
MATLAB Interface for PowerBI

MathWorks, Inc.

Apr 10, 2024

OVERVIEW

1 Overview 1
1.1 Introduction . 1
1.2 Architecture Diagram . 1
1.3 System Requirements . 2

2 Installation 3
2.1 Installation . 3

2.1.1 Enable the custom connector to load . 3
2.1.2 Install the custom connector . 4
2.1.3 MATLAB Setup . 5

3 Usage 7
3.1 MATLAB Code Interface . 7
3.2 Usage in Power BI Desktop . 8

3.2.1 MATLAB Production Server Instance Data Source . 9
3.2.2 MATLAB Production Server Function . 13
3.2.3 MATLABProductionServer.Function.Invoke function . 16
3.2.4 Helper function MATLABProductionServer.TableResponseToTable 18

3.3 Usage in Power BI Online . 19
3.3.1 Example with on-premises data gateway (personal mode) 20

3.4 Examples . 23
3.4.1 Sunspot Example . 23
3.4.2 Time Series Forecasting using Deep Learning Toolbox . 26

4 References 31
4.1 Data Marshalling . 31

5 Alternative 33
5.1 Manual Power Query Approach . 33

5.1.1 MATLAB Function with one table as input and one table as output 33
5.1.2 MATLAB Function with scalars as inputs and table output 34
5.1.3 MATLAB Function with a scalar and table as input and table output 35

i

ii

CHAPTER

ONE

OVERVIEW

1.1 Introduction

This document provides an overview of the configuration and use of the MATLAB Production Server Interface for
Power BI software. The interface is a lightweight Power BI custom data connector that enables the integration of
MATLAB algorithms with Power BI visualizations. The custom data connector is authored in M Query language.

1.2 Architecture Diagram

The MATLAB Production Server Interface for Power BI enables Power BI users to directly access MATLAB algo-
rithms using the custom data connector feature of Power BI (https://docs.microsoft.com/en-us/power-bi/connect-data/
desktop-connector-extensibility).

1

https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connector-extensibility
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connector-extensibility

MATLAB Interface for PowerBI

The custom data connector communicates with MATLAB functions using a RESTful API. HTTP requests send data
from tables in Power BI to MATLAB and receive the results from MATLAB computations in JSON format. There are
options to drill down into the result set, apply transformations, and perform other modifications as required using the
query editor in Power BI.

MATLAB algorithms can run either:

1. In a centralized scalable environment using MATLAB Production Server. This allows for multiple Power BI
users to call the MATLAB algorithms concurrently, or

2. On a desktop machine with MATLAB Compiler SDK installed using the ‘Test Client’ feature. This allows the
Power BI desktop application to make calls to MATLAB function on the same machine.

1.3 System Requirements

MathWorks Products

1. MATLAB (R2016b or later)

2. MATLAB Compiler SDK (R2016b or later)

3. MATLAB Production Server (R2016b or later) – required if deploying MATLAB applications to an enterprise
environment

Microsoft Products

1. Microsoft Power BI Desktop (version 2.47 or later)

2 Chapter 1. Overview

CHAPTER

TWO

INSTALLATION

2.1 Installation

The custom data connector is provided as Software\PowerBI\MATLABProductionServer.mez. This file will have
to be added to the local custom connectors directory and as the provided connector is not officially validated nor signed,
some additional configuration is needed.

Further, the package includes a few MATLAB functions which help with data marshalling between MATLAB and
PowerBI (also see MATLAB Code Interface), these functions will have to be added to the MATLABPATH.

2.1.1 Enable the custom connector to load

As discussed in Microsoft’s “Connector extensibility in Power BI” documentation, in order to be able to use a custom
connector, it either needs to be signed and trusted or Power BI must be configured to allow loading any extension. The
custom connector as provided is not signed by MathWorks but it should be possible to first sign it by yourself and then
trust your own signature. If this is the approach you want to follow see Sign the custom connector, alternatively see
Configure Power BI Security settings.

Sign the custom connector

To learn more about repacking the provided MEZ-file as signed PQX-file and how to trust the signature see Handling
Power Query Connector Signing in the Microsoft documentation.

Configure Power BI Security Settings

As an alternative to signing and trusting the custom connector, it is possible to configure Power BI to allow any ex-
tension to be used. To enable this option, in Power BI Desktop under File→ Options and settings→ Options
→ Security→ Data Extensions enable the (Not Recommended) Allow any extension to load without
validation or warning option:

3

https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connector-extensibility#custom-connectors
https://docs.microsoft.com/en-us/power-bi/connect-data/desktop-connector-extensibility
https://docs.microsoft.com/en-us/power-query/handlingconnectorsigning
https://docs.microsoft.com/en-us/power-query/handlingconnectorsigning

MATLAB Interface for PowerBI

2.1.2 Install the custom connector

To actually install the custom connector, copy the MEZ-file (or PQX-file if you or your company signed it) into the
Documents\Power BI Desktop\Custom Connectors directory.

Note: This directory may not exist yet in which case it will first have to be created.

4 Chapter 2. Installation

MATLAB Interface for PowerBI

2.1.3 MATLAB Setup

In order to add the MATLAB helper functions to the MATLABPATH in MATLAB run Software\MATLAB\startup.
m. The MATLABPATH can then be saved using savepath or startup.m can be run again in new MATLAB sessions
to add the functions to the path again.

2.1. Installation 5

MATLAB Interface for PowerBI

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

3.1 MATLAB Code Interface

In Power BI you mainly work with data in Tables, hence, when interacting between MATLAB and Power BI it also
makes sense to write the MATLAB code in such a way that it can take one Power BI Table as input (which can then
be turned into a MATLAB Table) and have it produce its outputs in MATLAB Tables (which can then be turned into
Power BI Tables). As a matter of fact, this is the recommended approach when working with this package. Both the
“Data Source” approaches, as well as the data conversion helper function, assume and require that your MATLAB
code is indeed in this format.

The invoke function approach and entirely manual approach do not have this requirement but may require (significantly)
more complex Power Queries in order to process in- and outputs.

In order to implement a MATLAB function which follows this “one (or no) input table, output tables” approach, write
your MATLAB code according to the following template:

function [out1,out2] = myFunction(varargin)
%% PowerBI Input/Output Handling
inputTable = PowerBI.InputToTable(varargin);

% Start new tables for the outputs
outTable1 = table;
outTable2 = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example - replace with your actual algorithm
outTable1.D = inputTable.A + inputTable.B;
outTable1.E = upper(inputTable.C);

outTable2.D = inputTable.A - inputTable.B;
outTable1.E = lower(inputTable.C);

%% PowerBI Input/Output Handling
out1 = PowerBI.TableToOutput(outTable1);
out2 = PowerBI.TableToOutput(outTable2);

Where PowerBI.InputToTable and PowerBI.TableToOutput are functions provided with this package.

For more background information on how this in- and output handling works, see Data Marshalling.

If your function does not require any input at all, a “no input, output tables” approach is supported as well:

7

MATLAB Interface for PowerBI

function out = myFunction()
% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example - replace with your actual algorithm
outTable.R = rand(10,1);

%% PowerBI Input/Output Handling
out = PowerBI.TableToOutput(outTable);

Hint: When encountering issues/receiving errors related to data marshalling it can be very helpful to make use of the
Test Client feature of MATLAB Compiler SDK, and configure Power BI to make calls against the test instance. You
can then set a breakpoint at the start of the function and literally see what data in what format the MATLAB function
received. Or set a breakpoint right before the end of the function such that you can double check whether the outputs
are in the correct format and orientation.

3.2 Usage in Power BI Desktop

The package offers three major workflows, one helper function and one alternative approach. Two out of three ap-
proaches, as well as the helper function have been designed to specifically work with MATLAB functions which have
been specifically written to accept a Power BI Table as input (or no input at all) and produce a table as output, see
MATLAB Code Interface

Hint: If none if these workflows work for your specific MATLAB function and modifying the MATLAB function is
not an option, see the alternative Manual Approach which offers more flexibility (at the cost of having to write more
Power Query code).

Note: The MATLAB Production Server custom connector can also be used in reports published to Power BI online.
This will work out of the box with a static snapshot of the data, however refreshing data online requires on-premises
data gateway with the custom connector installed/enabled, see also Usage in Power BI Online. If you wish to publish
refreshable online reports without needing on-premises data gateway, refer to the alternative Manual Approach, which
does not require on-premises data gateway (if the MATLAB Production Server instances are reachable by Power BI
Online directly) instead of using the custom connector approaches described below.

Note: When connecting to a server/instance for the first time from Power BI, it may ask to configure/confirm Data
Source permissions. That can then be done on various path levels (server/instance root, CTF, specific function). It is
recommended to do this on the highest (server/instance root) level such that the custom connector can then work with
all CTF archives and all functions deployed to this instance (without having to ask for permission again) and it can
then also query the discovery end-point on /api/discovery as well as server status on /api/health:

8 Chapter 3. Usage

https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-deployment-guidance
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-deployment-guidance
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-custom-connectors
https://www.mathworks.com/help/mps/restfuljson/getdiscoveryinformation.html
https://www.mathworks.com/help/mps/restfuljson/getserverhealth.html

MATLAB Interface for PowerBI

3.2.1 MATLAB Production Server Instance Data Source

Important: This workflow is only valid when working with the recommended one (or no) input table, output tables
approach

The “MATLAB Production Server Instance” Data Source allows you to connect to a MATLAB Production Server
instance which has the discovery service enabled.

The data source is available under Get Data→ Other

3.2. Usage in Power BI Desktop 9

https://www.mathworks.com/help/mps/restfuljson/restful-api-for-discovery-and-diagnostics.html

MATLAB Interface for PowerBI

After entering the MATLAB Production Server instance URL:

10 Chapter 3. Usage

MATLAB Interface for PowerBI

The functions, discovered through the discovery API, are listed. You can then select the function you want to call (1)
and then hit (2) Transform Data.

Which takes you to the Power Query Editor where then:

1. If the function outputs multiple tables, specify which of the outputs you want to get, and

2. Optionally an input table can be provided, and

3. The function can then be invoked using Invoke

3.2. Usage in Power BI Desktop 11

MATLAB Interface for PowerBI

This should create a new “Query” which shows the result:

To call the same function with a different input or requesting another output, you can select the function from the
“Queries” list again and enter different parameters. When then hitting Invoke again this will add a new Query with a
different input (preserving the old invocation/output as well).

If the function produces more outputs and you want to get them all, it can be beneficial to use a lower level approach
where the function is called only once, requesting all outputs in one call, and then multiple other queries can be added
which reference this result to produce multiple tables; the Sunspot Example uses such an approach.

To call other functions from the same- or another MATLAB Production Server instance, repeat the procedure from the
start.

12 Chapter 3. Usage

MATLAB Interface for PowerBI

3.2.2 MATLAB Production Server Function

Important: This workflow is only valid when working with the recommended one (or no) input table, output tables
approach

For MATLAB Production Server instances without discovery API enabled, or if you simply already know which exact
function from which exact archive you want to call, it is also possible to directly invoke the function. This can be done as
Data Source through Get Data or by directly invoking MATLABProductionServer.Function.InvokeWithTable
from a Query.

MATLAB Production Server Function Data Source

The data source is available under Get Data→ Other

3.2. Usage in Power BI Desktop 13

MATLAB Interface for PowerBI

When connecting to this source, you directly fill out the full URL including the archive name and function name and
you can also immediately choose which output you want if there are multiple outputs as well as an optional input:

14 Chapter 3. Usage

MATLAB Interface for PowerBI

Which will then directly execute the function and show the data which can then be imported or further transformed:

MATLABProductionServer.Function.InvokeWithTable function

The same functionality can also directly be invoked from a Query through MATLABProductionServer.Function.
InvokeWithTable:

3.2. Usage in Power BI Desktop 15

MATLAB Interface for PowerBI

Or in the Advanced Query Editor:

3.2.3 MATLABProductionServer.Function.Invoke function

If the MATLAB function does not directly follow the “one (or no) input table” approach, the function can still be
invoked through MATLABProductionServer.Function.Invoke. This function can only be called from a Query/in
the Query Editor, there is no Data Source for this under Get Data.

The function has three inputs:

1. The full URL including archive and function names.

2. The number of outputs. nargout parameter in REST API.

3. (Optional) Inputs. rhs parameter in REST API. Inputs will be encoded using Json.FromValue. Refer to
its documentation to learn how various Power BI types are encoded and ensure that the provided inputs will
indeed be serialized into a valid rhs parameter for your function. This may involve using {} to create lists or
[] to create records, or using functions like List.Combine, Table.ToRecords, etc. See the Power Query M
function reference. A few examples are documented below.

The function output is a Json.Document representation of the RESTful response.

If the output(s) of the function are still tables (returned as described in MATLAB Code Interface), see how
MATLABProductionServer.TableResponseToTable can be used to transform this response into a Power BI Ta-
ble. If the outputs are not tables you will have to further process the result by yourself through the (Advanced) Query
Editor.

Hint: Alternatively, functions like these can also be called entirely manually not using the custom connector at all,
see Manual Approach.

16 Chapter 3. Usage

https://www.mathworks.com/help/mps/restfuljson/postsynchronousrequest.html#bvk_lci-8
https://www.mathworks.com/help/mps/restfuljson/postsynchronousrequest.html#bvk_lci-8
https://docs.microsoft.com/en-us/powerquery-m/json-fromvalue
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference
https://docs.microsoft.com/en-us/powerquery-m/power-query-m-function-reference
https://docs.microsoft.com/en-us/powerquery-m/json-document
https://www.mathworks.com/help/mps/restfuljson/postsynchronousrequest.html#bvk_lci-9

MATLAB Interface for PowerBI

Example: function with two scalar inputs

The following MATLAB Function which takes two scalars as input:

function out = myFunctionWithScalars(a,b)
%% PowerBI Input/Output Handling
% Actually with a simple scalar as input and no tables, no special input
% processing is needed

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.Result = a + b;

%% PowerBI Input/Output Handling
out = PowerBI.TableToOutput(outTable);

Can for example be called using:

response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/
→˓myFunctionWithScalars", 1, {11,31})

Example: function with a scalar input and a table

Another interesting specific situation is the following MATLAB function which has a scalar as input followed by a
table:

function out = myFunctionWithScalarAndTable(myScalar, varargin)
%% PowerBI Input/Output Handling
inputTable = PowerBI.InputToTable(varargin);

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.C = inputTable.A + myScalar;
outTable.D = inputTable.B * myScalar;

%% PowerBI Input/Output Handling
out = PowerBI.TableToOutput(outTable);

Hint: In this function the scalar input is the first, and not the last, input on purpose. In this way it can be followed by
varargin (if used at all, varargin must always the last input of a function) which as explained in Data Marhshalling
helps with accepting “structures which can be converted to a table” as input. This example can also be extended to take

3.2. Usage in Power BI Desktop 17

MATLAB Interface for PowerBI

more than just one scalar inputs followed by a table.

This can be called using:

response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/
→˓myFunctionWithScalarAndTable", 1, List.Combine({{42},Table.ToRecords(Sheet1)}))

Here input table MyInput is first explicitly converted to a List of Records (which Json.FormValue would normally
have done implicitly) such that first the scalar value (42 in this example) can be prepend to it by using List.Combine.
And then Json.FromValue can encode the entire input correctly.

3.2.4 Helper function MATLABProductionServer.TableResponseToTable

This function can be used if MATLABProductionServer.Function.Invoke is used to invoke a function with “alter-
native” inputs but the function outputs are still one or more tables (as in the two examples from the previous section).
It takes the the table cell-array as input and produces a Power BI Table as output. This table cell-array will first have to
be “indexed” from the result, i.e. typically you get the lhs field and then select which of the outputs you want.

So then the examples above could actually become Queries like:

let
response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/

→˓myFunctionWithScalars", 1, {11,31}),
outputTable = MATLABProductionServer.TableResponseToTable(response[lhs]{0})

in
outputTable

or:

let
response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/

→˓myFunctionWithScalarAndTable", 1, List.Combine({{42},Table.ToRecords(Sheet1)})),
outputTable = MATLABProductionServer.TableResponseToTable(response[lhs]{0})

in
outputTable

Or for a function which returns multiple output tables:

function [out1,out2] = myFunctionTwoTables(varargin)
%% PowerBI Input/Output Handling
inputTable = PowerBI.InputToTable(varargin);

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.C = inputTable.A + inputTable.B;
outTable.D = inputTable.A .* inputTable.B;
outTable.E = char('A' + inputTable.A);

(continues on next page)

18 Chapter 3. Usage

MATLAB Interface for PowerBI

(continued from previous page)

%% PowerBI Input/Output Handling
out1 = PowerBI.TableToOutput(outTable);

outTable.F = outTable.C + 1;
out2 = PowerBI.TableToOutput(outTable);

This could be called using the following to return the first output:

let
/* If we are only interested in the first output, we also only have to request the␣

→˓first output */
response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/

→˓myFunctionTwoTables", 1, Sheet1),
/* Select item 0 (first output) from lhs and process into table */
outputTable = MATLABProductionServer.TableResponseToTable(response[lhs]{0})

in
outputTable

Or the following to return the second:

let
/* To be able to get the second output we have to request both outputs */
response = MATLABProductionServer.Function.Invoke("http://localhost:9910/myPackage/

→˓myFunctionTwoTables", 2, Sheet1),
/* Select item 1 (second output) from lhs and process into table */
outputTable = MATLABProductionServer.TableResponseToTable(response[lhs]{1})

in
outputTable

Note that since this specific function does in fact take a table as input, it can also be called directly with
MATLABProductionServer.Function.InvokeWithTable, e.g. to obtain the second output table:

let
outputTable = MATLABProductionServer.Function.InvokeWithTable("http://localhost:9910/

→˓myPackage/myFunctionTwoTables", 2, Sheet1)
in

outputTable

3.3 Usage in Power BI Online

Power BI reports developed in Power BI Desktop using the MATLAB Production Server custom connector can also be
published to Power BI Online. Out-of-the-box the report can be published with a static snapshot of the data produced
by the MATLAB Production Server calls. In order for the report to be refreshable online (on-demand by an end-user
or on a schedule) on-premises data gateway with the custom connector installed/enabled is required.

Hint: If you wish to publish refreshable online reports without needing on-premises data gateway, refer to the alterna-
tive Manual Approach, which does not require on-premises data gateway (if the MATLAB Production Server instances
are reachable by Power BI Online directly) rather than using the custom connector.

3.3. Usage in Power BI Online 19

https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-deployment-guidance
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-custom-connectors

MATLAB Interface for PowerBI

3.3.1 Example with on-premises data gateway (personal mode)

This example is written using “on-premises data gateway (personal mode)”. Consult the Microsoft documentation to
learn more about different gateway options and which option/mode is best for your needs.

1. Install on-premises data gateway (personal mode).

2. During/after installation, under Connectors verify that Custom data connectors is enabled and the MAT-
LAB Production Server custom connector is listed:

Hint: If you see a “Folder not found.” error

20 Chapter 3. Usage

https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-deployment-guidance
https://docs.microsoft.com/en-us/power-bi/connect-data/service-gateway-personal-mode

MATLAB Interface for PowerBI

This is likely a permissions issue and you may have to grant the service account under which the on-premises
data gateway (personal mode) runs access to the specified folder or alternatively choose a different location which
this account can access and copy the MEZ-file (or PQX-file) into this location as well.

3. In your Power BI Online workspace find the Dataset for the published report and click Schedule refresh (even
if you do not want to actually schedule refreshes and want on-demand refresh only):

4. Under Gateway connection ensure that User an On-premises or VNet data gateway is enabled and
the correct gateway is selected and that its status is indeed running:

3.3. Usage in Power BI Online 21

MATLAB Interface for PowerBI

5. Under Data source credentials find the credentials for the MATLAB Production Server instance(s) the
report works with and click Edit credentials:

6. Enter the credentials and click Sign In. Note, this will not actually test the connection to the server and will
always complete successfully. If something is wrong in the connection between on-premises data gateway (per-
sonal mode) and the MATLAB Production Server instance errors will occur during an actual refresh.

7. If you want to schedule automatic refreshes you can do so under Scheduled refresh or you can now go back
to the Workspace view and try refreshing using Refresh now:

22 Chapter 3. Usage

MATLAB Interface for PowerBI

3.4 Examples

3.4.1 Sunspot Example

The example will allow Power BI users to call a MATLAB application and analyze cyclical data using a fast Fourier
transform algorithm. Fourier transformations allow users to analyze variations in data, such as an event in nature over
a period of time. The data retrieved here represents the number and size of sunspots for the last 300 years, using the
Zurich sunspot relative number. The data retrieved from MATLAB can be plotted in Power BI to answer questions
such as the frequency of peak sunspot activity, the power variation over the years etc.

The function used in this MATLAB application to perform Fourier transformation is fft, which has a lower computa-
tional cost when compared to other direct implementations. By integrating the MATLAB analysis with Power BI, it is
possible to provide Power BI users direct access to powerful analyzing capabilities in MATLAB.

The MATLAB code and example PowerBI report are available in Software\MATLAB\examples\Sunspots.

MATLAB Code

This MATLAB code in this is based on the Analyze Cyclical Data with FFT example from the MATLAB documentation
but has been modified for in- and output handling, also see MATLAB Code Interface.

function [RawOut, FFTOut, PowerOut] = getsunspotdata(varargin)
%% PowerBI Input/Output Handling
inputTable = PowerBI.InputToTable(varargin);

% Start new tables for the outputs
RawTable = table;
FFTTable = table;
PowerTable = table;

% Load the data from the datafile included with MATLAB
load sunspot.dat;

(continues on next page)

3.4. Examples 23

https://www.mathworks.com/help/matlab/math/using-fft.html

MATLAB Interface for PowerBI

(continued from previous page)

% The years are in the first column on of the loaded data
year = sunspot(:,1);

% Determine which years to use based on the input from PowerBI
idx = ismember(year,[inputTable.Years]);

% Output the raw data in RawTable
RawTable.year = year(idx);
RawTable.data = sunspot(idx,2);

% Compute the FFT
y = fft(sunspot(idx,2));
y(1) = [];

% Return the real and imaginary parts in two separate columns
FFTTable.realvalue = real(y);
FFTTable.imaginary = imag(y);

% Compute the power spectrum
n = length(y);
% Return this in a separate table
PowerTable.power = abs(y(1:floor(n/2))).^2;

maxfreq = 1/2;
PowerTable.freq = ((1:n/2)/(n/2)*maxfreq)';

PowerTable.period = 1./PowerTable.freq;

%% PowerBI Input/Output Handling
RawOut = PowerBI.TableToOutput(RawTable);
FFTOut = PowerBI.TableToOutput(FFTTable);
PowerOut = PowerBI.TableToOutput(PowerTable);

Deploy to MATLAB Production Server

Compile the function into a CTF archive named SunSpots and deploy to a MATLAB Production Server instance or
use the Test Client feature inside MATLAB to host the component.

24 Chapter 3. Usage

https://www.mathworks.com/help/compiler_sdk/mps_dev_test/create-a-deployable-archive-for-matlab-production-server.html
https://www.mathworks.com/help/mps/qs/share-a-ctf-archive-on-the-server-instance.html
https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

MATLAB Interface for PowerBI

PowerBI

See Software\MATLAB\examples\Sunspots\sunspots.pbix and go to Transform data to see how the function
can be called from PowerBI. A number of queries have been defined:

Years Input queries

As we can see by inspecting the MATLAB code, the MATLAB function expects a table with column Years as input,
which specify which years from the included data to actually use in the analysis. This Table is created in PowerBI by
taking a StartYear and and EndYear and then creating a range of values in between and then form the Years table.

MATLAB Production Server queries

In this example we choose to make use of MATLABProductionServer.Function.Invoke to call the function, such
that we can retrieve all 3 output tables in one call. This is done in the GetAllData query. And then there are three
queries which use MATLABProductionServer.TableResponseToTable and reference GetAllData to process the
three outputs into PowerBI tables. These three queries also use some standard PowerBI functionality to convert the
columns to the correct types.

3.4. Examples 25

MATLAB Interface for PowerBI

3.4.2 Time Series Forecasting using Deep Learning Toolbox

Note: This example requires Deep Learning Toolbox.

This example is an extension of one of the examples shipped with Deep Learning Toolbox, see:

https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/time-series-forecasting-using-deep-learning.
html

It is recommended to fully work through this example inside MATLAB first to understand how this kind of forecasting
and the network training works exactly; the example below only focusses on deploying the trained forecasting algorithm
to MATLAB Production Server and calling it from Power BI.

The final MATLAB Code, example data, trained network and PowerBI report are included in the package in the
Software\MATLAB\examples\LSTMExample directory.

Save the trained network

Having worked through the example shipped with Deep Learning Toolbox, the trained network should still be available
as the net variable and it can be saved to a MAT-file:

>> net = resetState(net);
>> save net net

26 Chapter 3. Usage

https://www.mathworks.com/products/deep-learning.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/time-series-forecasting-using-deep-learning.html
https://www.mathworks.com/help/releases/R2022a/deeplearning/ug/time-series-forecasting-using-deep-learning.html

MATLAB Interface for PowerBI

MATLAB Code

A MATLAB function can then be written which loads this trained network and then performs a closed loop forecast
on input data. The code from the original example is slightly modified to accommodate the one table input, one table
output interface which can be easily invoked from Power BI:

function [out] = predict(varargin)
%% PowerBI Input/Output Handling
inputTable = PowerBI.InputToTable(varargin);

X = inputTable{:,["Channel1","Channel2","Channel3"]}';
numChannels = 3;

%% Prediction
% Ensure the previously trained net is loaded
persistent net
if isempty(net)

load('net','net');
end
% Use closed loop forecasting to predict the next 200 values
net = resetState(net);
[net,Z] = predictAndUpdateState(net,X);

numPredictionTimeSteps = 200;
Xt = Z(:,end);
Y = zeros(numChannels,numPredictionTimeSteps);

for t = 1:numPredictionTimeSteps
[net,Y(:,t)] = predictAndUpdateState(net,Xt);
Xt = Y(:,t);

end

%% PowerBI Input/Output Handling
outputTable = table(Y(1,:)',Y(2,:)',Y(3,:)', ...

'VariableNames',["Channel1", "Channel2", "Channel3"]);

out = PowerBI.TableToOutput(outputTable);

Deploy to MATLAB Production Server

Compile the function into a CTF archive named predict and deploy to a MATLAB Production Server instance or use
the Test Client feature inside MATLAB to host the component.

3.4. Examples 27

https://www.mathworks.com/help/compiler_sdk/mps_dev_test/create-a-deployable-archive-for-matlab-production-server.html
https://www.mathworks.com/help/mps/qs/share-a-ctf-archive-on-the-server-instance.html
https://www.mathworks.com/help/compiler_sdk/mps_dev_test/test-in-process.html

MATLAB Interface for PowerBI

PowerBI

The PowerBI report included in this example Software\MATLAB\examples\LSTMExample\LSTMExample.pbix
contains one of the example datasets (XTest{2}) from the Deep Learning Toolbox example in a table named
MeasuredData.

Then using MATLAB Production Server Instance:

The predict/predict function was imported:

28 Chapter 3. Usage

MATLAB Interface for PowerBI

And it was invoked with MeasuredData as input:

An Index column was added and this query was then saved as Prediction. Further, a MeasuredWithPrediction
query was created which concatenates the original MeasuredData and the forecast in Prediction together into one
big table. Finally, all this data was then used in the visualizations to show the original data as well as the forecasted
future data.

A video showing the full workflow in Power BI can be found on the website:

https://www.mathworks.com/products/reference-architectures/power-bi.html

3.4. Examples 29

https://www.mathworks.com/products/reference-architectures/power-bi.html

MATLAB Interface for PowerBI

30 Chapter 3. Usage

CHAPTER

FOUR

REFERENCES

4.1 Data Marshalling

Note: This section contains additional background information on how the data marshalling works exactly when
working with the recommended “one (or no) input table, output tables” approach. It is not absolutely necessary to
understand this in full detail in order to be able to work with this approach.

When calling MATLAB Production Server functions from Power BI, this is done through MATLAB Production
Server’s RESTful interface. This RESTful interface works with requests in JSON format where the input data to
the function is then encoded in JSON format as well.

To encode data into JSON format in Power BI Json.FromValue can be used.

Looking at these documentation pages, there is no straightforward one-to-one mapping between MATLAB and Power
BI types. It will be difficult to generate the correct input using Power BI if the MATLAB function has not been designed
for Power BI specific input, also it will be difficult to parse the result back into Power BI if the MATLAB function did
not return the data in a particular convenient format. The following approach seems to work quite well though.

From the Power BI end provide a Table to Json.FromValue which will encode it as “an array of objects”. Now an
JSON “object” can map to a MATLAB struct in short notation, but unfortunately short notation does not support “array
of objects”; so this cannot be used to directly pass an entire Power BI Table to MATLAB as a single input. However,
since the rhs field in the request is an array as well, this can be used to pass in those objects as separate inputs. So a
Table can be passed to MATLAB as a number of separate inputs, where each input structure then represents a row of
the Power BI Table. Further, in MATLAB it is easy to define a function which takes a variable number of input. Also,
concatenating a cell-array of structures into one big structure array is in fact a very simple operation in MATLAB (if
all the structures have the same fields, which will be the case here). And, this structure array can then also easily be
turned into a MATLAB table.

Similarly if we make the MATLAB function returns its outputs as a cell-array of structs and request the function to
return the output in short notation, these outputs can relatively easily be transformed back into Tables on the Power BI
end. Where again it is easy to get to this cell-array of structs format from a MATLAB Table.

The code template provided in MATLAB Code Interface makes use of these guidelines.

Hint: Apart from the workflow offered by the MATLAB Production Server Interface for Power BI as documented
above, it is also possible to use manually written Power Queries to call MATLAB Production Server through its REST
interface. If you need more flexibility than the package offers and you are comfortable with writing Power Queries, see
Manual Approach

31

https://www.mathworks.com/help/mps/restful-api-and-json.html
https://www.mathworks.com/help/mps/restfuljson/postsynchronousrequest.html
https://www.mathworks.com/help/mps/restfuljson/json-representation-of-matlab-data-types.html
https://docs.microsoft.com/en-us/powerquery-m/json-fromvalue

MATLAB Interface for PowerBI

32 Chapter 4. References

CHAPTER

FIVE

ALTERNATIVE

5.1 Manual Power Query Approach

Instead of using the MathWorks provided custom connector, it is also possible to directly interact with the REST
Interface of MATLAB Production Server. This offers more flexibility at the cost of having to write your own Power
Query in Power BI in order to make the call.

This for example allows you to make calls to functions which do not take a single table as input and produce a single
table as output, as is expected by the custom data connector. Nevertheless, in many cases you may still want to follow
the advice from the Data Marshalling section, as this in- and especially the output format does allow you to write
relatively simple queries for processing the in- and outputs.

Another benefit of this approach is that it can be used in online reports without needing an on-premises gateway, also
see Usage in Power BI Online

5.1.1 MATLAB Function with one table as input and one table as output

When calling a MATLAB function which does indeed follow the advice from the Data Marshalling section.

For example:

function out = myFunction(varargin)
%% PowerBI Input/Output Handling
% Concatenate the separate input structures into one big structure
% array and convert it to a table
inputTable = struct2table([varargin{:}]);

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.C = inputTable.A + inputTable.B;
outTable.D = inputTable.A .* inputTable.B;
outTable.E = char('A' + inputTable.A);

%% PowerBI Input/Output Handling
% Convert the table to a struct array and then cell array
out = num2cell(table2struct(outTable));

33

https://www.mathworks.com/help/mps/restful-api-and-json.html
https://www.mathworks.com/help/mps/restful-api-and-json.html

MATLAB Interface for PowerBI

Then, the following Power Query can be used (which is in fact very similar to what the custom connector uses internally
as well):

/* Call the Web Service*/
res = Json.Document(
Web.Contents("http://localhost:9910/myPackage/myFunction", /* Update with your server,␣
→˓ctf and function name */

[
Headers=[#"Content-Type"="application/json"],
IsRetry = true,
Content=Json.FromValue([

nargout = 1,
outputFormat = [mode = "small"],
rhs = MyInput /* MyInput is a Power BI Table here, update with your table */

])
])

),
/* Process the response into a Power BI table named "result" */
mwdata = res[lhs]{0}[mwdata],
resTable = Table.FromList(mwdata, Splitter.SplitByNothing(), null, null, ExtraValues.
→˓Error),
result = Table.ExpandRecordColumn(resTable, "Column1", Record.FieldNames(mwdata{0}))

Hint: IsRetry = true is used to enforce PowerBI to always really re-execute the request and not return cached data.

5.1.2 MATLAB Function with scalars as inputs and table output

Consider the following MATLAB function which instead of a table takes two scalars as input and returns a table with
just one column and one row as output:

function out = myFunctionWithScalars(a,b)
%% PowerBI Input/Output Handling
% Actually with a simple scalar as input and no tables, no special input
% processing is needed

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.Result = a + b;

%% PowerBI Input/Output Handling
% Convert the table to a struct array and then cell array
out = num2cell(table2struct(outTable));

This can then be called using:

34 Chapter 5. Alternative

MATLAB Interface for PowerBI

/* Call the Web Service*/
res = Json.Document(
Web.Contents("http://localhost:9910/myPackage/myFunctionWithScalars", /* Update with␣
→˓your server, ctf and function name */

[
Headers=[#"Content-Type"="application/json"],
IsRetry = true,
Content=Json.FromValue([

nargout = 1,
outputFormat = [mode = "small"],
rhs = {31,11}

])
])

),
/* Process the response into a Power BI table named "result" */
mwdata = res[lhs]{0}[mwdata],
resTable = Table.FromList(mwdata, Splitter.SplitByNothing(), null, null, ExtraValues.
→˓Error),
result = Table.ExpandRecordColumn(resTable, "Column1", Record.FieldNames(mwdata{0}))

Where really only the rhs = ... statement had to be updated (as well as the function name in the URL) and it was
updated to:

rhs = {31,11}

To quite simply provide two scalars 31 and 11 as inputs here. Since the output here is still a single table, processing
the output has not changed.

5.1.3 MATLAB Function with a scalar and table as input and table output

Consider the following function which takes a scalar as first input and as second now a table, also the output is still a
table:

function out = myFunctionWithScalarAndTable(myScalar, varargin)
%% PowerBI Input/Output Handling
% Concatenate the separate input structures into one big structure
% array and convert it to a table
inputTable = struct2table([varargin{:}]);

% Start a new table for the output
outTable = table;

%% Actual Algorithm
% Write the actual algorithm to work with MATLAB tables

% Just some simple example
outTable.C = inputTable.A + myScalar;
outTable.D = inputTable.B * myScalar;

%% PowerBI Input/Output Handling
% Convert the table to a struct array and then cell array
out = num2cell(table2struct(outTable));

5.1. Manual Power Query Approach 35

MATLAB Interface for PowerBI

In this function the scalar input is the first (and not the last) input on purpose. In this way it can still be followed
by varargin which as explained in Data Marhshalling helps with accepting “structures which can be converted to a
table” as second input.

This function can then be called using the following query:

/* Call the Web Service*/
res = Json.Document(
Web.Contents("http://localhost:9910/myPackage/myFunctionWithScalarAndTable", /* Update␣
→˓with your server, ctf and function name */

[
Headers=[#"Content-Type"="application/json"],
IsRetry = true,
Content=Json.FromValue([

nargout = 1,
outputFormat = [mode = "small"],
rhs = List.Combine({{42},Table.ToRecords(MyInput)})

])
])

),
/* Process the response into a Power BI table named "result" */
mwdata = res[lhs]{0}[mwdata],
resTable = Table.FromList(mwdata, Splitter.SplitByNothing(), null, null, ExtraValues.
→˓Error),
result = Table.ExpandRecordColumn(resTable, "Column1", Record.FieldNames(mwdata{0}))

Where again, the only big change was to the rhs = ... statement:

rhs = List.Combine({{42},Table.ToRecords(MyInput)})

Input table MyInput is first explicitly converted to a List of Records (which Json.FormValue would normally have
done implicitly) such that then first the scalar value (42 in this example) can be prepend to it by using List.Combine.
And then Json.FromValue can again be used to encode the entire request.

This example can easily be extended to accept additional other inputs.

Other in- and outputs

If needing to call functions with other inputs, consult the documentation of MATLAB Production Server’s REST
Interface and especially JSON Representation of MATLAB Data Types to learn more about how to specify the rhs
parameter.

For outputs it is recommended to try to always return one or more tables, even if it is just one output with one column
and/or one row such that you can consistently use the following relatively simple Power Query to parse the output to a
Power BI table which can then easily be processed further:

mwdata = res[lhs]{0}[mwdata],
resTable = Table.FromList(mwdata, Splitter.SplitByNothing(), null, null, ExtraValues.
→˓Error),
result = Table.ExpandRecordColumn(resTable, "Column1", Record.FieldNames(mwdata{0}))

This is not a hard requirement though and the MATLAB function is allowed to return any types- and numbers of outputs
as supported by MATLAB Production Server, but further processing such outputs may require further customized
(complicated) (Power) Queries in Power BI.

36 Chapter 5. Alternative

https://www.mathworks.com/help/mps/restful-api-and-json.html
https://www.mathworks.com/help/mps/restful-api-and-json.html
https://www.mathworks.com/help/mps/restfuljson/json-representation-of-matlab-data-types.html

	Overview
	Introduction
	Architecture Diagram
	System Requirements

	Installation
	Installation
	Enable the custom connector to load
	Sign the custom connector
	Configure Power BI Security Settings

	Install the custom connector
	MATLAB Setup

	Usage
	MATLAB Code Interface
	Usage in Power BI Desktop
	MATLAB Production Server Instance Data Source
	MATLAB Production Server Function
	MATLAB Production Server Function Data Source
	MATLABProductionServer.Function.InvokeWithTable function

	MATLABProductionServer.Function.Invoke function
	Example: function with two scalar inputs
	Example: function with a scalar input and a table

	Helper function MATLABProductionServer.TableResponseToTable

	Usage in Power BI Online
	Example with on-premises data gateway (personal mode)

	Examples
	Sunspot Example
	MATLAB Code
	Deploy to MATLAB Production Server
	PowerBI
	Years Input queries
	MATLAB Production Server queries

	Time Series Forecasting using Deep Learning Toolbox
	Save the trained network
	MATLAB Code
	Deploy to MATLAB Production Server
	PowerBI

	References
	Data Marshalling

	Alternative
	Manual Power Query Approach
	MATLAB Function with one table as input and one table as output
	MATLAB Function with scalars as inputs and table output
	MATLAB Function with a scalar and table as input and table output
	Other in- and outputs

