
1© 2015 The MathWorks, Inc.

Latest Features in Robotics System Toolbox

September 2016



2

Robotic Manipulator Algorithms

 Build kinematic chains or trees using rigid 
bodies to represent physical robots with the 
robotics.RigidBodyTree class

 Add or modify bodies on a structure, specify 
joint limits, and replace bodies or joints

 Support for revolute, prismatic, and fixed joints

 Simple visualization of body frames

Represent robot manipulators using a rigid body tree

» load exampleRobots
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Robotic Manipulator Algorithms

 Use forward kinematics to get transformations 
between two body frames 

 Compute geometric Jacobians for specified end 
effectors 

 Use robotics.InverseKinematics class to 
calculate corresponding joint angles for desired 
end-effector positions

 Designed for generic tree or chain-structured 
manipulators

Calculate forward and inverse kinematics 
for rigid body trees

Baxter robot following pre-defined 
right hand trajectory
Using BFGS/gradient projection based IK algorithm
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Automated Deployment of Simulink ROS Nodes

 Automatically deploy and run ROS nodes 
using Simulink Coder

 Connect to ROS robot and deploy an 
executable ROS node for a Simulink model

 Validate device connection settings within 
Simulink

 Use the rosdevice object to connect to the 
target device and run or stop the deployed 
ROS nodes

Automatically deploy ROS nodes to 
target hardware using Simulink Coder

» robotROSCodeGenerationExample

>> device = rosdevice
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Occupancy Grid Class
Build a robot environment using a 2D occupancy map with 
probabilistic values

>> edit MappingWithKnownPosesExample

>> map = robotics.OccupancyGrid(20,20)

Probabilistic 
representation using 
Occupancy Grid map

Actual environment 
of the robot

Occupancy Grid

 

 

 Create 2D occupancy maps using 
probabilistic values with  
robotics.OccupancyGrid class

 Use the occupancy grid with the 
robotics.PRM and 
robotics.MonteCarloLocalization
classes for path planning and localization
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Mobile Robotics Algorithm Blocks

>> robotalgslib

Perform obstacle avoidance and path following in Simulink

Result: Path 
Following with 
Dynamic 
Obstacle 
Avoidance

Simulink 
Model

 Use the vector field histogram 
and Pure Pursuit algorithms 
with Simulink

 The Pure Pursuit block 
outputs a target direction, which 
you can feed directly into 
the Vector Field 
Histogram block to perform 
obstacle avoidance with path 
following
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ROS Action Client

 Perform predefined ROS network actions using 
rosactionclient function

 Send goal message to action server

 Cancel action goal at any time

 Wait until action server is available or until goal 
finishes execution

 Create custom callbacks for feedback and result 
messages

Send action goals via a ROS network 
and get feedback on their execution

[tbot, goalmsg] = rosactionclient('/turtlebot_move', 
'turtlebot_actions/TurtlebotMove')

% Wait for the action server to start up
waitForServer(tbot)

% Request forward movement and wait until the TurtleBot 
% is done
goalmsg.ForwardDistance = 1.0;
resultmsg = sendGoalAndWait(tbot, goalmsg);
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Buffered ROS tf Transformations

 getTransform or transform to access 
and apply the transformations at a specified 
source time

 Interpolate transformations for requested 
time

 canTransform enables you to check if the 
transformation is available

Access time-buffered transformations 
from the ROS transformation tree 

» ROSTransformationTreeExample

% Create the transformation tree object.
>> tftree = rostf

tftree = 

TransformationTree with properties:

AvailableFrames: {35x1 cell}
LastUpdateTime: [1x1 Time]

BufferTime: 10 

% Get the transformation that was valid 1 second ago. Wait for 
% up to 3 seconds for the transformation to become available.
>> tform = getTransform(tftree, 'base_link', 
'camera_depth_frame', rostime('now') - 1, 'Timeout', 2)

tform = 

ROS TransformStamped message with properties:

MessageType: 'geometry_msgs/TransformStamped'
Header: [1x1 Header]

ChildFrameId: 'camera_depth_frame'
Transform: [1x1 Transform]

Use showdetails to show the contents of the message
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ROS Time and Duration

 Use rostime function to specify second 
and nanosecond scalar inputs when creating 
a ROS Time message object

 Use the new rosduration function to 
create a ROS Duration message object

 Support mathematical operations and 
comparisons

Use mathematical operations on ROS 
time and duration objects

% Create time object from seconds and nanoseconds
>> t1 = rostime(1500,200000)

t1 = 

ROS Time with properties:
Sec: 1500
Nsec: 200000

% Create time object for total seconds
>> t2 = rostime(500.14671);

% Add 3 seconds to the time and calculate duration 
% between two times
>> t2 = t2 + 3;
>> dur = t1 - t2

dur = 

ROS Duration with properties:
Sec: 999
Nsec: 853490000
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Code Generation for Robotics Algorithms

 Code generation with MATLAB Coder is now available for the following 
algorithms:

robotics.BinaryOccupancyGrid

robotics.OccupancyGrid

robotics.OdometryMotionModel

robotics.PRM

robotics.PurePursuit

Generate code for select algorithms with MATLAB Coder
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