System Level Simulation Technique for Optimizing Battery Thermal Management System of EV

18/02/2020

Vipin K Venugopal, Chandrasekaran N, Shrivatsal Sharma

Mahindra Electric Mobility Limited, Bangalore, India

Copyright © 2020 Mahindra Electric. All rights reserved.

Contents

02 Overview of Battery Cooling Circuit

Explains how a generic battery cooling/heating system works.

03 Modeling of Battery Thermal Management System of EV

Explains how a physical system modelling tool Matlab/Simulink/Simscape is used for battery thermal modeling

04

Model Validation

1D model results are compared with test data from vehicle thermal trials and validated

05 Logic Development and Results

Testing of different thermal logics

Uses of 1D Simulation

Spark the new

electric

Generic Battery Cooling/Heating Circuit

Copyright © 2020 Mahindra Electric. All rights reserved.

Battery

- Battery temperature needs to be maintained between 25°C and 45°C.
- I²r losses will generate heat inside the battery during charging and discharging

Chiller Circuit

 When the battery temperature crosses 30°C,refrigeration system is turned ON, which will cool down the coolant

Heater Circuit

 If battery temperature drops below 10°C,heater is used to heat the coolant.

Compartment Cooling

 Refrigerant Circuit is shared by battery as well as HVAC system of the vehicle

Temperature Sensor

 Battery Thermal Management Functions are handled by BMS ECU

Input to BMS

- Battery temperature sensor values
- Coolant temperature sensor values
- Heater temperature sensor values

Simulink/Simscape Modelling

Spark the new

Copyright © 2020 Mahindra Electric. All rights reserved.

CELL MODELLING

1D BATTERY THERMAL MODELING

REFRIGERATION CYCLE MODELING

VEHICLE MODELING

Simulink Vehicle Model

- Vehicle Model will predict the instantaneous power demanded from the battery for different drive cycles.
- Drive cycles under consideration: MIDC, MIDC Part1, NEDC, WLTP
- Traction Force is calculated by considering Rolling resistance, Gradient resistance, Inertia resistance and Aerodynamic resistance.
- Motor shaft torque depends on vehicle torque, gear ratio as well as transmission efficiency.

Resistances on Vehicle

https://www.researchgate.net/publication/259477397

Simulink Vehicle Traction Model

EQUIVALENT CIRCUIT MODELING

Second order equivalent circuit model

•
$$v_{oc}[k] = v_t[k] + i_t[k] * R_0[k] + v_{c1}[k] + v_{c2}[k] \dots \dots \dots \dots (1)$$

•
$$v_{c1}[k] = v_{c1}[k-1] * e^{-\frac{1}{tau_1[k]}} - i_t[k] * R_1[k] * (1 - e^{-\frac{1}{tau_1[k]}}) \dots \dots (2)$$

•
$$v_{c2}[k] = v_{c2}[k-1] * e^{-\frac{\lambda t}{tau_2[k]}} - i_t[k] * R_2[k] * (1 - e^{-\frac{\lambda t}{tau_2[k]}}) \dots \dots (3)$$

Acronym	Meaning
v_t	Terminal voltage
i _t	Battery current
v_{c1}	Voltage across capacitor C1
v_{c2}	Voltage across capacitor C2
k	Time instants

Journal of Energy Storage 15 (2018) 23–31

The ease of parametrization and implementation makes it the most widely employed model for real-time battery management applications.

Model Validation

Copyright © 2020 Mahindra Electric. All rights reserved.

COMPARING TEST AND SIMULATED COOLANT INLET TEMPERATURE

COMPARING TEST AND SIMULATED BATTERY MODULE TEMPERATURE – MODULE NO:13

Logic Development and Results

Copyright © 2020 Mahindra Electric. All rights reserved.

COMPRESSOR ON-OFF LOGIC

Current Compressor Logic

- Compressor cut off logic in the old algorithm was only based on battery temperature
- When the battery temperature reduces to a set value, compressor will cut off

Proposed Compressor Logic

- New compressor operation logic will consider both battery temperature as well as coolant temperature for compressor ON/OFF.
- Once the coolant temperature drops to the set temperature or the battery temperature drops below the set value, compressor will turn OFF
- It will turn back ON again only if the battery temperature is still above the set value and the coolant temperature rises by 3°C

Simulation Parameters

SI.No	Parameter	Values
1.	Charging C rate	1C, 0.3C
2.	Ambient Temperature	41°C
3.	Battery Initial Temperature	41ºC
4.	Coolant Initial Temperature	41°C

RESULTS & INFERENCE

Simulation Results 0.3C Charging

Old Algorithm	Battery Final Temperature	34.22°C
	Energy Consumed by Compressor	1.321 kWh
New Algorithm	Battery Final Temperature	35.76°C
	Energy Consumed by Compressor	0.832 kWh

Simulation Results 1C Charging

Old Algorithm	Battery Final Temperature	43.71°C
	Energy Consumed by Compressor	1.84 kWh
New Algorithm	Battery Final Temperature	44.21°C
	Energy Consumed by Compressor	0.928 kWh

■ Old Algorithm ■ New Algorithm

Battery final temperature is slightly more with new algorithm but the energy consumed by compressor reduces. In 0.3C charging, battery final temperature is 1.5°C more with the new algorithm but power consumed by compressor is ~37% less. In 1C charging, battery final temperature is 0.5°C more with the new algorithm, but power consumed is ~50% less.

Copyright © 2020 Mahindra Electric. All rights reserved.

Inference

Copyright © 2020 Mahindra Electric. All rights reserved.