Verification and Validation Solutions for High Integrity Systems

Tiffany Liang Application Engineer MathWorks

Recommended Workflow

Detecting errors early in the development cycle

Configuration Management (Simulink Project)

MathWorks benefits Early verification and Validation

Examples of High Reliability Applications

Example: Door Lock Control System

Door Lock Control

PIEKA

- ✓ Auto-lock when vehicle in motion
- ✓ Auto-unlock during emergencies

Our First Topic

Door Lock Control Software Requirements

1. Task Rate Requirements.
ہ [،] REQ101 – The software shall execute as a 100ms task rate.
2. Initialization Requirements.
$_{\!$
3. Diagnosis Requirements 🔜
 REQ301 – The software shall determine the lock state of each door based on the lock positions. <i>i</i> Lock position is under 1mm : Unlock state.<i>i</i> Lock position is over 4mm : Lock state.<i>i</i> Otherwise : Neutral state <i>i</i> REQ302 – The software shall determine the overall vehicle lock state based on all door lock positions.<i>.i</i> All doors in lock position: Lock state.<i>i</i> All doors in unlock position: Unlock state.<i>i</i> REQ303 – The software shall determine the overall vehicle lock state to be in failure state due to lock failure in the case where there is no response to a door lock request in under 2 seconds .<i>..i</i>
4. Door Lock Request Requirements 🖼
ہا REQ401 – The doors shall automatically lock when the vehicle speed is above 5km/h for over 2 seconds and the engine is operating ہا REQ402 – The door locks shall automatically release after the airbags deploy.

Door Lock Model Simulink / Stateflow

Increased Readability / Productivity through Graphical Modeling

Door Lock Test Model Simulink / Simscape

Able to execute various tests using the control model

Model Block used to call control model

Requirements & Logic Testing through Simulation Simulink / Stateflow

Early verification of entire system incl. plant behavior
Investigation of failure/anomaly modes (difficult on H/W)

MATLAB/Simulink Products

MATLAB

- Easy data processing
- Concise programming language
- Abundant mathematical functions • file I/O
- 2-D/3-D visualization functionality

<u>Simulink</u>

- Block diagram modeling
- Abundant block library
- High-precision time simulation

Stateflow

 Flowcharts, State Diagrams, State Transition Tables

Model Difference Comparisons Simulink Report Generator

- Generate reports on difference comparisons between 2 models
 - Compatible with Simulink Project and version management software (i.e. Subversion)

左のファイル: C:¥Program Files¥MATLAB¥R2010b 右のファイル: C:¥Program Files¥MATLAB¥R2010b ≋slxml_sfcar_1	¥toolbox¥rptgenext¥rptgenextdemos¥slxml_sfcar_1.mdl ¥toolbox¥rptgenext¥rptgenextdemos¥slxml_sfcar_2.mdl \$lxml_sfcar_2
Black Black <t< td=""><td>Islxml_sfcar_2 Eventicle type (yellow) & throttle % EOut1 skml_sfcar_2 *shift_logic gear_state # KICKDOWN & fourth entry: gear = 4; -> third entry: gear = 3; • fourth entry: gear = 4; -> second entry: gear =</td></t<>	Islxml_sfcar_2 Eventicle type (yellow) & throttle % EOut1 skml_sfcar_2 *shift_logic gear_state # KICKDOWN & fourth entry: gear = 4; -> third entry: gear = 3; • fourth entry: gear = 4; -> second entry: gear =
Green : Compon	© selection_state © kickdown ⇔Bsteady_state -> Junction dst ⇔Bkickdown -> steady_state ent mismatch mismatch
1]Sam onTick 5000Y	pleTime kLabels

The Next Topic

Configuration Management (Simulink Project)

Ensure Traceability Requirement⇔Model⇔Test

Clarification of effects of requirement changes

Simulink Verification & Validation

Model Coverage for Measuring Test Completeness Level

Check for insufficient testing

Simulink Verification & Validation

Generate Tests for Full Model Coverage

Simulink Design Verifier

Automatic test generationSuitable for equality tests

Able to generate missing tests based on user-defined tests

17

Identification of Software Design Errors Simulink Design Verifier

Check for risks of software design errors prior to implementation

Integer overflow, division by zero, range violations, dead logic

Model Verification & Validation Products

Simulink Verification and Validation[™] (SLVnV)

Simulink Design Verifier[™] (SLDV)

The Final Topic

Configuration Management (Simulink Project)

Generate Code from Controller Model Embedded Coder

- Auto-generate C-code of high readability/efficiency
- Option settings for variable attributes, function settings, code style, etc.
- Auto-generate scaling for fixed-point design

Ensuring Traceability between Requirements, Models, and Code *Embedded Coder / Simulink Report Generator*

 Reflect model specifications in generated code
 Distribute reports with model views (html)

Code⇔Document Link

2. Initialization Requirements

REQ201 – The software shall initialize controls in the Unlock state.«

3. Diagnosis Requirements 🐱

REQ301 – The software shall determine the lock state of each door based on the lock positions. \downarrow

- Lock position is under 1mm : Unlock state
- Lock position is over 4mm ∶ Lock state.
- Otherwise :Neutral state+

<code>REQ302</code> – The software shall determine the overall vehicle lock state based on all door lock positions. ϵ^i

- All doors in lock position: Lock state $_{\ell}$
- \cdot All doors in unlock position: Unlock state

REQ303 – The software shall determine the overall vehicle lock state to be in failure state due to lock failure in the case where there is no response to a door lock request in under 2 seconds . o

Model⇔Code Equality Checks (SIL/PIL, Back 2 Back Test) Embedded Coder

Efficient testing by reuse of model verification test data

Tool Chain Example: Product List

Product	Functionality	Usage
Simulink	Modeling: Controller Block	Modeling Module/Integration Test
Stateflow	Modeling: State Transitions, Flow Charts	Modeling
Fixed-Point Designer	Modeling: Fixed-Point Processing	Modeling
Simulink Verification and Validation	Model Coverage Requirements Interface Model Advisor	Module/Integration Test Review and Static Analysis
Simulink Design Verifier	Property Proving Test Generation Design Error Detection	Review and Static Analysis
Embedded Coder	Code Generation PIL Test/CGV Bullseye/LDRA Integration Traceability Report	Code Generation Equality Testing Code Coverage Measurement
IEC Certification Kit	Traceability Matrix Generation Templates for Certification	ISO26262 Support
Simulink Report Generator	Report Editing and Generation	Report Generation Model Comparison/Merge

Proving Source Code Correctness Polyspace Code Prover: Static Code Verification

Quality

- Prove absence of runtime errors (RTEs)
- Measure, Improve, Manage

Usage

- No need to compile, execute, or generate test cases
- Supports : C/C++/Ada

Process

- Early detection of RTEs
- Analyze both hand-code and p auto-generated code
- Measure code reliability

Analyze all executable paths to detect errors and prove the absence of errors

ISO26262 Functional Safety Standard

- Functional safety standard for automotive equipment
- Based on IEC61508
- Description of purpose and requirements for development
 - Activities for development process (Software safety life cycle)
 - Development and verification tools (Tool qualification)
- Description of new software engineering concepts
 - Model-based development
 - Early verification and validity checks
 - Automatic code generation

Model-Based Design Benefits (ISO26262 excerpt)

Annex B (informative)

ISO/DIS 26262-6

Model-based development

B.1 Objectives

This Annex describes the concept of model-based development of in-vehicle software and outlines its implications on the product development at the software level.

The seamless utilization of models facilitates a highly consistent and efficient development.

ISO/DIS 26262-1

1.74 model-based development

development that uses models to describe the functional behavior of the elements which are to be developed

NOTE Depending on the level of abstraction used for such a model it can be used for simulation or code generation or both.

MathWorks Solution: Summary Using Models to Detect Errors Early and Increase Efficiency

Able to form small V-loops
Able to detect errors early in the development cycle

- Mode⇔Code consistency allows for Simulink simulation results to be considered "truth".
- Early model verification is possible due to the ability to investigate floating-point models
- Large team development made easy through highly customizable tool chain
- Errors in object code detected easily through synchronization between simulations and SILS/PILS

