is still running at 250 K.
• The ECU will not run at the changed Baud 

rate until we program it.
• Thus, we will leave the MotoServer ports 

at 250k until the ECU is programmed.at 250k until the ECU is programmed.

CAN Baud Rate
• We will now program the ECU.
• Select File and then Program from the 

MotoTune menus.

96

• Select the most recent .srz file.

• When the programming is complete, the ECU 
will use a Baud rate of 500k.

• Note that your two LEDs should still be flashing. 
All we changed in the model was the CAN rate.
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CAN Baud Rate
• Now that the ECU is running at a different 

CAN Baud rate, we need to change the 
port settings on MotoServer

97

port settings on MotoServer. 
• Right-click on the MotoServer icon      and 

select Ports.

CAN Baud Rate
• To change the port settings, select PCM-1 

and click the Modify button.

98

Port selected.
Click the Modify
button.
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CAN Baud Rate
• Change the settings as shown:

99

• Click the OK button to accept the 
changes

Baud rate 
changed.

changes.

CAN Baud Rate
• Your port configuration should be as 

shown.

100

Baud rate changed 
to 500k.

• Click the OK button if your settings match.
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CAN Baud Rate
• MotoTune can once again communicate 

with our ECU.
• To show this we will change the rate at

101

• To show this, we will change the rate at 
which the LEDs flash and then reprogram 
the ECU.

• Double-click on the Pulse Generator block 
inside your model.

• Make the following changes:

CAN Baud Rate 102

Period set to 100.

Pulse width set to 50.
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CAN Baud Rate
• Click OK to close the dialog box.
• Type ctrl-b in Simulink to build the model.

U M t T t d l d th l

103

• Use MotoTune to down load the newly 
created .srz file
– Select File/Program from the MotoTune 

menus.
– Select the most recent .srz file.

CAN Baud Rate
• If the Baud rates were changed in both the 

ECU and MotoServer ports and they 
match, programming of the ECU should 

104

start.

When programming is complete you the• When programming is complete, you the 
new model should run, and the lights 
should flash faster.
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The Last Slide
• We will leave the CAN Baud rate at 500k 

for the remaining examples in this 
workshop

105

workshop.

Lecture 16 Demo 1
• Demo the Operation of the MotoTron ECU blinking 

lights. The CAN baud rate should be 500 k.

106

Demo___________
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Advanced Model-Based-System 
Design

Lecture 17:Lecture 17:
MotoTron MotoHawk Projects

Outline

• Implement the controller for the Motor Generator 
system that we modeled earlier.

2

• Use the MotoHawk PWM block.
• Use the MotoHawk analog input block.
• Use MotoHawk Probes to view signals internal 

to the ECU in real-time.
• Use MotoHawk Calibration blocks to change the g

feedback gains in real-time.
• View real-time signals using MotoTune charts.
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Motor Control Project
• We will now create a new MotoHawk 

project in our working directory.
• Enter the command

3

• Enter the command 
motohawk_project('Motor_Control_MH2') 
at the Matlab command prompt.

• Simulink will run and open the new model.

Motor Control Project
• We need to make a few modifications:

– Change the CAN Baud rate to 500k (copy the 
can block from our first model)

4

can block from our first model)
– Delete the controller and plant subsystems 

inside the  Foreground subsystem.
– Copy the Flashy lights portion of the first 

model and place it in the foreground 
subsystem of our new model (These lightssubsystem of our new model. (These lights 
will tell us that the ECU is working.)

– The following two slides show what you 
should have:
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Top Level Model 5

Added CAN definition 
block. Note baud rate is 

500 k.

Foreground Subsystem 6
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Analog Inputs
• In our model, we are going to read three analog 

inputs:
– The potentiometer (POT) – This is a 0 to 5V analog 

7

voltage.
– The motor rpm output signal. This is approximately a 

0 to 8V signal coming out of the motor. This signal is 
divided in half by two 10 k resistors on the circuit 
board. Thus, the input is approximately a 0 to 4 V 
signal.

– The generator output voltage. This is approximately a 
0 to 24V signal coming out of the motor. This signal is 
divided in half by a resistor network on the circuit 
board to produce a 0 to 5V signal.

Analog Inputs
• We have scaled all of our analog signals 

to be between 0 and 5V.
• The MotoTron ECU has several analog 

8

e o o o CU as se e a a a og
input channels.

• Most channels are designed for a 0 to 5 V 
input.

• A portion of the available inputs are shown 
on the next slideon the next slide.

• This information is contained in the data 
sheet for your MotoHawk ECU.
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ECU555-80 Data Sheet 9

Analog Inputs
• We will use analog inputs AN4M, AN5M, 

and AN6M because:
– The do not have an internal pull-up 

10

e do o a e a e a pu up
resistor.

– They have the highest input impedance:
• AN1M through AN3m have 51.1k resistors 

to ground.
• AN4M through AN8M have 200k resistorsAN4M through AN8M have 200k resistors 

to ground.
• All inputs have built-in filters. Note that we 

did not include these filters in our model.
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Analog Inputs
• The ECU555-80 data sheets tells us that the 

analog inputs have a 0-5V range, 10-bit 
resolution and a filter time constant of 1 ms

11

resolution, and a filter time constant of 1 ms.
– A 0 V input is converted to a numeric value of 0.
– A 5 V input is converted to a numeric value of 

210-1 or 1023.
• The 1 ms time constant comes from the low 

filt (th 33k i t d th 0 033 Fpass filter (the 33k resistor and the 0.033 μF 
capacitor).

Analog Inputs
• Place three instances of the block 

motohawk_ain in your model.
• This block is in the MotoHawk / Analog I/O

12

• This block is in the MotoHawk / Analog I/O 
Blocks library

Added analog input 
blocks. 

Double-click on this 
block to open it. 
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Analog Inputs 13

Change this to AN4M.

Note that the output data 
type is uint16. This is an 
unsigned 16-bit integer. 
The 10-bit conversion will fit 
in a uint16 without any y
problems.

Click the OK button after 
changing the resource to 

AN4M.

Analog Inputs
• Modify the three Analog Input Blocks as shown.

14

Changed to AN4M.

Changed to AN5M.

Changed to AN6M.
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Analog Inputs
• The output of the analog blocks is a 16-bit 

unsigned integer data type (uint16).
• The rest of our model uses double 

15

e es o ou ode uses doub e
precision floating point data types.

• Add three data type conversion blocks to 
the model (library Simulink / Commonly 
Used Blocks):
– Double-click on the Convert block and specifyDouble click on the Convert block and specify 

the type as double.
• You should have the model shown on the 

next slide.

Analog Inputs 16
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Analog Inputs
• The output of the analog input blocks is a 

number from 0 to 1023.
• We want to scale this value to a number

17

• We want to scale this value to a number 
between 0 and 1.

• We will do this by using a gain block with a 
gain of 1/1023:

• Add Gain blocks and Goto blocks as shownAdd Gain blocks and Goto blocks as shown 
next:

Analog Inputs 18
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Analog Inputs
• I will hide the block names on the model:

– Select the part
Right click on the part

19

– Right click on the part
– Select Format and then Hide Name from the 

menus

Analog Inputs
• We would like to observe these three 

signals in real-time as the controller is 
running on our ECU

20

running on our ECU.
• We can observe the signals with 

MotoTune if we place MotoHawk Probes 
in our model.

• From the MotoHawk / Probing & 
Calibration Blocks library, place three 
instances of the block called 
motohawk_probe in your mdoel.
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Analog Input 21

Added probe blocks.

MotoHawk Probes
• We need to name each of the probes with 

a unique name. 
• To name a probe double click on a probe

22

• To name a probe, double-click on a probe 
block.

Change the Probe 
name here. Note:
•The name must be 
enclosed in single g
quotes.
•There must be no 
spaces in the name.
•Underscores are OK.
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MotoHawk Probes
• Change the Probe names as shown:

23

PWM Output
• We now have the analog inputs we need 

to run our system.
• Next we need a PWM output to drive our

24

• Next, we need a PWM output to drive our 
system.

• MotoTron ECUs have several high current 
PWM drivers that we can use. 

• For example, the ETC (electronic throttleFor example, the ETC (electronic throttle 
control) output can drive a 5 A load. 

• The OILP output can drive a 10 A load.
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PWM Output
• Out system already has high current drivers, so all 

we need to do is supply a low current pwm signal.
• We could use a high current PWM output such as 

ETC but we’ll save that in case we need it

25

ETC, but we ll save that in case we need it.
• We will use the EST outputs because they have 

active pull-up and pull-down drive transistors. 
(Some of the outputs only have a low side driver 
and would need a pull-up resistor for our 
application.)

• Also, the EST outputs produce 5V amplitude PWM , p p p
signals, and this is compatible with our hardware.

• The portion of the 555-80 data sheet is shown next 
for the EST outputs:

PWM Output 26
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PWM Outputs
• Eight EST outputs are available.
• We will use EST1 for this application.

T thi l t

27

• To access this resource, place a part 
called motohawk_pwm in your model.

• This part is located in the MotoHawk \
Analog I/O Blocks library.

PWM Output
• The first thing we need to do is specify 

EST1 as the output pin we want to use.
• Double click on the PWM block and

28

• Double-click on the PWM block and 
change the parameters as shown:
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PWM Output 29

Specify the Resource as 
EST1.

S if th i i fSpecify the minimum frequency 
as 1000. (If you are not using 
MotoHawk 084 Beta 9 or 
higher, you will get a different 
dialog box here.)

PWM Output
• We notice a few things about the PWM 

block.
– The duty cycle input is a number from -4096

30

– The duty cycle input is a number from -4096 
to 4096. Its type is a signed 16-bit integers 
(int16)

– For full bridge outputs (like ETC), we can 
have a negative or positive output. A duty 
cycle of -4096 means full negative output.cycle of 4096 means full negative output.
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PWM Output
• Duty Cycle Input Continued

– Since we are using a half bridge, we will only 
use the positive half of the duty cycle input

31

use the positive half of the duty cycle input 
range. 

– A duty cycle input of -4096 to 0 produces an 
output that is always low.

– A duty cycle input from 1 to 4096 produces a 
PWM output with a duty cycle from 0 to 100%PWM output with a duty cycle from 0 to 100%

PWM Output
• The frequency input is a 32-bit unsigned 

integer (uint32).
• An input of 100 produces a frequency of 1 

32

pu o 00 p oduces a eque cy o
Hz.

• For this input, we need to multiply the 
desired PWM frequency by 100.

• We would like to use a PWM frequency of 
20 kHz because it is inaudible to humans20 kHz because it is inaudible to humans.

• We will use a constant block to specify the 
PWM Frequency as shown:

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



17

PWM Frequency 33

Double-click here to open this block.

Specify the value as 20000*100 to 
specify a PWM frequency of 20 kHz.

PWM Frequency 34

FrequencyFrequency 
value 
specified 
here. Select this tab 

next.
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PWM Frequency
• The frequency input needs a uint32 data 

type.
• We could do this with a data type

35

• We could do this with a data type 
conversion block.

• Instead we will do it with the Signal Data 
Types tab in the constant block:

PWM Frequency
• Select the Signal Data Types tab and 

select the uint32 data type:

36

Uint32 specified.

Click the OK
b tt hbutton when 
done.
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PWM Duty Cycle
• The signal from our controller will have the 

following properties:
– Numerical value from 0 to 1

37

– Numerical value from 0 to 1.
– Data type: floating point double precision

• Add a gain block to scale values of 0 to 1 
to values from 0 to 4096.

• Add a data conversion block to convert a 
double precision number to a type of int16.

PWM Duty Cycle Input 38
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MotoHawk Override
• Eventually, the PWM signal will come from 

our controller.
• For now we would like to manually control

39

• For now, we would like to manually control 
the duty cycle through MotoTune.

• Place a constant with a value of 0 and a 
part called motohawk_override_abs from 
the MotoHawk / Calibration & Probing 
Blocks library

• Wire your model as shown:

MotoHawk Override 40

Double-click on this block and change 
the attributes as shown below.

Change the name to 
‘Duty_Cycle_Override’

Do not forget the quotes.

Leave the default at zero so that the 
motor will be off unless we change the 
value with the override.
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MotoHawk Override 41

• Before we build the model we need to 
check it for errors.

• Select Format, Port/Signal Display, and 
then Port Data Types from the Simulink 
menus to display data types on the signal 
lines.

• Type ctrl-d to check the model for errors.

42
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Model Build
• If:

– you did not receive any errors after using the 
ctrl-d command, and

43

ctrl d command, and
– Your data types match the ones shown

• Type ctrl-b to build your model.
• Switch to the Matlab command window to 

view the progress.

Wiring Connections
• The final step we need to take is physically 

connect the ECU to our motor-generator system 
with wires in the development harness.

44

• The first wire we need to connect is our 
transducer ground reference. This wire is called 
XDRG and is pin A22, wire 22 and is 
Black/Orange.

• Connect this wire to one of the GND connections 
on the motor-generator circuit board
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PWM Connection
• From the portion of the ECU555-80 

datasheet we saw earlier, we chose EST1 
which was pin B2.

45

• Looking further down the datasheet, we 
see the following information

• We see that this is a green/black wire and 
is numbered 34is numbered 34.

• Connect this wire to the one labeled 
“PWM” on the motor/generator PC board.

POT Connection
• From the portion of the ECU555-80 

datasheet we saw earlier, we chose AN4M 
which was pin A6.

46

• Looking further down the datasheet, we 
see the following information

• We see that this is a light blue/white wire 
and has the number 6and has the number 6.

• Connect this wire to the one labeled “POT” 
on the motor/generator PC board.
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RPM Connection
• From the portion of the ECU555-80 

datasheet we saw earlier, we chose AN5M 
which was pin A7.

47

• Looking further down the datasheet, we 
see the following information

• We see that this is a white/yellow wire and 
has the number 7has the number 7.

• Connect this wire to the one labeled 
“RPM” on the motor/generator PC board.

Voltage Connection
• From the portion of the ECU555-80 

datasheet we saw earlier, we chose AN6M 
which was pin A8.

48

• Looking further down the datasheet, we 
see the following information

• We see that this is a brown/white wire and 
has the number 8has the number 8.

• Connect this wire to the one labeled 
“VOLTAGE” on the motor/generator PC 
board.
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Circuit Diagram
• A complete circuit diagram for our 

connections is shown below.

49

D1
LED

D2

LED

R1
100

R2
100

5V

XDRP (A23)
Wire No. 23
Purple/Yellow

PWM

R3
10k

5V RPM Voltage

TACH (B12) FUELP (B11)
Wire Number 44
Gray

Wire Number 43
Orange

EST1 (B2)
Wire Number 34
Green/Black

XDRG (A22)
Wire Number 22
Black/Orange

AN4M (A6)
Wire Number 6
Light Blue/White

LED1 LED2 PWM GND POT

AN5M (A7)

RPM

Wire Number 7
White/Yellow

AN6M (A8)
Wire Number 8
Brown/White

VOLTAGE

Wiring Connections
• A picture of the wiring connections is 

shown below:

50
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MotoTune
• We are now ready to program the ECU 

with MotoTune.
• Use the procedure covered earlier

51

• Use the procedure covered earlier
– Run MotoTune
– Select File and then Program from the 

MotoTune menus
– Select the most recent executable version of 

our MH2 model.
• When the programming is complete, click 

the OK button to close the dialog box.

MotoTune Display
• You should have an empty MotoTune 

window.
• Select File New and then Online

52

• Select File, New, and then Online 
Display/Calibration or from the menus.

• Select Display and click the OK button.
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MotoTune Display 53

Cli k th N t b tt t i d th li k• Click the Next button twice and then click 
the Finish button.

• You should have the screen shown next:

54

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



28

MotoTune
• Click on the plus sign(s) next to 

Motor_Control_MH2 to expand the tree.

55

Click on this + sign 
and then expand 
the tree fully.

MotoTune Display 56

This is the override 
we placed in our p
model.

These are the three 
probes we placed in 
our model.
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MotoTune Display
• You can display as many or as few of the 

probes and overrides as you want.
• To place an item in your display drag the

57

• To place an item in your display, drag the 
item into the display window.

• If you drag an individual item, only that 
item will be displayed.

• If you drag a folder, all probes andIf you drag a folder, all probes and 
overrides in the folder will be displayed.

MotoTune Display
• Drag the item Actual_Speed to the disply 

window as shown below:

58

Release the mouse 
button here.
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MotoTune Display
• When you release the mouse button, the 

item and its value will be displayed.
• Resize the cells to show the entire text 

59

es e e ce s o s o e e e e
labels.

Probe name.
Real-time value.

MotoTune Display
• Drag the probes Desired_Voltage and 

Actual_Voltage to the display window.

60

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



31

MotoTune Display
• For the override, we need both items. 
• The easiest way to do this is by dragging 

the folder Duty Cycle Override Override 

61

e o de u y_Cyc e_O e de O e de
to the display window. Both items will 
appear in the window:

MotoTune Display
• The next thing we need to do is change 

the speed at which the displayed values 
are updated

62

are updated.
• Right click on the cell as shown below:

Right-click here and 
then select Properties
from the menufrom the menu.
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MotoTune Display 63

• By default, MotoTune updates all of the 
values at a 500ms rate.

• This is too slow for our example.
• Click the Set Fast button and select the 

Apply To All option

MotoTune Display 64

Option selected.

• We have specified that all values in the display window 
will be updated every 50 ms.

• The downside is that this information is communicated

Values will be displayed 
at a 50 ms rate.

The downside is that this information is communicated 
over the CAN bus. 

• By displaying a lot of items and updating them at a high 
rate, we are increasing the amount of CAN traffic on the 
bus.
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MotoTune Display
• The model is running on our ECU.
• If you rotate the pot, you should see the 

value on the Desired Voltage probe

65

value on the Desired_Voltage probe 
change between 0 and 1.

MotoTune Override
• Right now, the override is set to Pass-

Through.
• From the model the value we specified is

66

• From the model, the value we specified is 
0, so the motor will be off.

Click here to reveal the 
options.
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MotoTune Override 67

After selecting the cell, 
options are now available.

Select Override and press 
the enter key.

Override now selected.

MotoTune Override 68

Enter a value here.

When you press the enter 
key, the output of the 
override block will be 
changed to the value you 
enter.

Enter a value between 0 and 1. Zero is full 
off, 1 is full on.

The motor should spin and you should see 
all of the other probe values change.

If you have an oscilloscope, you can 
observe the PWM output and see the PWM 
waveform as the duty cycle changes.
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MotoTune Override 69

• We now know how to use probes and 
overrides.

• The last thing we will do is save our 
display.

MotoTune Display
• Select File and then Save from the 

MotoTune menus.
• Specify a name for your display like MH2

70

• Specify a name for your display, like MH2 
and click the Save button.

• The next time we use this model, we can 
open the display we saved.

• We can also use the display in futureWe can also use the display in future 
models if we have the same probes and 
overrides.
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Lecture 17 Demo 1
• Demo of MotoTune with the Motor/generator system

– MotoHawk Probes display measurements
– MotoHawk override controls motor speed.

71

Demo___________

Controller Implementation
• We now have a MotoHawk shell that has 

the inputs and outputs that we need to 
control our system

72

control our system.
• We will now place the controller we 

designed with simulations in our ECU 
model.

• We will do this in a subsystem so that we 
can easily separate our control subsystem 
from the MotoHawk I/O shell. 
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Controller Implementation
• Place a subsystem block in the foreground 

block of our model.
• Subsystem blocks are located in the

73

• Subsystem blocks are located in the 
Simulink / Commonly Used Blocks library.

• Rename the subsystem “Controller.”

74

Added subsystem.

Double-click on the 
subsystem to open it.

Add ports as shown next.p
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Controller Subsystem 75

• In the Foreground subsystem, make the 
connections shown next to the Controller 

b tsubsystem.
• Use From and Goto blocks located in the 

Simulink / Signal Routing library.

Controller 76
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Controller
• To connect the controller PWM output to 

the ECU PWM output, replace the 
constant block with a From block as

77

constant block with a From block as 
shown:

This was a constant block.

Controller
• We now have a shell for utilizing the ECU 

resources, and we have a convenient  
place to put all of our control logic

78

place to  put all of our control logic.
• If we make a change to our control 

algorithm, we only need to modify the 
contents of the controller subsystem. The 
only time we will need to modify our 

fMotoHawk shell is if we need to create 
additional inputs or outputs.
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Controller
• We will start with the proportional feedback 

method we developed in model 
Motor_Control_Sim1.mdl.

• The controller portion of the model is shown

79

The controller portion of the model is shown 
below.

Only copy this part. Do not 
copy the ports.

Controller.
• We only need to copy the proportional 

control portion of the model. 
• The low pass filter is implemented in

80

• The low-pass filter is implemented in 
hardware and is a circuit on the PC board.

• Copy and paste the controller from the 
simulation into the MotoHawk model as 
shown:
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MotoHawk Controller 81

• The load voltage signal is not being used, 
so we will connect it to a terminatorso we will connect it to a terminator.

• This controller had a fixed gain of 100.

MotoHawk Controller
• We would like to add the capability of changing 

the proportional gain while the controller is 
running.

82

• This will allow us to tune the controller to our 
physical system in real time. 

• We can do this by adding a MotoHawk 
Calibration block to our controller.

• The calibration block is located in the MotoHawk
/ Calibration & Probing Blocks library.

• Make the changes shown next.
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MotoHawk Controller 83

Gain changed to 1

P d t bl k dd d

• Double-click on the calibration block and 
make the changes shown next.

Product block added.
Cal block added.

Calibration Block 84

Name changed to 
‘Proportional_Gain’

Do not forget the quotes. No 
spaces allowed.

Default value set to 10.

We can change this value 
while the model is running on 
h ECUthe ECU.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



43

Calibrations
• Click the OK button.
• Build the model.
• Download the model to your ECU with

85

• Download the model to your ECU with 
MotoTune.

• Display all of the probes and overrides as 
we did in the previous example.

• You can load a saved display from the 
MotoTune File menu if you wantMotoTune File menu if you want.

• You should have the following MotoTune 
display.

MotoTune 86
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Motor-Generator Operation
• We can now run or controller on the actual 

motor-generator system.
• We notice the following:

87

• We notice the following:
– The motor speed follows the setting on the 

speed pot.
– The motor speed is held relatively constant as 

we change the load on the generator. (As it 
should with a proportional feedback system )should with a proportional feedback system.)

– The Motor generator system makes a ton of 
noize.

Lecture 17 Demo 2
• Demo of Motor/generator with the proportional feedback 

control system.

88

Demo___________
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Motor-Generator Operation
• We notice that the motor speed signal is 

bouncing all around. (It might not do this. 
We added a flywheel to the motor

89

We added a flywheel to the motor 
generator system to fix this problem.)

• If we looked at the motor speed on an 
oscilloscope, we would notice that the 
speed signal is oscillating.

Motor-Generator Operation
• In our MotoHawk realization, the 

foreground process only executes every 5 
ms

90

ms.
• This means that the control algorithm 

executes only once every 5 ms, which 
may e too slow for the motor/generator 
system.
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MotoHawk – Trigger Definition
• To change the rate at which the 

foreground process is triggered, we need 
to place a motohawk trigger def block in

91

to place a motohawk_trigger_def block in 
the top level of our model.

• This block is located in the MotoHawk / 
Trigger Blocks library.

• Place the block in the top level as shown 
next:

MotoHawk – Trigger Definition 92

Block added.
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MotoHawk – Trigger Definition
• When we open the block, we see

– Trigger FGND RTI period is set to 5000 μs, or 
5 ms.

93

5 ms.
– FGND RTI stands for foreground real-time 

interrupt.
– This trigger will be generated every 5 ms. 
– Change this value to 1000 to generate a 

trigger every 1 mstrigger every 1 ms.

94
Period changed 
to 1 ms.

This is a trigger block that generates a trigger 
based on the foreground real-time interrupts.
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FGND RTI
• We see that our foreground subsystem is 

triggered by the FGND RTI. Since we 
changed this value to 1 ms our controller

95

changed this value to 1 ms, our controller 
will now execute every 1 ms.

This block generates a trigger at 
the rate specified by the FGND 
RTI block.

This 5 ms is for documentation purposes. 
Changing it is not necessary. To change it, right 
click on it, select Edit Mask, select the 
Initialization tab, and then change the sample 
time.

Motor-Generator Operation 
• Build the model and download it to the 

ECU.
• Lets see if the bad behavior has been 

96

e s see e bad be a o as bee
fixed.

• The oscillation has been eliminated with 
no load.

• There is still a grinding sound at higher 
speeds and higher loadsspeeds and higher loads.

• We will look at changing the feedback gain 
to see if it fixes this oscillation.
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MotoTune Calibration
• In the MotoTune window we have all of the 

probes and overrides displayed.

97

MotoTune Calibration
• We can change the gain by changing the 

calibration we added in the previous 
model

98

model.
• Select File, New, and then Online 

Display & Calibration from the MotoTune 
menus.

• Select Calibration and click the OK button

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



50

MotoTune Calibration
• You can specify a new 

name or use the one given.
• Click the Save button

99

Click the Save button.
• In the future, we will be 

able to load calibrations 
that we made earlier.

• We can also back load 
calibrations into our modelcalibrations into our model 
(although this process is 
not recommended).

MotoTune Calibration 100

Expand this portion of the tree.
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MotoTune Calibration 101

•This is the calibration part that 
we added to out model.

•Double-click on it to open a 
window for this calibration.

•Calibration window that allows us 
to change the value of the 
Proportional_Gain.

•Enter a new value in the cell.

When you press the Enter key, 
the new value will ne sent to the 
ECU.

Calibrations
• The Calibrations allow us to try different 

values of the parameter we are changing.
• We can save the calibrations to a file for

102

• We can save the calibrations to a file for 
later use.

• We can backload the values into out 
model. (Not recommended.)
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Motor-Generator Operation
• My system appears to have the following 

behavior:
• For gains of 1 to 5 the noise disappears

103

• For gains of 1 to 5, the noise disappears.
• For a gain around 10, we hear some 

noise.
• For gains of 100 and 1000, the oscillation 

is noticeable for all speeds of operation.is noticeable for all speeds of operation.

Proportional Feedback
• The error signal is the difference between 

the desired quantity and the actual 
measured quantity. 

104

– In our case the error is the difference between 
the desired voltage signal and the voltage 
signal representing the rpm.

• A system with proportional feedback will 
have the following properties:
– As we increase the gain, the error signal will 

decrease.
– For a fixed gain, as we increase the load, the 

error will increase.
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Proportional Feedback
• To make the actual rpm follow the desired 

rpm (make the error as small as possible) 
we want to make the gain as large as

105

we want to make the gain as large as 
possible.

• Increasing the gain can make the system 
unstable.

• We can observe all of these properties in 
our system.

Proportional Gain
• To make the observation of our system a 

little easier we will add a probe on the 
error signal as shown below:

106

error signal as shown below:
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Motor-Generator System
• Download our change to the ECU.
• Observe that the system exhibits the 

behaviors discussed.

107

be a o s d scussed

Lecture 17 Demo 3
• Demo of Motor/generator with the proportional 

feedback control system with the following
– Foreground process set to a trigger rate of 1 ms

108

– Modifying the feedback gain with MotoHawk calibrations.
– Viewing the Error Signal

Demo___________
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Further Investigations
• At this point, we know how to use several 

of the tools available from MotoTron.
• We will investigate the effects of different

109

• We will investigate the effects of different 
control methods. 

Integral Control
• The proportional control method causes 

the measured signal to follow the desired 
control signal with a constant amount of 

110

error.
• Integral will cause this error to go to zero 

in steady state.
– We are controlling rpm.
– The rpm will equal the command rpm in p q p

steady state.
– When we change the load, the rpm will return 

to the steady state value after a slight 
(hopefully) disturbance.
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Integral Control
• We explored the effects of adding an 

integrator in our SIL simulations, and in 
our real-time simulations.

111

• We will not use the built-in MathWorks 
discrete integrator because:
– The integration time step is determined at 

compilation time. (For our system, it is 1 ms.) 
– This predetermined value is used to calculate 

the integral even if the actual time between 
integration steps varies slightly while the 
model is running.

Integral Control
• MotoHawk has a block called dT.
• This block returns the actual time difference 

between when the block was previously 

112

be ee e e b oc as p e ous y
executed to the time is currently being 
executed.

• This block allows us to use the actual time 
difference in a calculation.

• We will use a rectangular integration method• We will use a rectangular integration method 
with saturation limits.

• Open your controller and modify as shown:
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Integral Control 113
Proportional Gain.

Sum. Forms the 
Proportional/Integral 
(PI) control.

Error Signal.

Integrator.

Integrator – Rectangle Method 114

Integrator output. 
Equal to the 
previous value plus

Rectangular area. (Width of 
time slice times the error.) 

previous value, plus 
the added area of 
the rectangle just 
calculated.

Integrator output from 
the previous time step. 
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115Integrator – Rectangle Method
Calibration block used to set gain. Saturation block. Limits the 

integrator output to ±1.

Integral gain. 
Initially the gain is 
set to zero We will

MotoHawk delta time (dT) 
block. Located in the 
MotoHawk / Extra 
Development Blocks library.

set to zero. We will 
change the gain 
with the calibration 
block.

Model Build
• Build and download the model to your 

ECU.
• Display all MotoHawk Probes

116

• Display all MotoHawk Probes.
• Display the calibration spreadsheet for the 

proportional and integral gains.
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117

System Behavior
• You should notice the following properties 

of your PI System.
– The proportional gain behaves similar to our 

118

p p g
last example. 

• High proportional gain causes the system to 
oscillate and emit an grinding noise.

• Low proportional gain produces a large error under 
high load conditions.

– The Integral gain g g
• Drives the error signal to zero.
• Causes over and undershoot.
• Larger values of integral gain cause more over and 

undershoot, but drive the error to zero faster.
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Lecture 17 Demo 4
• Demo of Motor/generator with the PI feedback 

controller.

119

Demo___________

Calibration Problem
• One thing you might have noticed is that 

when you changed the value of the 
integral gain calibration the motor speed

120

integral gain calibration, the motor speed 
jumped (sometimes extremely high) and 
then slowly game back to the rpm it was 
set at.

• Imagine if you were in a vehicle and you 
changed the gain with a calibration and a 
50 hp engine or electric motor made a 
similar jump in speed and torque.
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Calibration Problem
• A step change like the one we see in our 

motor-generator system could easily break 
a shaft

121

a shaft.
• The reason for this problem is where we 

placed the gain block for our integrator.

Calibration Problem 122

Output to sum 
bl k E

Integrator output: This value 
hold constant or changes 
relatively slowly when a step 
change occurs in the gain (It

block:  Even 
though the 
integrator 
holds it value, 
this signal will 
have step 
changes 
because the 
gain has stepchange occurs in the gain. (It 

will eventually change in 
response to the step change in 
gain.)

Integral gain (the calibration 
together with the product 
block):This value can change 
instantaneously.

gain has step 
changes.
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Calibration Problem
• We can fix this problem by placing the 

gain before integrator:

123

Step changed will occur here. Integrator output tends to hold its 
value. Output will change when 
we have a step change in the 
input, but the output will change 
slowly.

Calibration Problem
• Even though the input to the integrator will have 

step changes, the output of the integrator can 
only change slowly.

124

• Thus, when we change the integral gain, we will 
not get wild changes in the motor speed and 
torque that we saw earlier.

• We expect changes, but only slow changes.
• Note that the change in the placement of the g p

gain does change the effect of the limiter. 
(How?) 
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Controller Improvements
• One thing we notice in the operation of our 

motor-generator system is that even though we 
are keeping the  motor speed constant, as we 
turn on more light bulbs the light bulbs become

125

turn on more light bulbs, the light bulbs become 
dimmer.

• This is because of the output impedance of the 
generator. 

• We are effectively modeling the generator as an 
ideal voltage source:g
– The output voltage is constant no matter how much 

current we draw.
– The output voltage is a function of the generator rpm 

(which we are keeping constant)

Generator Model
• With this model, if we keep the rpm 

constant, the output voltage should be 
constant independent of load

126

constant, independent of load.
• This is obviously not the case since we 

observed that the lights become dimmer 
as we turn on more lights.

• A better model of the generator is an ideal 
voltage source with a series output 
resistance. 
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Generator Model
• What we should do:

– Set up a series of measurements using the 
MathWorks Model Based Calibration tool.

127

MathWorks Model Based Calibration tool. 
– Measure the generator characteristics.
– Generate a new model.
– Simulate the new model.
– Generate a new controller for the model.
– Download the new model on to out ECU.

Constant Voltage Controller
• We will skip the process of improving the 

model and simulating a controller.
• Note that this is a dangerous step if

128

• Note that this is a dangerous step if 
you are working with a complicated and 
expensive system.

• You should always simulate a new 
control method before deploying it on 
hardware.

• We don’t have time in this short 
workshop to do this.
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Constant Voltage Controller
• Instead we will use our knowledge of control 

systems.
• Looking at our controller, we note that we are 

129

g ,
comparing the control signal (called Desired 
Voltage) to the measured rpm signal.

• The feedback tries to make the measured signal 
equal to the control signal.

• To regulate the generator output voltage, all we g g p g ,
need to do is change the signal we are feeding 
back.

• Make the changes shown on the next slide.

Constant Voltage Controller 130

Generator output 
voltage is now the 
feedback variable.

The speed signal is 
not being used.
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Constant Voltage Controller
• The feedback now attempts to keep the 

generator output voltage equal to the 
control signal

131

control signal.
• As the load changes, the controller will try 

to keep the generator voltage constant.
• When you run this model, you will notice 

that, in order to keep the generator voltage 
constant,  the motor will speed up as more 
light bulbs are turned on. 

Constant Voltage Controller
• Build this model.
• Download it to your ECU.
• Test it

132

• Test it.
• Observe the effects of changing the gains.
• Note that this system may require different 

feedback gains than our constant motor 
speed system.

• You should be able to visually see the 
effects of over and undershoot in the 
brightness of the bulbs.
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Lecture 17 Demo 5
• Demo of Motor/generator with the PI feedback 

controller and constant voltage feedback.

133

Demo___________
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Advanced Model-Based-System 
Design 

Lecture 18:Lecture 18:
CAN Communication

Outline

• Can code calculator
• CAN message data base with Vector CANdb+

2

• CAN message m-files for MotoHawk
• MotoHawk Read CAN Message block
• MotoHawk Send CAN message block
• We will create a system where we have two 

MotoTron ECUs communicate over a CAN linkMotoTron ECUs communicate over a CAN link. 
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CAN Signals - Apology

• (The author apologizes for the repetitive 
nature of the following 70 slides )

3

nature of the following 70 slides.)

ECU1 CAN Output
• We will generate 4 sine waves on ECU1 

and send the values over CAN to ECU2.
– Sine Wave 1: Period = 1 s Amplitude = 1V

4

– Sine Wave 1: Period = 1 s, Amplitude = 1V 
– Sine Wave 2: Period = 2 s, Amplitude = 3V
– Sine Wave 3: Period = 3 s, Amplitude = 5V 
– Sine Wave 4: Period = 4 s, Amplitude = 7V

• We will send all 4 values in one CAN 
message with CAN ID x123
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Vector CANdb++
• We will use a program named CANdb+ 

from Vector Informatik to visualize CAN 
messages and maintain a CAN database

5

messages and maintain a CAN database.
• All signals will be saved in a database 

named MBD_MotoHawk.dbc
• We will show a variety of signals to 

illustrate CAN scaling and offsets.

CAN Message ECU1_Message1
• Sent by ECU1
• CAN ID x123 (hex)

6

• CAN Standard 11-bit ID
• DLC – 6 bytes in length
• Signals

– SW1 values -1 to 1
– SW2 values -3 to 3
– SW3 values -5 to 5
– SW3 values -7 to 7
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SW1

• Sine Wave 1 
is a signal 

CAN Code Calculator

Unsigned Codes

7

g
with values 
from -1 to +1.

• Send as an 
unsigned 8-bit 
code.

g

n 8:= Number of bits in the code

Xmax 2n 1−:= Xmax 255=

Xmin 0:=

X i th bi l f th d i th fi ld WX is the binary value of the code in the field. We are
assuming a unsigned codes from 0 to 2n-1.

8Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 1:= Ymin 1−:=

factor 1:= offset 0:= Initial Guesses

Given

Y factor X offset+Ymax factor Xmax⋅ offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,( ):=

factor 7.843137 10 3−×= offset 1−=
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SW2

• Sine Wave 2 
is a signal CAN Code Calculator

2' li t i d d

9

g
with values 
from -3 to +3.

• Send as a 
signed 8-bit 
code.

2's compliment signed codes
n 8:=

Xmax 2n 1− 1−:= Xmin 2n 1−−:=

Xmax 127= Xmin 128−=

X is the binary value of the code in the field. We are
1 1assuming a signed codes from -2n-1 to 2n-1-1.

10
Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 3:= Ymin 3−:=

factor 1:= offset 0:= Initial Guesses

Given
Ymax factor Xmax⋅ offset+Ymax factor Xmax offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,( ):=

factor 0.023529= offset 0.0117647=
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SW2

• Sine Wave 3 
is a signal 

11

with values 
from -5 to +5.

• Send as an 
unsigned 16-
bit code.

• Use little• Use little 
endian (Intel) 
format.

12Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 5:= Ymin 5−:=

factor 1:= offset 0:= Initial Guesses

Given

Ymax factor Xmax⋅ offset+a a
Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,( ):=

factor 1.525902 10 4−×= offset 5−=
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SW4

• Sine Wave 4 is a 
signal with CAN Code Calculator

2's compliment signed codes

13

values from -7 to 
+7.

• Send as a 
signed 16-bit 
code.

• Use big endian 

2 s compliment signed codes
n 16:=

Xmax 2n 1− 1−:= Xmin 2n 1−−:=

Xmax 32767= Xmin 32768−=

X is the binary value of the code in the field. We are
assuming a signed codes from -2n-1 to 2n-1-1.

(Motorola) 
format.

assuming a signed codes from 2 to 2 1.

14Ymax and Ymin are the values of the data signal being
sent via CAN.

Ymax 7:= Ymin 7−:=

factor 1:= offset 0:= Initial Guesses

Given
Ymax factor Xmax⋅ offset+

Ymin factor Xmin⋅ offset+

factor
offset

⎛
⎜
⎝

⎞
⎟
⎠

Find factor offset,( ):=

factor 2.136263 10 4−×= offset 0.0001068=
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15

Note: Intel (little endian) format.

CANdb++ display of CAN message x123

Note: Motorola (big endian) format.

CAN Message ECU1_Message1
Summary

16
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MotoHawk CAN M-files
• The MotoHawk CAN block does not read 

CANdb+ files.
• We will create one m file for each CAN

17

• We will create one m-file for each CAN 
message we want to send.

• When you create a model using the 
command motohawk_project, you may 
have noticed a subdirectory called CAN.

• This directory:
– Is where we will place our CAN m-files.
– Contains an example CAN message m-file.

Example CAN Message M-file
• If you look in the CAN directory, you 

should see an m-file with the name of your 
project and a m extension

18

project and a .m extension.
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CAN Message m-files
• You can open this file and take a look at 

the file.
• Here we will go over the m files we

19

• Here, we will go over the m-files we 
created for this example.

• These files are provided for you.
• First, take a look at file called 

ECU1 Message1.m.ECU1_Message1.m.
• Edit this file with the Matlab editor:

ECU1_Message1.m 20

Note that our m-file was named 
ECU1_Message1.m. 
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ECU1_message1 21

The message will be 
sent at a 50 Hz rate. 

Information for 
documentation. 

The physical CAN channel 
we will be using. 

ECU1_message1 22

We will be using an11-bit ID. 

The ID for this CAN 
message is Hex 123. 

This is a 6-byte 
message. 
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ECU_Message1 23

Here is where the signals 
contained in the message 

are definedare defined. 

ECU1_message1 – SW1 24

Signal name. Same as in CANdb+. 

Units for documentation only. 

Same as in CANdb+.
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ECU1_message1 – SW1 25

Location of the least significant 
bit of the signal. 

Independent of:
•Big endian, little endian.

•Number of bytes in the 
message.g

Bit numbering is different 
than that shown in CANdb+.

26

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal SW1 is 
bit 56.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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ECU1_message1 – SW2 27

Location of the least significant 
bit of this signal is 48.

28

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal SW2 is 
bit 48.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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ECU1_message1 – SW3 29

Location of the least significant 
bit of this signal is 40.

30

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 Least significant bit of signal SW3 is 
bit 40.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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ECU1_message1 – SW4 31

Location of the least significant 
bit of this signal is 16.

Note that the byte order for this 
signal is big endian.

32

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 Least significant bit of signal SW4 is 
bit 16.
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ECU1_Message2
• Sent by ECU1
• CAN ID x601 (hex)

33

• CAN Standard 11-bit ID
• DLC – 6 bytes in length
• Signals

– Potentiometer Value 0 to 1023. 
– Sine Wave Period = 5.0 s, Amplitude = 5V 
– Shark Tooth Waveform (Ramp) -100 to 100.
– Time 0 to 3600 seconds.

Potentiometer
• Analog signal measured with analog input. Use 

the POT on the Motor-Generator system.
• Value is read on ECU1 as a 10 bit code with 

values from 0 to 210 1 (1023 for non ECE

34

values from 0 to 210-1 (1023 for non ECE 
people).

• Send over CAN as an unsigned 10-bit code.
• Factor is 1.
• Use little endian (Intel) format.
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Sinewave (not mispelled!)

• Signal with 
values from -5 

35

to +5.
• Send as an 

unsigned 14-
bit code.

• Use little Use tt e
endian (Intel) 
format.

36
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SharkTooth

• Signal with 
values from -

37

100 to +100.
• Send as an 

unsigned 12-
bit code.

• Use little Use tt e
endian (Intel) 
format.

38
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Time

• Signal with 
values from 0 

39

to 3600.
• Send as an 

unsigned 12-
bit code.

• Use little Use tt e
endian (Intel) 
format.

40
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41

CAN Message ECU1_Message2
Summary

42
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ECU1_Message2.m 43

Note that our m-file was named 
ECU1_Message2.m. 

ECU1_message2 44

The message will be 
sent at a 50 Hz rate. 

Information for 
documentation. 

The physical CAN channel 
we will be using. 
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ECU1_message2 45

We will be using an11-bit ID. 

The ID for this CAN 
message is Hex 601. 

This is a 6-byte 
message. 

ECU_Message2 46

Here is where the signals 
contained in the message 

are definedare defined. 
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ECU1_message2 – Sinewave 47

Location of the least significant 
bit of signal Sinewave is 50.

48

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal Sinewave 
is bit 50.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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ECU1_message2 – Time 49

Location of the least significant 
bit of the signal.

50

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal Sinewave 
is bit 28.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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CAN Message ECU2_Message1
• Sent by ECU2
• CAN ID x708 (hex)

51

• CAN Standard 11-bit ID
• DLC – 3 bytes in length
• Signals

– Temperature 0 to 100
– Fred -3150 to -3120 
– LED3 0 to 1
– Pulsewidth 0 to 100

Temperature

• Signal with 
values from 0 

52

to 100.
• Send as an 

unsigned 7-bit 
code.

• Use little Use tt e
endian (Intel) 
format.
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53

Fred

• Signal values 
from -3150 to   

54

-3120.
• Send as an 

unsigned 5-bit 
code.

• Use little Use tt e
endian (Intel) 
format.
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55

LED3
• Signal value 0 or 1.
• Send over CAN as an unsigned 1-bit code.
• Factor is 1

56

Factor is 1.
• Use little endian (Intel) format.
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Pulsewidth

• Signal values 
from 0 to 100.

57

• Send as an 
unsigned 10-bit 
code.

• Use little 
endian (Intel) e d a ( te )
format.

58

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



30

59

CAN Message ECU2_Message1
Summary

60
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ECU2_Message1.m 61

Note that our m-file was named 
ECU2_Message1.m. 

ECU2_Message1 62

The message will be 
sent at a 50 Hz rate. 

Information for 
documentation. 

The physical CAN channel 
we will be using. 
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ECU2_Message1 63

We will be using an11-bit ID. 

The ID for this CAN 
message is Hex 708. 

This is a 3-byte 
message. 

ECU2_Message1 64

Here is where the signals 
contained in the message 

are definedare defined. 
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ECU2_Message1 – Fred 65

Location of the least significant 
bit of signal Fred is 63.

66

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal Fred is 
bit 63.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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ECU2_Message1 – LED3 67

Location of the least significant 
bit of signal LED3 is 52.

68

63          62         61         60        59       58         57          56 

55          54         53         52        51       50         49          48 

47          46         45         44        43       42         41          40 

39          38         37         36        35       35         33          32 

31          30         29         28        27       26         25          24 

Least significant bit of signal LED3 is 
bit 52.

23          22         21         20        19       18         17          16 

15          14         13         12        11       10          9            8 

7           6           5           4          3         2           1           0 
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CAN Message ECU2_Message2
• Sent by ECU2
• CAN ID x124 (hex)

69

• CAN Standard 11-bit ID
• DLC – 1 byte in length
• Signals

– Cooling_Fan 0 to 1

Cooling_Fan
• Signal value 0 or 1.
• Send over CAN as an unsigned 1-bit code.
• Factor is 1

70

• Factor is 1.
• Use little endian (Intel) format.
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71

CAN Project Preview
• We will connect two MotoTron ECUs 

together on a single CAN bus.
• Each ECU will control a motor generator

72

• Each ECU will control a motor-generator 
setup.

• ECU1 will send commands to ECU2,  
some of which are commands to spin the 
motor connected to ECU2.

• ECU2 will send commands to ECU1,  
some of which are commands to spin the 
motor connected to ECU1.
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CAN Project Preview
• We will use two PCs to communicate with 

the individual ECUs.
• Each PC will use its own copy of

73

• Each PC will use its own copy of 
MotoTune.

• To use MotoTron with two ECUs on the 
same CAN bus, we will have to change 
the City ID of one of the ECUs.

Can Project Preview
• We will use the same hardware setup as 

we used in the previous examples. 
• No wiring changes are needed

74

• No wiring changes are needed.
• All we need to do is connect two of the 

CAN hubs together with one of the yellow 
MotoTron CAN cables (non-terminated at 
both ends). (Do not do this yet!)

• We can remove one of the key switches 
since the switches are effectively in 
parallel. (Do not do this yet!)
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Work in Groups of Two
• One person should choose to be ECU1. 

Follow the slides with the header “ECU1.”
• These are slides that follow this slide

75

• These are slides that follow this slide.
• One person should choose to be ECU2. 

Follow the slides with the header “ECU2.”
• ECU2 should skip the following slides and 

jump to the appropriate slides.jump to the appropriate slides. 
(Approximately slide number??)

76

ECU1 Slides

ECU2 Group skip ahead to slides 
l b l d ith h d ECU2labeled with header ECU2. 

(Approximately slide number 116)
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ECU1
• ECU1 will do the following:

– Generate 4 sine waves and send the values  
over the CAN bus using message 

77

ECU1_Message1.
– Read the potentiometer from the motor-

generator system and send the binary value 
(0 to 1023) over the CAN bus using 
ECU1_Message2.

– Generate signals for Time, a ramp (shark 
tooth), and a sine wave, and send the values 
over the CAN bus using message 
ECU1_Message2.

ECU1
• ECU1 will receive the following information 

over the CAN bus in message 
ECU2 Message1:

78

ECU2_Message1:
– Temperature: Value will be displayed with a 

MotoHawk probe.
– Fred and LED signals: Light up LED on 

motor-generator system. Display value with 
MotoHawk probeMotoHawk probe.

– Receive the pulse width signal (0 to 100) and 
spin the motor with the given pulse width.
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ECU1
• ECU1 will receive the following information 

over the CAN bus in message 
ECU2 Message1:

79

ECU2_Message1:
– Cooling Fan signal. Display the value with a 

MotoHawk probe.

ECU1
• At the Matlab command prompt, enter the 

command: 
motohawk project('ECU1 CAN CAN') to

80

motohawk_project( ECU1_CAN_CAN ) to 
create a new model.

• In the top level of the model, place a 
MotoHawk CAN Definition block:
– Part in library MotoHawk /CAN Blocks
– Change the CAN rate to 500 k baud
– Leave the CityID at 11 (hex B).
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ECU1 81

ECU1
• When you create a project using the 

command motohawk_project, a new 
directory is created with the same name

82

directory is created with the same name 
as the project.

• Inside the new directory is a subdirectory 
called CAN. We will place all of the CAN 
files in this directory.

CAN m-files should be 
placed in this directory.
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ECU1
• Copy all of the CAN files to the CAN 

directory.
• By default the MotoHawk CAN blocks will

83

• By default, the MotoHawk CAN blocks will 
look in this directory for the m-files.

All of our m-files copied to the CAN 
subdirectory.

ECU1
• Next, open the foreground subsystem.
• Delete the controller and plant models.

Pl 4 Si W t i thi b t

84

• Place 4 Sine Wave parts in this subsystem 
(library Simulink/Sources).

Sine wave properties:
•Amplitude: 1
•Period: 1 sec

Double-click on this part 
and change its properties 
as shown next.
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ECU1 85

Time based chosen. We cannot 
use a sample based sine wave 
inside a triggered subsystem.

seconds)in(Period/2
Hz)in(Frequency2(rad/sec)Frequency

π
π

=
=

Since this part is inside a 
triggered subsystem the sampletriggered subsystem, the sample 
time must be set to inherited (-1).

ECU1
• Use the same settings for the other sine 

waves except:
– Sine Wave 2 should have a period of 2

86

– Sine Wave 2 should have a period of 2 
seconds and amplitude of 3.

– Sine Wave 3 should have a period of 3 
seconds and amplitude of 5.

– Sine Wave 4 should have a period of 4 
seconds and amplitude of 7seconds and amplitude of 7.
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ECU1
• We want to send the values of the sine 

waves over the CAN bus.
• Place a part called Send CAN Messages

87

• Place a part called Send CAN Messages 
in your model. (Library MotoHawk/CAN 
Blocks.) 

• Double-click on the part and change the 
settings as shown:

ECU1 88
We created this m-file earlier.

•The name of the file was 
ECU1_Message1.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink input 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU1
• Your block should look as shown.

89

ECU1
• Connect the sine wave sources to the 

CAN block.

90
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ECU1
• ECU1 will also send out the following 

information that will be contained in 
message ECU1 Message2:

91

message ECU1_Message2:
– The potentiometer reading from the motor-

generator.
– A sine wave of amplitude 5 and period 5 

seconds.
A periodic ramp signal of amplitude 100 and– A periodic ramp signal of amplitude 100 and 
period of 5 seconds (mistakenly called a 
shark tooth).

– The time since the ECU was last started.

ECU1
• For the potentiometer signal, we will use 

the same analog input as we used in the 
earlier project

92

earlier project. 
• Copy the potentiometer analog input from 

our previous project. 
• Use a convert block to change the data 

type to double. 
• Add an override so that we can change 

the value while debugging.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



47

ECU1
• As a reminder, the potentiometer used 

analog input AN4M.
• Do not scale the value (We are

93

• Do not scale the value. (We are 
transmitting the raw value in the range of 0 
to 1023.)

ECU1
• For the sine wave, use the same part as 

we used for the first 4 sine waves and set 
the amplitude to 5 and period to 5:

94

Amplitude 5. 

Period 5Period 5. 
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ECU1
• For our ramp, we will use a part called 

Signal Generator. (Located in library 
Simulink/Sources.)

95

Sawtooth chosen.) Sawtooth chosen. 

Note that we have chosen 
that the time reference for 
this block should be an 
external signal.

We will need to provide aWe will need to provide a 
signal for this block that 
corresponds to time.

Amplitude set to 100, Frequency set to 
0.2 Hz (corresponding to a period of 5 
seconds.)

ECU1
• When you click OK in the dialog box for 

the signal generator, you will notice that 
the Signal Generator has an input

96

the Signal Generator has an input.
• This input is the time input for the block.
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ECU1
• The last signal we need is a signal corresponding 

to time.
• MotoHawk provides a block called 

t h k b ti (l t d i lib

97

motohawk_abs_time (located in library 
MotoHawk/Extra Development Blocks).

• The output of this block is the time since the 
MotoTron ECU was last restarted.

• Place the block in your model and connect it to the 
i t f th i l t bl kinput of the signal generator block.

ECU1
• We want to send the values of the signals 

just created over the CAN bus.
• Place a part called Send CAN Messages

98

• Place a part called Send CAN Messages 
in your model. (Library MotoHawk/CAN 
Blocks.) 

• Double-click on the part and change the 
settings as shown:
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ECU1 99
We created this m-file earlier.

•The name of the file was 
ECU1_Message2.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink input 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.

ECU1
• Your block should look as shown.

100
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ECU1
• Connect the CAN block as shown. (An 

enlargement is shown on the next slide.)

101

ECU1 102
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ECU1
• ECU1 will be receiving two can messages.
• We need to add a CAN receive block for 

each message we are receiving

103

each message we are receiving.
• Place a part called Read CAN Message in 

your model. (Library MotoHawk/CAN 
Blocks.)

• Double-click on the block and change theDouble click on the block and change the 
settings as shown: 

ECU1 104
We created this m-file earlier.

•The name of the file was 
ECU2_Message1.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink output 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU1 105

ECU1
• All signals will be connected to probes so 

we can observe their values. 
• In addition we will do the following:

106

• In addition, we will do the following:
• Fred: 

– If the value equals -3127, turn on one of the 
LEDs in the motor-generator system.

– Use digital output part with pin FUELP. (Same 
as in our previous motor control exercise. –
Should already be wired up correctly.)
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ECU1
• LED3: 

– Convert to a Boolean type and turn on and off an LED 
in the motor-generator system.

– Use digital output part with pin TACH (Same as in

107

Use digital output part with pin TACH. (Same as in 
our previous motor control exercise. – Should already 
be wired up correctly.)

• Pulsewidth: 
– The received signal has values from 0 to 100.
– Convert to values from 0 to 4096.
– Convert to type int16 and send out a PWM signal 

using the PWM output block with pin EST1.
– (Same as in our previous motor control exercise. –

Should already be wired up correctly.)

ECU1
• The next few slides show the connections.

108

MotoHawk probe. Compare to constant. Check if 
values is equal to -3127.

MotoHawk_dout. 
Pin: FUELP

MotoHawk_dout.
Pin: TACH

MotoHawk probe.

Data Type Conversion.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



55

ECU1 109

Motohawk_pwm. 
Pin: EST1

MotoHawk probe.
Gain block. Gain 
set to 4096/100.

Constant block. Sets PWM 
frequency to 20 kHz. Value: 
20000*100.

ECU1
• All connections for CAN read block.

110
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ECU1
• The second CAN message that ECU1 will 

receive is ECU2_message2.
• This message has one signal called

111

• This message has one signal called 
Cooling_Fan.

• We will display this signal with a probe.
• Place a part called Read CAN Message in 

your model. (Library MotoHawk/CANyour model. (Library MotoHawk/CAN 
Blocks.)

• Double-click on the block and change the 
settings as shown: 

ECU1 112
We created this m-file earlier.

•The name of the file was 
ECU2_Message2.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink output 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU1 113

ECU1
• Connect the Cooling_Fan signal to a 

MotoHawk probe.

114
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ECU1
• We are now done building the model.
• Use the techniques covered previously to:

Check for consistency in data types:

115

– Check for consistency in data types:
• Select Format, Port/Signal Displays, and then 

Port Data Types to display data types.
• Type ctrl-D to evaluate your model for errors.

– Build the Model (type ctrl-b)
Use MotoTune to download your model to– Use MotoTune to download your model to 
your ECU.

• Note: Do not connect both ECUs to the same CAN 
network yet. 

116

ECU2 Slides

ECU1 Group skip ahead to slides 
l b l d ith h d ECU1/ECU2labeled with header ECU1/ECU2. 
(Approximately slide number 166)
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ECU2
• ECU2 will do the following:

– Receive 4 sine waves over the CAN bus 
using message ECU1_Message1. The values 

117

will be displayed with probes.
– Receive the potentiometer over the CAN bus 

using ECU1_Message2. Scale the signal from 
0 to 4096 and spin the motor in the motor-
generator system using the given duty cycle.

– Receive signals for Time, a ramp (shark 
tooth), and a sine wave over the CAN bus 
using message ECU1_Message2. The values 
will be displayed with probes.

ECU2
• ECU2 will send the following information 

over the CAN bus in message 
ECU2 Message1:

118

ECU2_Message1:
– Temperature. The value will be set with a 

MotoHawk override.
– Fred and LED signals. The values will be set 

with a MotoHawk overrides.
Pulsewidth The value will be read from the– Pulsewidth. The value will be read from the 
potentiometer on the motor-generator system 
and scaled to values from 0 to 100. An 
override will also be used for debugging.
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ECU2
• ECU2 will send the following information 

over the CAN bus in message 
ECU2 Message1:

119

ECU2_Message1:
– Cooling Fan signal. The value will be set with 

a MotoHawk override.

ECU2
• At the Matlab command prompt, enter the 

command: 
motohawk project('ECU2 CAN CAN') to

120

motohawk_project( ECU2_CAN_CAN ) to 
create a new model.

• In the top level of the model, place a 
MotoHawk CAN Definition block:
– Part in library MotoHawk /CAN Blocks
– Change the CAN rate to 500 k baud
– Change the CityID to12 (hex C).
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ECU2 121

CAN definition block. Double-
click on the block and change 
the settings as shown next.

ECU2 122

Baud rate set to 500 kbaud.

City ID set to 12 (hex C). This is 
necessary so that MotoTune can 
communicate with two different 
ECUs on the same CAN bus.

Contact MotoTron tech support 
for a range of valid City IDs.

Click the OK button when done.
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ECU2 123

ECU2
• When you create a project using the 

command motohawk_project, a new 
directory is created with the same name

124

directory is created with the same name 
as the project.

• Inside the new directory is a subdirectory 
called CAN. We will place all of the CAN 
files in this directory.

CAN m-files should be 
placed in this directory.
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ECU2
• Copy all of the CAN files to the CAN 

directory.
• By default the MotoHawk CAN blocks will

125

• By default, the MotoHawk CAN blocks will 
look in this directory for the m-files.

All of our m-files copied to the CAN 
subdirectory.

ECU2
• Next, open the foreground subsystem.
• Delete the controller and plant models.
• The foreground subsystem should be

126

The foreground subsystem should be 
empty except for the two blocks shown:
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ECU2
• ECU2 will be receiving two can messages.
• We need to add a CAN receive block for 

each message we are receiving

127

each message we are receiving.
• Place a part called Read CAN Message in 

your model. (Library MotoHawk/CAN 
Blocks.)

• Double-click on the block and change theDouble click on the block and change the 
settings as shown: 

ECU2 128
We created this m-file earlier.

•The name of the file was 
ECU1_Message1.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink output 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



65

ECU2 129

ECU2
• All signals will be connected to probes so 

we can observe their values. 

130

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



66

ECU2
• The second CAN message that ECU2 

receives is ECU1_Message2.
• Place a part called Read CAN Message in

131

• Place a part called Read CAN Message in 
your model. (Library MotoHawk/CAN 
Blocks.)

• Double-click on the block and change the 
settings as shown: 

ECU2 132
We created this m-file earlier.

•The name of the file was 
ECU1_Message2.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink output 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU2 133

ECU2
• All signals will be connected to probes so 

we can observe their values. 
• In addition we will do the following to the

134

• In addition, we will do the following to the 
Potentiometer signal:
– Scale the signal from 0 to 1023, to 0 to 4096.
– Convert the signal to an int16 data type.
– Output the signal with a MotoHawk_pwm 

block on EST1 and spin the motor with the 
specified duty cycle.
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ECU2
• The next few slides show the connections.

135

Gain block. Scale the 
signal to 0 to 4096. Gain 

= 4096/1023.

MotoHawk_pwm. 
Pin: EST1

Data Type 
Conversion.

MotoHawk probe.

Constant block. Sets PWM 
frequency to 20 kHz. Value: 
20000*100.

ECU2
• All connections for CAN read block.

136
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ECU2
• ECU2 will transmit the following information that 

will be contained in message ECU2_Message1:
– Temperature. A value from 0 to 100. This value will 

137

be set with a MotoHawk override.
– Fred. A value from -3150 to -3120. This value will be 

set with a MotoHawk override.
– LED3. A value from 0 to 1. This value will be set with 

a MotoHawk override.
– Pulsewidth. A value from 0 to 100. The value will bePulsewidth. A value from 0 to 100. The value will be 

obtained from the potentiometer on the motor-
generator system. An override will also be used for 
debugging purposes.

ECU2
• For the pulsewidth signal, we will use the same 

analog input as we used in the earlier project. 
• Copy the potentiometer analog input from our 

138

py p g p
previous project. 

• Use convert block to change the data type to 
double. 

• Use a gain block to scale the signal from 0 to 
100.

• Add an override so that we can change the 
value while debugging.
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ECU2
• As a reminder, the potentiometer used 

analog input AN4M.

139

ECU2
• The three other signals in this message 

use overrides to set the values. 
• To protect against the user making an 

140

p g g
error when setting an override, we will add 
saturation blocks to limit the signals.

Temperature Saturation limits: 0 to 100.

FRED Saturation Limits: -3150 to -3120.

LED3 Saturation limits: 0 to 1.
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ECU2
• We want to send the values of the signals 

just created over the CAN bus.
• Place a part called Send CAN Messages

141

• Place a part called Send CAN Messages 
in your model. (Library MotoHawk/CAN 
Blocks.) 

• Double-click on the part and change the 
settings as shown:

ECU2 142
We created this m-file earlier.

•The name of the file was 
ECU2_Message1.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink input 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU2
• Your block should look as shown.

143

ECU2
• Connect the CAN block as shown. (An 

enlargement is shown on the next slide.)

144
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ECU2 145

ECU2
• ECU2 will send out the following information that 

will be contained in message ECU2_Message2:
– Cooling_Fan. A value from 0 to 1. This value will be 

146

set with a MotoHawk override.
– To protect against the user making an error when 

setting an override, we will add a saturation block to 
limit the signal from 0 to 1.
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ECU2
• We want to send the value of the 

Cooling_Fan signal just created over the 
CAN bus

147

CAN bus.
• Place a part called Send CAN Messages 

in your model. (Library MotoHawk/CAN 
Blocks.) 

• Double-click on the part and change the 
settings as shown:

ECU2 148
We created this m-file earlier.

•The name of the file was 
ECU2_Message2.m. 

•We placed this file in the 
subdirectory named CAN.subdirectory named CAN.

•This m-file contains the signal 
definitions for this message.

When you click the OK button, if 
MotoHawk can find the m-file, the 
block properties will change:p p g

•There will be one Simulink input 
for every signal in the message.

•The block will display the 
properties of each signal and the 
CAN transmit rate.
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ECU2
• Your block should look as shown.

149

ECU2
• Connect the CAN block as shown.

150
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ECU2
• We are finished building the model.
• Use the techniques covered previously to:

Check for consistency in data types:

151

– Check for consistency in data types:
• Select Format, Port/Signal Displays, and then 

Port Data Types to display data types.
• Type ctrl-D to evaluate your model for errors.

– Build the Model (type ctrl-b)
Use MotoTune to download your model to– Use MotoTune to download your model to 
your ECU. (See Next Slide!!!)

• Note: Do not connect both ECUs to the same CAN 
network yet. 

ECU2
• If you recall, in the top level of model 

ECU2_CAN_CAN, we changed the City ID of 
ECU2 to 12 (hex C). 

152

• Since we have not yet programmed ECU2 with 
the new model, ECU2 still has a City ID of 11. 

• Thus, we program ECU2 with MotoTune the 
same as we did in our last example.

• Once we program ECU2 with the new model, we 
will need to make some changes in the 
MotoTune ports.

• (Program your ECU with the new model if you 
have not yet done so.)
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ECU2
• Once ECU2 has been programmed with 

the new model, we need to change (or 
add) a port for PCM-2 (City ID 12)

153

add) a port for PCM 2 (City ID 12).
• We used a procedure earlier to 

change/verify the properties of the 
MotoServer ports.

• We will repeat a similar procedure here.

ECU2 - MotoServer
• We now need to add a port for City ID 12 

(PCM-2) using MotoServer.
• The MotoServer icon should be

154

• The MotoServer icon       should be 
located in your windows tray.

MotoServer icon.
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ECU2 - MotorServer
• Right-click on the MotoServer icon and 

select Ports

155

ECU2 - MotorServer
• You may or may not have a port called 

PCM-2. 
• If you have a PCM 2 port the settings

156

• If you have a PCM-2 port, the settings 
should be:
– Kavaser CAN
– Access 4
– Baud Rate 500000

If you have this port, 
enable it and disable 
the PCM-1 port. 
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ECU2 - MotoServer
• If PCM-2 port settings are not:

– Kavaser CAN
Access 4

157

– Access 4
– Baud Rate 500000

• Then you will need to change the port 
settings.

• Skip to slide 166 if your port settings are p y p g
correct.

ECU2 - MotorServer
• If you need to change the port settings, 

select PCM-2 and click the Modify button.

158

Port selected.
Click the Modify
button.
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ECU2 - MotorServer
• Change the settings as shown:

159

• Click the OK button to accept the changes.
Make sure that 
only port PCM 2only port PCM-2 
is enabled.

ECU2 - MotoServer
• If your port settings are correct, skip to 

slide 166.
• If your window does not have a port

160

• If your window does not have a port 
named PCM-2, you must do the following:

• Click the Edit Names button

Click here.
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ECU2 - MotoServer 161

Click this Add
button.

Select CAN Kingdom and 
then click the Next button.

ECU2 - MotoServer
• Fill in the dialog box as shown and click 

the Finish button.

162

Name is PCM-2.

CityID is 12.

CAN Bus 1.
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ECU2 - MotoServer
• PCM-2 should be added to the CAN Bus 

Mappings.

163

Name listed here.

• Click the OK button.

ECU2 - MotoServer 164

Click this Add
button.

Fill in properties as shown:
•Type – Kavaser CAN
•Location PCM-2
•Access Level 4
•Baud Rate 500000

•Click the OK button when done.
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ECU2 - MotoServer 165

The port should 
be added with 
the proper 
settings

Disable all other 
ports.

settings.

Port is enabled.
Click the OK button. We 
are ready to go.

ECU1 / ECU2 CAN
• We can now connect the two 6-port hubs 

together with a CAN Cable. (Non-
terminated at both ends.)

166

• Remove one of the key switches. (One 
key switch will turn on both ECUs.)

• Run MotoTune on each PC and open a 
display to your ECU. 

PC1 ECU1 (PCM 1 )– PC1 connect to ECU1 (PCM-1 port)
– PC2 connect to ECU2 (PCM-2 port)

• Both PC1 and PC2 show all probes and 
overrides on the display.
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PC1 – ECU1 Display 167

PC2 – ECU2 Display 168

Quick check: 
Signals SW1 
through SW4 
should be 
h ichanging 

continuously.

Quick check: All 
of these signals 
should be 
changing except 
h P ithe Potentiometer 

signal.
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Testing
• Next, we will change values of the 

overrides on PC2/ECU2 and we should 
see the probe values change on

169

see the probe values change on 
PC1/ECU1.

• Test each override for several values 
within each signal’s range.

• I will show the display for both PCs on the 
same slide. You will have the displays 
shown on two different PC screens.

Testing 170
This value 
should follow a 
change in the 
indicated 
override. Valid 
range is 0 to 1.

To see a faster response, 
you may want to set the 
update rate of a cell to 
fast. (Right-click on a cell 
and select Properties. 
Next, click the Set Fast
button and then click the 
OK button.)
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Testing 171
This value should 
follow a change in 
the indicated 
override. Valid 
range is -3150 to 
-3120.

Testing 172
Note a significant 
amount of error?
For a temperature 
range of 0 to 100 
degrees, we only 
used 7 bits. One 
bit is equal to q
0.79 degrees.

With signals like the 
Pulsewidth and temperature, 
we are representing a 
continuous signal by a binary 
code with a finite number of 
bits. You will notice that the 
value transmitted over the 
CAN bus is an 
approximation that results in 
round off error.
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Testing
• Using the overrides, verify that all signals 

being sent from one ECU are received 
accurately by the other ECU

173

accurately by the other ECU.

MotoTune – Displaying Charts
• To verify the waveforms that are being 

sent over CAN are working, we will plot 
the signals with MotoTune

174

the signals with MotoTune.
• We will first plot signal SW1 on ECU2.
• Right-click on the SW1 value cell and 

select Properties.

Right-click here and select 
Properties from the menu.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



88

MotoTune – Displaying Charts
• Fill in the dialog box as shown:

175

We will apply the changes to all 
signals in the display.

Click the OK button when done.

This option not selected combined with the 
Apply To All option will result in all signals 

being removed from the chart.

MotoTune – Displaying Charts
• After clicking the OK button, the selections 

to not plot anything will take effect.
• Right click again on the SW1 value cell

176

• Right-click again on the SW1 value cell 
and select Properties.

• This time:
– Click the Set Fast button.
– Do not select the Apply to All button.pp y
– Select the Add to Chart/Log button.
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MotoTune – Displaying Charts
• Fill in the dialog box as shown:

177

Option not selected.

This signal will be displayed on the chart.

The value of the signal will be updated 
every 50 ms.

MotoTune – Displaying Charts
• Click the OK button to accept the 

changes. 
• With our settings only signal SW1 will be

178

• With our settings, only signal SW1 will be 
displayed on our chart.

• To display the chart, select Chart and then 
Open Chart from the MotoTune menus.

• You should see the following chart:You should see the following chart:
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MotoTune – Displaying Charts 179

MotoTune – Displaying Charts
• To add another signal to the chart:

– Right-click on the value cell and select 
Properties.

180

Properties.
– In the dialog box that appears:

• Click the Set Fast button.
• Select the Add to chart/log option.
• Do not select the Apply To All option.
• Clock the OK button.Clock the OK button.

– Close the chart that is presently open.
– Open a new chart by selecting Chart and 

then Open Chart from the MotoTune menus.
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MotoTune – Displaying Charts
• Display all 4 Sine waves on the same 

chart.

181

MotoTune – Displaying Charts
• Display the SharkTooth waveform.

182
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CAN_CAN Project
• You should now be able to control the 

motors and LEDs connected from one 
ECU by CAN messages sent from the

183

ECU by CAN messages sent from the 
other ECU.

• We are done. Whew…
• Any Questions?

Lecture 18 Demo ECU1 
• ECU1: CAN Communication

– Fred – ECU 1 Turns on LED when it receives value of 
-3127. Value sent with MotoHawk Probe.________

184

– LED3 – Turn on and off an LED connected to ECU1. 
One bit signal sent by ECU2.________

– Pulsewidth – Receive signal of 0 to 100 from ECU2. 
ECU1 Receives the signal and emits a PWM signal 
that controls the motor speed._________

– Temperature – ECI1 Receive CAN signal from ECU2 p g
and display value with probe.___________

– Cooling FAN – Receive 10bit Signal from ECU2. 
Display with MotoHawk Probe. _________
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Lecture 18 Demo ECU2 
• ECU2: CAN Communication

– Receive four sine waves from ECU1. Display values 
on a chart ._________

185

– Potentiometer– Receive potentiometer signal from 
ECU1. Scale signal and emit a PWM signal that 
controls the motor speed._________

– ECU2 receives signals for time, a ramp (shark tooth), 
and a sine wave over the CAN bus. The values will be 
displayed with probes and a chart. _________
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Advanced Model BasedAdvanced Model-Based 
Systems Design

Lecture 19:
Hardware In The loop Simulations

(HIL)(HIL)
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HIL 3

• Up to this point we have:
– Learned several levels of simulations: PC 

and Real-Time.
– Learned several software packages: 

MATLAB, Simulink, MotoHawk, LabVIEW
– Used many platforms: PC, LabVIEW RT, PXI
– Used several different hardware targets: PXI, 

MPC555.
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HIL 4

• It is now time to put it all together and perform Hardware-
in-the-loop (HIL) simulations.

• We will start with the full vehicle model developed in• We will start with the full vehicle model developed in 
Lecture 14 exercise 6 and split the model so that:
– The controller runs in the MPC555 target.
– The plant runs on the PXI target.

• The two targets will be connected with a CAN bus, the 
same harness that will be used in the final productsame harness that will be used in the final product.

• The Controller will be connected to driver controls 
through a wiring harness.

• The models will run in real time.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



HIL
• This is a test of the controller:

5

• This is a test of the controller:
– Hardware - It is running on the target we will use in 

the final implementation.p
– Speed - It is running in real time. 
– Wiring Interface - It is connected to the plant and 

driver controls using the same interface that will be 
used in the final implementation.

• This tests both the wiring as well as the effect of network g
latency as control messages are sent through the CAN bus.

• If the controller works when hooked to our virtual 
l t h fid th t it ill k hplant, we have confidence that it will work when 

we hook it to the physical plant (the real vehicle).
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HIL
• We will start with Lecture14_Exercise6.mdl and split it 

6

_ p
into two models, the plant and the controller. (The model 
has been renamed Lecture19_Model0.mdl and passed 
out )out.)

• The plant will:
– Run on the PXI Target. 
– Use LabVIEW and SIT to create a shell to interface between the 

model and the controller.
– The inputs and outputs will be CAN signals.p p g

• The controller will
– Run on an MPC555 target.
– Use MotoHawk to interface between the model and physical 

world.
– The inputs and outputs will be analog voltages and CAN signals.
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HIL 7

• We will be using the test platform below:

Controller 
d l ddeployed on an 

MPC555 
computer.

National Instruments 
PXI real-time 

computer running a 
d l f th l t

Same physical interface as 
model of the plant.

Same physical interface as 
in the actual system. (CAN 

bus in our example.)

p y
in the actual system. 

(Wiring for analog signals 
in our example.)

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



8

HIL SimulationsHIL Simulations

Part 1: Implementing the 
Controller on the MPC5554 Targetg
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Motor Controller Deployment 9

• From lectures 16 through 18, we now know how 
to use the hardware resources of the MPC555 

ll h t it th t t f thwell enough to use it as the target for the 
controller of our motor-generator system.

• We will use the control method we proved• We will use the control method we proved, 
tested, and verified in the SIL and real-time 
portions of the class.portions of the class.

• First, we will create a shell that accesses the 
hardware resources of our target (MPC555).g ( )
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Motor Controller Deployment 10

• The controller will have the following driver 
inputs that come from the driver board:
– Brake Pedal – 0 to 5 V analog input.
– Accelerator Pedal – 0 to 5 V analog input.

Park push button 0 to 5 V analog input– Park push-button - 0 to 5 V analog input.
– Forward push-button - 0 to 5 V analog input.
– Reverse push-button - 0 to 5 V analog input.Reverse push button 0 to 5 V analog input.

• The driver board has LEDs that indicate Park, 
Forward, Reverse, Error, and Vehicle Ready: , , , y
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Driver Board Schematic 11
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Motor Controller Deployment 12

• You will need to use MotoHawk analog input 
channels to read the analog inputs and then 

l th i l i t l f th i lscale the signal appropriately for the signals 
required by the controller.

• You will use MotoHawk high current digital• You will use MotoHawk high current digital 
outputs to drive the LEDs. Note that a low output 
will illuminate the LEDs on the driver board.will illuminate the LEDs on the driver board.

• All other inputs and outputs for the controller will 
use the CAN bus.
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Hardware Shell 13

• We will now create a top-level “shell” for 
our controller that:
– Initializes the MPC555 and MotoTune
– Reads and scales the inputs and provides the p p

outputs
– Passes the information to a subsystem that 

contains the controller.

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Hardware Shell 14

• The basic idea is that our interface to the 
hardware will not change that much.

• Given the same interface, we can make 
significant changes to our control method.
All f th h ill b i l t d i th• All of these changes will be implemented in the 
controller subsystem.
Th h d h ll ill i l ti l• The hardware shell will remain relatively 
unchanged. (Occasionally, a new control 
method will require new inputs or outputs In thismethod will require new inputs or outputs. In this 
case, we will need to modify the hardware shell.)
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Hardware Model – Top Level 15

Specify CAN 1 and a baudSpecify CAN 1 and a baud 
rate of 500 K

Specify the GHS compiler.

Controller and  shell inside 
here. Run once every 5 
msms.
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Hardware Shell - Foreground Subsystem
16

All input signals

Analog inputs 
and outputs.

All input signals 
bussed together 
here and passed 
to the controller.

Controller outputs 

CAN

p
extracted with a 
bus selector and 
passed to analog 
and CAN outputCAN

Outputs
and CAN output 

blocks.

CAN
Inputs
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Hardware Shell – LED Outputs
17
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Hardware Shell – LED Outputs
18
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Hardware Shell – Push-button Inputs
19
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Hardware Shell – Bus interface to Controller
20

Controller inside hereController inside here. 
(Unchanged - Mostly)

Subsystems “Probes” and “Probes1” 
t i l b th t l kcontain only probes so that we can look 

at every controller input and output 
signal for debug purposes.
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HIL SimulationsHIL Simulations

Part 2: Implementing the Plant on 
the National Instruments PXI 

Target
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Plant Model 22

• Since we already implemented the entire 
model in real-time to run on a PXI target in 
the previous lecture, we will reuse some of 
the work we did in that model.

• This Model was resaved as 
Lecture19 Model0._

• Open the model and resave it as 
Vehicle Plant mdlVehicle_Plant.mdl.
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Plant Model 23

• Delete the Controller subsystem and NI_Driver
subsystem.

• Leave the NI_Display_and_Loging subsystem in 
the model as we will display most of the same 
signals in the LabVIEW front panel as we did insignals in the LabVIEW front panel as we did in 
lecture 14.

• The inputs that came from the controller are now• The inputs that came from the controller are now 
connected to In ports and the plant outputs that 
went to the controller are now connected to Out 
ports.
– We will associate these with CAN signal inputs and 

outputs using the Simulation interface toolkit.
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Plant Model 24
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NI_Display_and_Logging 25

• The NI_Display_and_Logging subsusyem
was slightly modified because we needed 
to remove the driver signals.
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LabVIEW Front Panel 26

• We will use the front panel we created in 
Lecture 14 in this example. 

• We will remove the driver controls from 
display but reuse everything else from the p y y g
example.

• The VI from lecture 14 has been providedThe VI from lecture 14 has been provided 
for you and renamed as 
Lecture19 Model0 viLecture19_Model0.vi.

• Modify the front panel as shown next:
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LabVIEW Front Panel 27
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SIT Connection Manager 28

• You will need to use the SIT connection 
manager to:
– Change the DLL to use the one for the plant 

only.
– Connect the front panel displays to the 

appropriate signals in the DLL.
– Associate CAN inputs and outputs with the In 

and Out ports that we placed in the plant 
d lmodel.
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SIT Connection Manager - CAN 29

• The CAN signals are specified in a CANdb file. 
This file has been provided for you and is named 
AMBD HIL1 dbAMBD_HIL1.dbc

• All of the CAN signals that are needed are 
contained in this filecontained in this file.
– (Not all of the m-files needed to define the CAN 

signals in MotoHawk have been provided.) s g a s o o a a e bee p o ded )

• CAN signals are associated with In and 
Out ports by selecting the Hardware I/OOut ports by selecting the Hardware I/O 
category in the SIT Connection Mamager:
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SIT Connection Manager - CAN 30

Select Hardware 
I/O.

Click this button.
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SIT Connection Manager
• You will need to right click on your target

31

• You will need to right click on your target, 
select Add Device and then NI-CAN.

• The ensuing 
screens will allow 

t id tif thyou to identify the 
CAN hardware on 
your target and 
specify a CANdb 
“.dbc” for the 
projectproject.
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SIT Connection Manager 32

• Once you identify the CAN channels and 
specify the CANdb file, all of the signals in 
he CANdb file will be displayed.

• You can then associate model inputs and p
outputs with (In and Out ports) with CAN 
signals.g
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CAN Baud Rate 33

• You will need to use the National 
Instruments Measurement and Automation 
Explorer to set the baud rate of the 
specific CAN channels.

• (Show how to do this.)
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Lecture 19 Exercise 1 34

• Demonstrate a working HIL system with the 
controller logic unchanged. You will need to:
– Use MotoTune to debug and display many of the 

controller input and output signals.
– Define some m-files for the missing CAN signalsDefine some m files for the missing CAN signals.
– Wire the driver control board to your ECU.
– Debug a lot of wrong connections and signal g g g

associations.

• You should be able to drive you vehicle 
with the driver controls.

Demo___________
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Lecture 19 Exercise 2 35

• You will notice that the charging current oscillates 
wildly when the vehicle starts charging.

• This is because the feedback signals and generator 
torque engine throttle command signals for the 
proportional feedback loop come over the CAN busproportional feedback loop come over the CAN bus.

• CAN messages are periodic and are sent at a slower 
rate than needed to make the loop stablerate than needed to make the loop stable.
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Lecture 19 Exercise 2a 36

• Investigate an earlier model that we ran in Matlab.
• Add delay to the feedback loops to model the delay 

introduced by the periodicity of the CAN messages.
• Show that the control loops for maintaining constant 

i d t t ill t h dd 20engine rpm and constant oscillate when we add 20 ms 
delays to the incoming and outgoing signals.
Thi h ld th th th t th th• This should prove the theory that the reason the 
system is unstable is the added delay  due to latency 
in the CAN networkin the CAN network.

Demo___________
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Lecture 19 Exercise 2b 37

• In the controller model running on the MotoTron ECU, 
add calibration blocks that allow us to change the 
f db k i f th i d l d thfeedback gains of the engine speed loop and the 
generator current loop.

• Determine the feedback gain of both loops necessary• Determine the feedback gain of both loops necessary 
to obtain constant and stable charging currents.

Demo___________

Copyright (c) 2013 by Zac Chambers and Marc E. Herniter. 
This work is made available under the terms of the Creative Commons Attribution-ShareAlike 3.0 license, 
http://creativecommons.org/licenses/by-sa/3.0/.



Lecture 19 Exercise 3 38

• In Exercise 2b, we find that the proportional gains have to be 
reduce so much that the engine rpm and generator currents are 
quite far away from the desired values.quite far away from the desired values.
– The loops are stable but we have a large error because the gains are so 

small.

To fi this problem add integrators to both loops and add• To fix this problem, add integrators to both loops and add 
calibration blocks so that we can tune both the proportional and 
integral gains of each loop separately.

• Show that the error goes to zero and that the system is stable. 
(A little bit of overshoot is acceptable.)
Y ill d t b ild di it l i t t d k• You will need to build your own digital integrator and make sure 
that it saturates (or has limits on how big the value can grow).

Demo___________
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