
1© 2015 The MathWorks, Inc.

Latest Features in Robotics System Toolbox

September 2016

2

Robotic Manipulator Algorithms

 Build kinematic chains or trees using rigid
bodies to represent physical robots with the
robotics.RigidBodyTree class

 Add or modify bodies on a structure, specify
joint limits, and replace bodies or joints

 Support for revolute, prismatic, and fixed joints

 Simple visualization of body frames

Represent robot manipulators using a rigid body tree

» load exampleRobots

3

Robotic Manipulator Algorithms

 Use forward kinematics to get transformations
between two body frames

 Compute geometric Jacobians for specified end
effectors

 Use robotics.InverseKinematics class to
calculate corresponding joint angles for desired
end-effector positions

 Designed for generic tree or chain-structured
manipulators

Calculate forward and inverse kinematics
for rigid body trees

Baxter robot following pre-defined
right hand trajectory
Using BFGS/gradient projection based IK algorithm

4

Automated Deployment of Simulink ROS Nodes

 Automatically deploy and run ROS nodes
using Simulink Coder

 Connect to ROS robot and deploy an
executable ROS node for a Simulink model

 Validate device connection settings within
Simulink

 Use the rosdevice object to connect to the
target device and run or stop the deployed
ROS nodes

Automatically deploy ROS nodes to
target hardware using Simulink Coder

» robotROSCodeGenerationExample

>> device = rosdevice

5

Occupancy Grid Class
Build a robot environment using a 2D occupancy map with
probabilistic values

>> edit MappingWithKnownPosesExample

>> map = robotics.OccupancyGrid(20,20)

Probabilistic
representation using
Occupancy Grid map

Actual environment
of the robot

Occupancy Grid

 Create 2D occupancy maps using
probabilistic values with
robotics.OccupancyGrid class

 Use the occupancy grid with the
robotics.PRM and
robotics.MonteCarloLocalization
classes for path planning and localization

6

Mobile Robotics Algorithm Blocks

>> robotalgslib

Perform obstacle avoidance and path following in Simulink

Result: Path
Following with
Dynamic
Obstacle
Avoidance

Simulink
Model

 Use the vector field histogram
and Pure Pursuit algorithms
with Simulink

 The Pure Pursuit block
outputs a target direction, which
you can feed directly into
the Vector Field
Histogram block to perform
obstacle avoidance with path
following

7

ROS Action Client

 Perform predefined ROS network actions using
rosactionclient function

 Send goal message to action server

 Cancel action goal at any time

 Wait until action server is available or until goal
finishes execution

 Create custom callbacks for feedback and result
messages

Send action goals via a ROS network
and get feedback on their execution

[tbot, goalmsg] = rosactionclient('/turtlebot_move',
'turtlebot_actions/TurtlebotMove')

% Wait for the action server to start up
waitForServer(tbot)

% Request forward movement and wait until the TurtleBot
% is done
goalmsg.ForwardDistance = 1.0;
resultmsg = sendGoalAndWait(tbot, goalmsg);

8

Buffered ROS tf Transformations

 getTransform or transform to access
and apply the transformations at a specified
source time

 Interpolate transformations for requested
time

 canTransform enables you to check if the
transformation is available

Access time-buffered transformations
from the ROS transformation tree

» ROSTransformationTreeExample

% Create the transformation tree object.
>> tftree = rostf

tftree =

TransformationTree with properties:

AvailableFrames: {35x1 cell}
LastUpdateTime: [1x1 Time]

BufferTime: 10

% Get the transformation that was valid 1 second ago. Wait for
% up to 3 seconds for the transformation to become available.
>> tform = getTransform(tftree, 'base_link',
'camera_depth_frame', rostime('now') - 1, 'Timeout', 2)

tform =

ROS TransformStamped message with properties:

MessageType: 'geometry_msgs/TransformStamped'
Header: [1x1 Header]

ChildFrameId: 'camera_depth_frame'
Transform: [1x1 Transform]

Use showdetails to show the contents of the message

9

ROS Time and Duration

 Use rostime function to specify second
and nanosecond scalar inputs when creating
a ROS Time message object

 Use the new rosduration function to
create a ROS Duration message object

 Support mathematical operations and
comparisons

Use mathematical operations on ROS
time and duration objects

% Create time object from seconds and nanoseconds
>> t1 = rostime(1500,200000)

t1 =

ROS Time with properties:
Sec: 1500
Nsec: 200000

% Create time object for total seconds
>> t2 = rostime(500.14671);

% Add 3 seconds to the time and calculate duration
% between two times
>> t2 = t2 + 3;
>> dur = t1 - t2

dur =

ROS Duration with properties:
Sec: 999
Nsec: 853490000

10

Code Generation for Robotics Algorithms

 Code generation with MATLAB Coder is now available for the following
algorithms:

robotics.BinaryOccupancyGrid

robotics.OccupancyGrid

robotics.OdometryMotionModel

robotics.PRM

robotics.PurePursuit

Generate code for select algorithms with MATLAB Coder

	Latest Features in Robotics System Toolbox
	Robotic Manipulator Algorithms
	Robotic Manipulator Algorithms
	Automated Deployment of Simulink ROS Nodes
	Occupancy Grid Class
	Mobile Robotics Algorithm Blocks
	ROS Action Client
	Buffered ROS tf Transformations
	ROS Time and Duration
	Code Generation for Robotics Algorithms	

