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Definitions and Concepts: Stratigraphy




Definitions and Concepts: Relative Sea Level
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Definitions and Concepts: Accommodation
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Definitions and Concepts: Base Level

Non-marine

Lithospheric or sedimentary surface

Shallow marine Deep marine
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Definitions and Concepts: Base Level

Geological Time
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Definitions and Concepts: Unconformity

Road Cut, Ecuador Catuneanu (2006)



Definitions and Concepts:
Lithostratigraphy vs. Sequence Stratigraphy
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Sequence Stratigraphy

The study of the rock relationships of repetitive, genetically related strata
bounded by unconformities or their correlative conformities, within a time-
stratigraphic framework (Posamentier et al., 1988; Van Wagoner, 1995).
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Basic Units

Sequence: the primary unit of sequence stratigraphy bound by
unconformities or their correlative conformities (Sloss, 1949;

Mitchum et al., 1977), irrespective of temporal and spatial scales
(Catuneanu, 2006)

Systems tract: a linkage of contemporaneous depositional systems,
forming the subdivision of a sequence. A systems tract includes all
strata accumulated across the basin during a particular stage of
shoreline shifts (Brown and Fisher, 1977)

Depositional systems: three-dimensional assemblages of
lithofacies, genetically linked by active (modern) processes or
inferred (ancient) processes and environments (Fisher and
McGowan, 1967, in Van Wagoner, 1995)
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Base Level Transit Cycle: Simplified Model
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Base Level Transit Cycle: Simplified Model
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History and Schools of Thought
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Systems Tracts and Surfaces

Depositional Sequence Approach

Subaerial Unconformity
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Chronostratigraphy

Harry E. Wheeler introduced the concept of
time-stratigraphy in 1958, and his charts are
referred to as Wheeler diagrams

An arbitrary time is assigned to each surface
following the law of superposition such that a
surface is considered as a time barrier
separating older strata from the younger

Strata is flattened along the time-surfaces. The S .
y-axis is the relative geological time. The x-
axis is usually distance

Wheeler (1964), Qayyum et al., (2017)



Simplified Model
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Developments in Chronostratigraphy
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Developments in Chronostratigraphy

An overview of the technologies used to flatten the seismic data. Two groups of technologies are introduced: one that follows the model-driven approach, and the other that
follows the data-driven approach. In a model-driven approach, only a limited set of seismic reflectors are used. In a data-driven approach, all seismic reflectors are used to
flatten the seismic data.

Techniques Summary

Chronosomes Flattening based on correlated horizon patches on 2D seismic data (e.g. Nordlund and Criffiths, 1993a,b). It does not flatten every single
seismic reflector. Flattening is partly done by interpolating between two successive horizons/chronosomes.

Stratal Slicing® A model-based approach to flatten a volume based on a given set of horizons. Originally, proportional slicing was introduced by Zeng et al.
(1998). Thereafter, parallel to upper/lower has also been introduced by various researchers.

GeoTime Total/Elf introduced a method of volumetric flattening by solving numerical problems (Keskes, 2002). They presented two ways of
correlating timelines: amplitude correlation and matching horizon dips with the seismic dips.

Age Volume This solution was based on seismic phase (Stark, 2003, 2004). The data are sorted and correlated by unwrapping the phase and thereafter an
RGT series is established by counting.

UVT Transform This was perhaps the first attempt with a hope to restore 3D seismic data in case of deformation (Mallet, 2004). They named it a Geochron or

G-space Model. At present, it is known as UVT Transform. This algorithm solves a series of linear equations to attempt the restoration of a
structural seismic into a stratigraphic seismic. As a result, it obtains a flattened volume.

Volumetric Flattening Another sophisticated algorithm to solve an inverse problem between seismic dips and reflector’s dip to compute a solution to fully flatten a
given seismic volume (Lomask, 2003; Lomask and Guitton, 2007). Later on, the algorithm has been tuned to perform flattening with given
constraints (horizons and faults). Contrary to UVT Transform, this method performs flattening within a given spatial coordinates system.

HorizonCube/SSIS® This method originally provides both model-/data-driven solutions based on tracking in a pre-computed dip volume from the seismic data
(Ligtenberg et al., 2006). The same method has been upgraded to solve a system of linear equations based on the work of Colorado School of
Mines given below.

Domain Transform Aninterpretation guided model based approach to flatten seismic data. Much similar to Zeng's work of stratal slicing (Dorn et al,, 2008; Dorn,
2013). However, this method incorporates faults as well.
Paleoscan Another mathematically approach to provide data-driven results and perform flattening based on a pre-computed model (Pauget et al.,

2009). Contrary to other automated approaches, this software works directly on the seismic amplitudes (Peaks/Troughs). Once the seismic

WheelerLab® This is the first image-based model driven approach to prepare Wheeler diagrams. It is a 2D solution which can also be applied to prepare
Wheeler diagrams of an outcrop image (Amosu and Sun, 2017).

* Open source codes are publicly accessible,
® Available for academia.
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Timelines of the Wheeler diagrams s the dual nature of geological timelines. The diagrams are originally plotted on depicts the evolution of the chronostratigraphic chronosomes concurrently with the evolution of
Wheeler diagrams arelative geological time scale and no formal technique has yet been recommended for time calibration. identified genetic stratal packages. This facilirates a better communication of the sequence-stratigraphic
Base level In this paper, a numugramappraach is prapased to calibrate the timelines. The reprcscnla[ian of un- process. Wheelerlab is designed to give the user bqlh interactive and mterprelgnonat «control over
L N . . N L. the transformation: this is most useful when determining the correct stratigraphic order for laterally
conformities that are parallel to bedding planes is another important idea presented in this paper. separated genetic stratal packages. The program can also be used to generate synthetic sequence

© 2017 Elsevier Ltd. All rights reserved. stratigraphic sections for chronostratigraphic analysis.

© 2017 The Authors. Published by Elsevier BV.
This is an open access article under the CC BY license
(htrp:/fcrearivecommans.orgflicenses/by 4.0 ).
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Geological Data Types: Seismic

dGB Earth Science; De Bruin et al., (2007)
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Geological Data Types: Well-Sections
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Shebl et al., (2019)




Geological Data Types: Qutcrops

Depositional Sequence B
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Bover-Arnal et al., (2009)



Geological Data Types

Main applications / contributions to

Data set ) . -
sequence stratigraphic analysis

Continuous subsurface imaging; tectonic setting;
structural styles; regional stratigraphic
architecture; imaging of depositional elements;
geomorphology

Seismic data

Vertical stacking patterns; grading trends;
depositional systems: depositional elements;
inferred lateral facies trends; calibration of
seismic data

Well-log data

Lithology; textures and sedimentary structures;
nature of stratigraphic contacts; physical rock
properties; paleocurrents in oriented core;
calibration of well-log and seismic data

Core data

3D control on facies architecture; insights into
process sedimentology: lithofacies; depositional
elements; depositional systems; all other
applications afforded by core data

Outcrop data

Depositional environment; depositional
processes,; diagenesis; absolute ages,
paleoclimate

Geochemical
data

Paleontological | Depositional environment; depositional
data processes; ecology: relative ages

Catuneanu (2006)
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WheelerLab - Introduction

WheelerLab is the first image-based model driven approach for constructing
Wheeler diagrams

Written in MATLAB and is an interactive program with a GUI

Stand alone versions for MAC, LINUX, and Windows are available on google drive

Source Code is available on github and zenodo

Email me for links: adewale@tamu.edu



WheelerLab GUI
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Wh I L b Citation: Amosu and Sun (2017), WheelerLab: An Interactive Program for Sequence Stratigraphic Analysis of Seismic Sections,
eeilerLa QOutcrons and Well Sections and the Generation of Chronostratiaranhic Sections and Dvnamic Chronostratiaranhic Sections.
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Input

Output

WheelerLab I/0

e Seismic: SEGY or Image (JPG, PNG, TIFF, ...)

e Outcrop: Image (JPG, PNG, TIFF, ...)

e Well-Section: Image (JPG, PNG, TIFF, ...) from concatenated LAS files
e Synthetic: No input required

)

e Wheeler Diagram: MATLAB FIG, PNG,
e Dynamic Wheeler Diagram: AVI GIF
e Data: ASCII

~




WheelerLab Demonstration

Data: F3 block, Netherlads, dGB Earth Science



WheelerLab Output
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WheelerLab Demonstration: Seismic

Sequence-stratigraphic Analysis
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WheelerLab Demonstration: Well-Section
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WheelerLab Demonstration: Well-Section
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~ WheelerLab Demonstration: Qutcrop
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WheelerLab Demonstration: Qutcrop
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WheelerLab Demonstration: Qutcro
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Conclusion

We have developed an open-source program for sequence stratigraphic
and chronostratigraphic analysis of geological data

It is the first model-driven image-based program for sequence
stratigraphic and chronostratigraphic analysis

The program permits flexibility of interpretation and sequence
stratigraphic model or approach

Can be applied to different geological data types including seismic data,
well-sections and outcrops




Future Work

Incorporation of top flattening of systems tracts

Al-detection of sequence tracts in seismic data and outcrop images

Extension to 3D seismic data
~{~"Nesbit et al.

Extension to 3D outcrop images (DOMs)

Version 2 in MATLAB AppDesigner




er MATLAB Projects: MinInversion

o @ Minlnversion

: - Citation: Amosu and Sun (2018), Minlnversion: A Program for Petrophysical Composition Analysis of
Mininversion . P

Geophysical Well Log Data, Geosciences Journal.
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Other MATLAB Projects: FischerLab
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Other MATLAB Projects: ML Prediction in Unconventionals
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