CONTROL ALGORITHM MODELING

GUIDELINES USING MATLAB®,
Simulink®, and Stateflow®

Version 3.0

MathWorks Automotive Advisory Board
(MAAB)

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, SIMULINK®, AND
STATEFLOW® ..ottt ettt ettt ettt et e et et et e e e et e s et et et et et et et e e et et e et ee et e s eneeeeseneeeeeeene

I o F IS 1O A PO PRTRRRPRO
2. INTRODUCTION ..ottt ettt sa st s et b s bt e st be st et e be st e st e besbe st e besbe s erenbe s s

b Y [0 Y7y [N TP R VST RRUROPRORN 7
2.2. NOTES ON VERSION 3.0ttt ittt ettt sttt sbe e sae sttt sae e sbeesbe e be e be e s besbeesbeesbeesbeenbeennesneesbeenbeens 7
2.3, GUIDELINE TEMPLATE ...cuttittiuttatteattesttesttastesseesteesbeesteesaeasseaaeeaasesasasbe e beesbeesbesbeesbeesbeeabeanbeennesneesbeanbeens 7
2.3.1. GUIABIINE ID .. ettt et b ettt e e e sb e be s be et e e reene e e e nee b e 8
2.3.2. GUIABIINE THEI: .ttt sb et be bt reene e enne b e 8

B T T = o] 4 | S RS 8

B B Yol o] oL PP U PP ROPRTPP 9
2.3.5. MATLAB® VEISIONSooovvveiirsisssisssies s 9
T o =1 T U1 | (=TSSR 9
R L= od o o o SO PS 10
2.3.8. RALIONAIE: ...ttt ettt bbb bbb bt e e b e et e 10
2.3.9. LASE CNABNGE: ... ettt bbbt bbbt bbb bbb bt b e r et b e e erennas 10
2.4, DOCUMENT USAGE.....ctteiteeiteiieiite sttt ateesttesteesteestessaesseestesstessaeesaeasseanseassesssesbeesbeesbeesbessaesseessessbeessesnees 10
2.4.1. Guideling INteraction SEMANTICS.civvriirereiire ettt e e seesresreenes 10
2.4.2. Masked Subsystems and Readability RUIESccoeiiiiiiiiiiie e 11

. SOFTWARE ENVIRONMENT ...ooiiiiiiie ittt s ettt st be e s te e ba e anteesbaeeneeeeeas 12
3.1, GENERAL GUIDELINESuttitteittateauetateesteesteeteastesstesseessesstessteesseasseansesssesssesseesteessesssesssnssesssesssesssesnees 12
3.1.1. na_0026: Consistent software eNVIFONMENTccccceeiieeieerieeie e sre e 12
3.1.2. na_0027: Use of only standard library blOCKSccccooviviiiiiiiiccce e 12

. NAMING CONVENTIONS ..ottt ettt ene st s 14
4.1, GENERAL GUIDELINESuttiuttettesteesteesteasteasseaseeameesseesseassesssesseessessseesseansessseassessessseesesssessssssesssesssesnnes 14
- L 00 R e =TT T TS 14
4.1.2. ar_0002: DIrECIONY NAIMES.eueitireiieetirteeetest ettt ettt ettt sttt b bbb bbb bbbt nbe e sbe s 14
4.1.3. na_0035: Adoption of NAMING CONVENTIONScciuiiiiriiiiiriiieisieeie e 15
4.2. MODEL CONTENT GUIDELINEScetttitteteateaneesteesteesteastesseesseesseesseesseanseanseassessessseensesssessesssesssesssesnses 16
4.2.1. jc_0201: Usable characters for SUDSYSIEM NAMEcceriiriiiirieeese e 16
4.2.2.jc_0211: Usable characters for Inport block and Outport blockccccovivininiicncne 16
4.2.3.jc_0221: Usable characters for signal liNe NAME............coviriiiiriiireeee e 17
4.2.4. na_0030: Usable characters for SImulink BuS NAMESccoveiieiiiiecie e 17
4.2.5. jc_0231: Usable characters for BIOCK NAMESc.ccceiiiiiieiiieiecce e 18
4.2.6. na_0014: Use of local language in Simulink and Stateflowccccoovviveviccic e, 19

. MODEL ARCHITECTURE ..ottt ettt ettt et 21
5.1. SIMULINK® AND STATEFLOW® PARTITIONINGoovvevereasiensensesessessssesssessssssssesssesssssssssssssssnssnnes 21
5.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow............cccccoovevveiiiii i, 21
5.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines...........c..cc....... 27
5.2, SUBSYSTEM HIERARCHIES......ccuttitiiuititieeteesteeste e e estesieesieesteesteeseeaneeanseansesseesseesteenteenteanaesneesseesseesseenees 27
5.2.1. db_0143: Similar block types on the model [eVEIS............coovviiiiiiiiieee, 27
5.2.2. db_0144: USE Of SUDSYSIEMScoeiviiiiiitiiieiite sttt 29
5.2.3. db_0040: MOdel RIEFArCRYcccciiiiiiiiiie et 30
5.2.4. na_0037: Use of single variable variant conditionals..............ccccoiiiiiiiiiniee e 30
5.2.5. na_0020: Number of inputs to variant SUDSYSTEMScoiiiiiriiieieie e e 31
5.2.6. na_0036: Default Variant...........cccooviiiiiiciice ettt aeenas 31
5.3. J-MAAB MODEL ARCHITECTURE DECOMPOSITIONcueiiteeiieaiiateaeeairesieesteesteesieesessaesseessessseesseennes 32
5.3.1. jc_0301: Controller MOUEooiiieieee e et 32
5.3.2.jC_0311: Top layer / FOOL IEVEI ..o e 33
5.3.3. JC_0321: THIGUET JAYET ...ttt ettt et se et et bt nnes 34

5.3.4. JC_0331: SLIUCTUIE TAYETveitiieiiete ettt ettt st st et b b e 34

5.3.5. JC_0341: Data fIOW JAYETccveiviiieeieiee ettt e nre e enes 35

6. MODEL CONFIGURATION OPTIONScoiiiietieiietsie ettt sttt st 37
6.1.1. jc_0011: Optimization parameters for Boolean data types.........ccoceverieresinivsiieieesese e 37
6.1.2. jc_0021: Model diagnoStiC SEIINGScverveiiririeiieriee sttt 37

T SIMIULINK Ltk b b £ bbbk £ bbbt sb b stk e st e et e et ne s 39

7.1. DIAGRAM APPEARANCEoviutiitiaristtateeseestessesst s st st sseessessess e ar e s bt b e e seess e e ss e bt sb e ar e s b e ese e e e n e nenn e ar e e 39
7.1.1. na_0004: Simulink model @PPEATANCEccoeiiireiii ettt 39
7.1.2. db_0043: Simulink font and fONE SIZE..........coceiiiiiiiie e 40
7.1.3. db_0042: Port block in SIMUIINK MOEIS..........cocviiiiiieie e 40
7.1.4. na_0005: Port block name visibility in Simulink models..........c.cccoovieiiiiiiiiinceesee e 41
7.1.5. jc_0081: Icon display for POrt BIOCKccccoiviiiiciiiicie s 42
7.1.6. JM_0002: BIOCK FESIZING ...veveveiviiieeiieieiesesesteseeteeaeste e stestes e ssaeseesse e seessesseeneeseensessessessesnessens 43
7.1.7. db_0142: Position of BIOCK NAMES........ccviiiiiiiie et sneenes 43
7.1.8. jc_0061: Display 0f BIOCK NAMES.......cueiiiiiiiiiie e st ne s 44
7.1.9. db_0146: Triggered, enabled, conditional SUDSYSIEMScccccveiiiieiieiiereee e 45
7.1.10. db_0140: Display of basic bloCK PArameters ... 46
7.1.11. db_0032: Simulink Signal @pPEAraNCEcccviiriiiiiieise et 47
7.1.12. db_0141: Signal flow in SIMUIINK MOEIS........cccciriiiiiiiiree e 47
7.1.13. jc_0171: Maintaining signal flow when using Goto and From blockS...........ccccecvveiiiiiinnnnn, 48
7.1.14. na_0032: USe Of MErge BIOCKS........ccociriiiiiriciiirieest ettt 49
7.1.15. jm_0010: Port block names in Simulink models.............cccoiniiiiniiiies e, 50
7.1.16. jc_0281: Naming of Trigger Port block and Enable Port block.............ccccovevviiiiiiiciicie, 50

7.2, SIGNALS ..ttt ettt ettt h e h e bt e s £ e s bt e s b e e R e e AR e AR e e AR e R e R e oA R e SRR R R e R e e R e e Rt e R e e R R R e e reenreenneens 51
7.2.1. na_0008: Display of 1abels 0N SIgNalS...........cccooiiiiieiieiies e e 51
7.2.2. na_0009: Entry versus propagation of signal 1abels.............ccccceeviiiiiiiiiciiec e 52
7.2.3. db_0097: Position of labels for signals and bUSSES..........cccevveeiiiiiieiiccee e 53
7.2.4. db_0081: Unconnected signals, block inputs and block OULPULSccoeviireiiiiciciiceees 54

7.3 BLOCK USAGE ..ottt bttt s b bbb e e en bbbttt et e s e b e e ar e 54
7.3.1. na_0003: Simple logical expressions in If Condition BIOCKcccviriiiiniiiiiiiicins 54
7.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations......... 56
7.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers...........ccccooveveienenceicvnirinennnn 57
7.3.4. hd_0001: Prohibited SIMUIINK SINKScouiiiiiiiiiii e 59
7.3.5.na_0011: Scope of Goto and From BIOCKSc.covueiiiiiiiiece e 59
7.3.6.jc_0141: Use of the SWItCh DIOCK..........coveiiiic s 60
7.3.7.jc_0121: Use 0f the SUM DIOCKocuviiiiiieciee e 61
7.3.8. jc_0131: Use of Relational Operator DIOCK............cccovveiiiieiie e 63
7.3.9. jc_0161: Use of Data Store Read/Write/Memory BIOCKS..........cccovviieiiiiieciece e 63

7. 4. BLOCK PARAMETERS.cetteittettett ettt ettt st estt e bt esteessesheesheesbeesbe e bt e bt e as e eas e ebseeb e e b e e be e st e e snenbeesbeesbeenbeennas 64
741, dD_OL12: INAEXING ..viteiteieieite ettt sb et b et eb e bbbt b e sttt sb e ebesr e b e 64
7.4.2.na_0010: Grouping data flows int0 SIgNAISccoeiiiiiiiiire e 64
7.4.3. db_0110: Tunable parameters in Dasic DIOCKSccccciiiiiiiiiiiiee e, 65

7.5, SIMULINK PATTERNS ...c.ctitteutesteitteresie ettt st b et ettt ne bbbt se e s s bt bbbt se e e e n e nennenn e e 66
7.5.1. na_0012: Use of Switch vs. If-Then-Else Action SUDSYSIEMccoeiiiiiiiiiiineiieneeeneeeiees 66
7.5.2. db_0114: Simulink patterns for If-then-else-if CONStIUCEScccovviiiviiiiccec e, 67
7.5.3. db_0115: Simulink patterns for Case CONSIIUCTScooiiiiiireiieie e e 68
7.5.4. na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches...........c.ccoccveneee 69
7.5.5. db_0116: Simulink patterns for logical constructs with logical blocks ... 70
7.5.6. db_0117: Simulink patterns for VECtOr SIgNalScooeiiiiiiiiiiiee e 71
7.5.7. jc_0351: Methods of iNItIaliZation..............ccoeiiiiiiiii e 73
7.5.8.jC_0111: Direction Of SUDSYSIEMcviiiieiiirieesi ettt st sre s 75

S TS I N I =1 e I 1 SO SRSRS 77

8. L. CHART APPEARANCEceutiuteuteittatesteateeseesseste st e ab st heebe e st es s e e et e bt e bt eb e e b e ese e s b e st e bt e bt eb e e bt ene e e e n e nenbenn e e e 77

8.1.1. db_0123: Stateflow POIt NAMESccveiiirieiie et 77

8.1.2. db_0129: Stateflow transition apPEArANCE.........cvcververierererese et e e e e e e e sre e e enes 77

8.1.3. db_0137: States in State MACKINES........ccvieiiiiie e e sr e resreenes 78
8.1.4. db_0133: Use of patterns for FIOWChAITS...........ccccveiieiiiiiieiicecceeese e 79
8.1.5. db_0132: Transitions iN FIOWCHAITScocoiiiiiiiiiee e e 79
8.1.6. jc_0501: Format of entries in @ State DIOCKccccoviiiiiiiiiii e 81
8.1.7. jc_0511: Setting the return value from a graphical function.............cccccoveiiineiiinciiicees 82
8.1.8. jc_0531: Placement of the default transitioNn............cccviieiiiiiciiirc e 83
8.1.9. jc_0521: Use of the return value from graphical functions...........cccccovireiiineiniicseeees 84
8.2. STATEFLOW DATA AND OPERATIONScetiitietiasteattesieesiessiessteesseassesssesssasssasseesbeesesssesssessesssesssesssesnns 85
8.2.1. na_0001: Bitwise Stateflow OPEIatOrS..........cccviveierierierese s se et e et sre e e enes 85
8.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow............ccccoovvviiiveiicc i, 87
8.2.3. na_0013: Comparison operation in Stateflow..........ccccceve i 87
8.2.4. db_0122: Stateflow and Simulink interface signals and parameters...........cc.cceeevveveriesesinsinennns 88
8.2.5. db_0125: Scope of internal signals and local auxiliary variablescc.ccocoveivnieiiciiniinninennn, 89
8.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 90
8.2.7. jc_0491: Reuse of variables within a single Stateflow SCOPEccceoiireiiiiciirc s 91
8.2.8. jc_0541: Use of tunable parameters in Stateflow ..o, 93
8.2.9. db_0127: MATLAB commands in StAtefloWcoeiiiiiiiiiieiiics e 93
8.2.10. jm_0011: P0ointers in STALEFIOWcccciiiiiiiiiiiec e 94
ST =l SRS 95
8.3.1. dD_0126: SCOPE OF BVENES ...ttt sttt b e e eb e b en e 95
8.3.2. JM_0012: EVENE DIOAUCASEScuveieveieieitiecie ettt et e st te e beerae e sraesreenreenas 95
8.4, STATECHART PATTERNScettittetiaittatteateesteestees e assesseestessreesreease e st ems e asseeseeebeenbe e beasbeasnesreesreenreenreannas 97
8.4.1. db_0150: State machine patterns for CONAIitioNSccccevveiieiii i 97
8.4.2. db_0151: State machine patterns for transition actions............cccoccevveviiviicriece e 98
8.5, FLOWCHART PATTERNSeettittetieiee sttt st e stee st ettt sie e s ieesbeeste e be st e e e as e e sseeab e e b e e ne e s neasnesseenreenreenneennas 98
8.5.1. db_0148: Flowchart patterns for CONAItIONScoceiviireiieniiiees e 98
8.5.2. db_0149: Flowchart patterns for condition aCtionsccocoovoireneineneiinenee e, 100
8.5.3. db_0134: Flowchart patterns for If CONSLIUCTSccviiiiiiiniie e 101
8.5.4. db_0159: Flowchart patterns for Case CONSIIUCEScoovvvririieieiere e 103
8.5.5. db_0135: Flowchart patterns for I00p CONSIIUCESccvvviiiiiiieieee e 105
8.6. STATE CHART ARCHITECTURE ...e.utiittitieteesteestesseesteesteeseeaesasseassesseesseasseesseassessesssessseesseensesnsesnsesseenes 106
8.6.1. na_0038: Levels in Stateflow ChartS...........ccccieiiiieiiice e 106
8.6.2. na_0039: Use of Simulink in Stateflow Charts...........ccccccviiiiiiiecicceeece e 107
8.6.3. na_0040: Number of states Per CONLAINENccciveiieeie e 108
8.6.4. na_0041: Selection of FUNCLION TYPE ..c.vveveiie e 108
8.6.5. na_0042: Location Of fFUNCLIONSccveiiiiiie s 109
9. ENUMERATED DATA ..ottt ettt s bbbt s et bbb e ettt a b e bt erenbens 111
9.1.1. na_0033: Enumerated TYPES USAQEerveirerieiiiienieesie ettt sttt 111
9.1.2. na_0031: Definition of default enumerated VAlUEc.ccoviiiiiiineiiieeeee e, 111
10. MATLAB FUNCTIONS ...ttt ettt e st e e te e s e e ante e esbeeanteeanteeenneennneas 112
10.1. MATLAB FUNCTION APPEARANCEccttitititiestteteesteastesseesieeseeesseanseansesssesseesseesseessessesssesssesssesnses 112
10.1.1. na_0018: Number of nested if/else and case statementccoccevervrieriveieiere e 112
10.1.2. : na_0019: Restricted Variable NameS..........cccccviiiiiiiiie i 112
10.1.3. na_0025: MATLAB FUNCHON HEAAETcecouieiiciece e 113
10.2. MATLAB FUNCTION DATA AND OPERATIONScutteutiaiiisieesieesieasteasseassesssesseesteessessessessssessessseennes 113
10.2.1. na_0034: MATLAB Function block input/output SEttiNgScccerereriieninieie e 113
10.2.2. na_0024: Global Variablescoooiiiiiiiiicie et 114
10.3. MATLAB FUNCTION PATTERNSutiittittatteatiesttenteesteeie st sieesbeesbeesseassesseesbeesbeesbeesbesseesseeseessneenas 115
10.3.1. na_0022: Recommended patterns for Switch / Case statements...........ccoeveeveivererenernsneenenes 115
10.4. MATLAB FUNCTION USAGEcttiiiteiieie sttt site st esieeieestesseesteesteesteaneeansesssesseesseesseessnssesssesssessseenses 116
10.4.1. na_0016: Source lines of MATLAB FUNCLIONScooiiiiriiiieniese e 116
10.4.2. na_0017: Number of called function 1eVelS ..o, 116

10.4.3. N8_002L: SEFINGS...tttiriitirtiiieterteiet sttt bbbt b ettt bbbt bt 117

11. APPENDIX A: RECOMMENDATIONS FOR AUTOMATION TOOLS ... 119

12. APPENDIX B: GUIDELINE WRITINGccooiiiitiieisisicesesee et nees 120
13. APPENDIX C: FLOWCHART REFERENCEccccvii ittt 121
14, OBSOLETE RULES ..ottt b ettt ne st ne st nes 127
14.1. REMOVED IN VERSION 2.2itiitieiteesteesteateaiee st e ste e bt besseesteesteesbeasbeabesabesssesbeesbeebeasbesseesseesaeesbeenas 127
14.2. REMOVED IN VERSION 3.0 ...ttt itie ittt ettt st ste ettt sbe ettt e e sbe e sseesaeesbe e e 127

15, GLOSSARY Lot 128

1.History

Date
02.04.2001
04.27.2007
07.30.2011
08.31.2012

Change
Initial document Release, Version 1.00
Version 2.00 Update release
Version 2.20 Update release
Version 3.0 Update release

2.Introduction

2.1. Motivation

The MAAB guidelines are an important basis for project success and teamwork - both in-house
and when cooperating with partners or subcontractors. Observing the guidelines is one key
prerequisite to achieving
e System integration without problems
Well-defined interfaces.
Uniform appearance of models, code and documentation
Reusable models
Readable models
Problem-free exchange of models
A simple, effective process
Professional documentation
Understandable presentations
Fast software changes
Cooperation with subcontractors
Handing over of research or predevelopment projects to product development

2.2. Notes on version 3.0

The current version of this document, 3.0, supports MATLAB releases R2007b through R2011b.
Version 3.0 references rules from the NASA Orion style guidelines
(http://www.mathworks.com/aerospace-defense/standards/nasa.html). Rules that are referenced
from the NASA Orion guideline are noted with a “See also” field that provides the original rule
number.

2.3. Guideline template

Guideline descriptions are documented using the following template. Companies that want to
create additional guidelines are encouraged to use the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority One of mandatory / strongly recommended / recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for optional local company usage)
all

MATLAB® 3ot e
RX and later

RX through RY
Prerequisites |Links to guidelines, which are prerequisite to this guideline (ID+title)
Description |Description of the guideline (text, images)
Rationale Motivation for the guideline
Last Change |Version number of last change

Note: The elements of this template are the minimum required items that must be present for
proper understanding and exchange of guidelines. The addition of project- or vendor fields to this
template is possible as long as their meaning does not overlap with any of the existing fields. In

http://www.mathworks.com/aerospace-defense/standards/nasa.html

fact, such additions are even encouraged if they help to integrate other guideline templates and
lead to a wider acceptance of the core template itself.

2.3.1. Guideline ID:
e The guideline ID is built out of two lowercase letters (representing the origin of the rule)
and a four-digit number, separated by an underscore.
e Once a new guideline has an ID, the ID will not be changed.
e The IDis used for references to guidelines.
o The two letter prefixes na, jp, jc and eu are reserved for future MAAB committee rules.
e Legacy prefixes, db, jm, hd, and ar, are reserved.
e No new rules will be written with these legacy prefixes.

2.3.2. Guideline Title:
e The title should be a short, but unique description of the guidelines area of application
(for example, length of names).
e The title is used for the Prerequisites field and for custom checker-tools.
e The title text should appear with a hyperlink that links to the guideline.

Note: The title should not be a redundant short description of the guidelines content. The
description of the guideline might change over time, but the title should remain stable.

2.3.3. Priority:

Each guideline must be rated with one of the following priorities:
e Mandatory

e Strongly recommended
e Recommended

The priority describes the importance of the guideline and determines the consequences of
violations.

Strongly
Recommended

DEFINITION

Mandatory Recommended

e Guidelines that all
companies agree to
that are absolutely
essential

e Guidelines that all
companies conform to
100%

Guidelines that are
agreed upon to be a
good practice, but
legacy models
preclude a company
from conforming to
the guideline 100%
Models should
conform to these
guidelines to the
greatest extent

Guidelines that are
recommended to
improve the
appearance of the
model diagram, but
are not critical to
running the model
Guidelines where
conformance is
preferred, but not
required

possible; however
100% compliance is
not required

CONSEQUENCES
If the guideline is violated
e Essential items are e The quality and the e The appearance will
missing appearance not conform with
e The model might not deteriorates other projects
work properly e There may be an

adverse effect on
maintainability,
portability, and
reusability

WAIVER POLICY

If the guideline is intentionally ignored,

e The reasons must be
documented

2.3.4. Scope:

The scope can be set to one of the following
MAAB (MathWorks Automotive Advisory Board)
J-MAAB (Japan MAAB)

NA-MAAB (North American MAAB)

"MAAB" is a group of automotive manufacturers and suppliers that work closely together with
MathWorks. MAAB includes the sub-groups J-MAAB, and NA-MAAB.

“J-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in
JAPAN and works closely with MathWorks. Rules with J-MAAB scope are local to Japan.

“‘NA-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in USA
and Europe and works closely with MathWorks. That rule is local rule in USA and Europe.
Coverage is USA and Europe.

2.3.5. MATLAB® Versions

The guidelines support all versions of MATLAB and Simulink products. If the rule applies to a
specific version or versions, the versions are identified in the MATLAB versions field. The
versions information is in one of the following formats.
e All: All versions of MATLAB
RX, RY, RZ : A specific version of MATLAB
RX and earlier : Versions of MATLAB until version RX
RX and later: Versions of MATLAB from version RX to the current version
RX through RY: Versions of MATLAB between RX and RY

2.3.6. Prerequisites:
e This field is for links to other guidelines that are prerequisite to this guideline (logical
conjunction).
e Use the guideline ID (for consistency) and the title (for readability) for the links. The
"Prerequisites" field should not contain any other text.

2.3.7. Description:
e This field contains a detailed description of the guideline.
e If needed, images and tables can be added.

Note: If formal notation (math, regular expression, syntax diagrams, and exact numbers/limits) is
available, it should be used to unambiguously describe a guideline and specify an automated
check. However, a human, understandable, informal description must always be provided for
daily reference.

2.3.8. Rationale:
The guidelines can be recommended for one or more of the following reasons.

e Readability: Easily understood algorithms
e Readable models
¢ Uniform appearance of models, code, and documentation
e Clean interfaces
e Professional documentation
o Workflow: Effective development process and workflow
e Ease of maintenance
¢ Rapid model changes
e Reusable components
e Problem-free exchange of models
e Model portability
e Simulation: Efficient simulation and analysis
e Simulation speed
e Simulation memory
e Model instrumentation
o Verification & Validation: Ability to verify and validate a model and generated code with:
¢ Requirements Traceability
e Testing
¢ Problem-free system integration
e Clean interfaces
e Code generation: Generation of code that is efficient and effective for embedded systems
e Fast software changes
e Robustness of generated code

2.3.9. Last change:
The “Last Change” field contains the document version number.

2.4. Document Usage

The following paragraphs provide information on using this document as reference and for
compiling a project-specific guideline document. Information on automated checking of the
guidelines can be found in Appendix A.

2.4.1. Guideline Interaction Semantics

The initial sections of the document, naming conventions and model architecture, provide basic
guidelines that apply to all types of models. The later sections, Simulink and Stateflow, provide
specific rules for those environments. Some guidelines are dependent on other guidelines and
are explicitly listed throughout the template.

2.4.2. Masked Subsystems and Readability Rules

If users do not view the content of masked subsystems within a model, the guidelines for
readability are not applicable.

3.Software Environment

3.1. General Guidelines

3.1.1. na_0026: Consistent software environment

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

See also
Last Change

na_0026: Consistent software environment
Recommended
NA-MAAB

See Description

During software development, it is recommended that a consistent software
environment is used across the project. Software includes, but is not limited, to:
e MATLAB

e Simulink
e C Compiler (for simulation)
e C Compiler (for target hardware)

Consistent software environment implies that the same version of the software is
used across the full project. The version number applies to any patches or
extensions to the software used by a group.

M Readability O Verification and Validation
O Workflow M Code Generation
O Simulation

jh_0042: Required software
Vv3.00

3.1.2. na_0027: Use of only standard library blocks

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

na_0027: Use of only standard library blocks
Recommended
NA-MAAB

All

Companies should specify a subset of Simulink blocks for use when developing
models. The block list can include custom block libraries developed by the
company or third parties. Models should be built only from these blocks.

Non-compliant blocks can be used during development. If non-compliant blocks
are used, they should be marked either with a color, icon and / or annotation.
These blocks must be removed prior to use in production code generation.

M Readability M Verification and Validation

Rationale O Workflow M Code Generation
M Simulation

See also hyl_0201: Use of standard library blocks only
Last Change (V3.00

4.Naming Conventions

4.1. General Guidelines

4.1.1. ar_0001: Filenames
ID: Title ar_0001: Filenames

Priority Mandatory
Scope MAAB
MAT_LAB All

Version

Prerequisites
A filename conforms to the

following constraints:

FORM filename = name.extension
name: no leading digits, no blanks
extension: no blanks

UNIQUENESS O
O

all filenames within the parent project directory
cannot conflict with C / C++ or MATLAB
keywords

ALLOWED name
CHARACTERS abcdefghijklmnopgrstuvwxyzABCDEFG
Description HIJKLMNOPQRSTUVWXYZ0123456789_
extension:

abcdefghijklmnopqrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789

UNDERSCORES |name:

e can use underscores to separate parts
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore
extension:

M Readability
M Workflow
M Simulation

Rationale

Last Change |V3.00

4.1.2. ar_0002: Directory names

ID: Title ar_0002: Directory names
Priority mandatory
Scope MAAB

should not use underscores

O Verification and Validation
M Code Generation

MAT'LAB Al
Version
Prerequisites
A directory name conforms to the following constraints:

FORM directory name = name
name: no leading digits, no blanks

UNIQUENESS |all directory names within the parent project directory

ALLOWED name:
CHARACTERS |abcdefghijklmnopgrstuvwxyzABCDEFG
HIJKLMNOPQRSTUVWXYZ0123456789_

UNDERSCORES |name:

Description

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability O Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change (V1.00

4.1.3. na_0035: Adoption of naming conventions

ID: Title na_0035: Adoption of naming conventions
Priority Recommended

Scope NA-MAAB

MATLAB All

Version

Prerequisites

Adoption of a naming convention is recommended. A naming convention provides
guidance for naming blocks, signals, parameters and data types. Naming
conventions frequently cover issues such as:

e Compliance with the programing language and downstream tools

o Length
o Use of symbols
e Readability
Description o Use of underscores

o Use of capitalization
e Encoding information
o Use of “meaningful” names
Standard abbreviations and acronyms
Data type
Engineering units
Data ownership
Memory type

M Readability O Verification and Validation
M Workflow M Code Generation

o O O O O

Rationale

M Simulation
Last Change |V3.00

4.2. Model Content Guidelines

4.2.1. jc_0201: Usable characters for Subsystem name

ID: Title jc_0201: Usable characters for Subsystem names
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

The names of all Subsystem blocks should conform to the following constraints:
FORM name:
e should not start with a number
e should not have blank spaces
e should not have carriage returns

ALLOWED name:
CHARACTERS Jabcdefghijklmnopgrstuvwxyz

Description ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _
UNDERSCORES |name:
e underscores can be used to separate parts
e cannot have more than one consecutive underscore
e cannot start with an underscore
e cannot end with an underscore
M Readability O Verification and Validation
Rationale 0 Workflow O Code Generation

O Simulation

Last Change |V2.20

4.2.2.jc_0211: Usable characters for Inport block and Outport block

ID: Title jc_0211: Usable characters for Inport block and Outport block
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

The names of all Inport blocks and Outport blocks should conform to the following
constraints:

FORM name:
e should not start with a number
e should not have blank spaces
e should not include carriage returns

Description

ALLOWED name:

CHARACTERS |abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES |name:

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability O Verification and Validation

Rationale 0 Workflow O Code Generation
O Simulation

Last Change |V2.20

4.2.3. jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites
All named signals should conform to the following constraints:

FORM name:
e should not start with a number
¢ should not have blank spaces
¢ should not have any control characters
e should not include carriage returns
ALLOWED name:

Description |CHARACTERS |abcdefghijklmnopqgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

UNDERSCORES |name:

underscores can be used to separate parts

cannot have more than one consecutive underscore
cannot start with an underscore

cannot end with an underscore

M Readability [0 Verification and Validation

Rationale 0 Workflow OO0 Code Generation
O Simulation

Last Change |V2.20

4.2.4. na_0030: Usable characters for Simulink Bus names

ID: Title na_0030: Usable characters for Simulink Bus Names

Priority strongly recommended

Scope NA-MAAB

MATLAB

Version Al

Prerequisites

All Simulink Bus names should conform to the following constraints:

FORM name:
e Should not start with a number
e Should not have blank spaces
e Carriage returns are not allowed

ALLOWED name:
CHARACTERS Jabcdefghijklmnopgrstuvwxyz
Description ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789 _

UNDERSCORES |name:
e Can use underscores to separate parts
e Cannot have more than one consecutive
underscore
e Cannot start with an underscore
e Cannot end with an underscore

M Readability O Verification and Validation

Rationale 0 Workflow O Code Generation

O Simulation

See Also jh_0040: Usable characters for Simulink Bus Names
Last Change |V3.00

4.2.5. jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names
Priority strongly recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites |jc_0201: Usable characters for Subsystem names

All named blocks should conform to the following constraints:

FORM name:
e should not start with a number
e should not start with a blank space
e may not use double byte characters
Description e carriage returns are allowed
ALLOWED name:

CHARACTERS Jabcdefghijklmnopgrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789 _

Note: this rule does not apply to Subsystem blocks.

Rational M Readability O Verification and Validation
ationale O Workflow

O Simulation O Code Generation
Last Change |V2.00

4.2.6. na_0014: Use of local language in Simulink and Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow
Priority strongly recommended

Scope J-MAAB

MAT'LAB Al

Version

Prerequisites

The local language should be used only in descriptive fields. Descriptive fields are
text entry points that do not affect code generation or simulation. Examples of
descriptive fields include

Simulink Example
e The Description field in the Block Properties

<} Black Proper

General H Bllack fnnotation H Callbacks |

Uzaee

Dezcription: Text saved with the block in the model file.

Priority: Specifies the block's order of execution relative to other blocks in the
zame model.

Tae: Text that appearz in the block label that Simulink eenerates.

Dezcription:
Description Local language can be used. a]

e Text annotation directly entered in the model
D & &R == 5

Description: Local language can be used.

Outl
Outd
Stateflow Example

e The Description field of the chart or state Properties

¥
EX

¥
E}
=

Mame: State

Parent: {chart) SF sample/Chart2
Breakpointz: [~ State During [~ State Entry [~ State Exit

I~ Output State Activity

Description:

Local language can be used.

Document Llnkl

o] 4 I Cancel | Help | Lppli

e Annotation description added using Add Note

Local language can be used

[condition]

fdd Mote 2
(5T

(i

Baste

Back

{action}

Note: It is possible that Simulink can’t open a model that includes local language
on the different character encoding systems; thus, it is important to pay attention
when using local characters in case of exchanging models between overseas.

M Readability O Verification and Validation
Rationale 0 Workflow O Code Generation
O Simulation

Last Change |V2.00

5.Model Architecture

Basic Blocks
This document uses the term “Basic Blocks” to refer to blocks from the base Simulink library.
Examples of basic blocks:

+

@ 1 k D} ! 2 r|l\—:- 2 u] B

—_

I Constant Gain Surn . Saturation Ahs
Switch

5.1. Simulink® and Stateflow® Partitioning

5.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

The choice of whether to use Simulink or Stateflow to model a given portion of the
control algorithm functionality should be driven by the nature of the behavior being
modeled.
¢ If the function primarily involves complicated logical operations, use
Stateflow diagrams.
¢ Stateflow should be used to implement modal logic — where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.

Description . A . . _
P e If the function primarily involves numerical operations, use Simulink
features.
Specifics:

¢ If the primary nature of the function is logical, but some simple numerical
calculations are done to support the logic, implement the simple numerical
functions using the Stateflow action language.

) Stateflow {subchart) naD006part1 /Chart.¥ehicleStral] 4

File Edit Yiew Simulation Tools Add Help £

=
_I /FrontAxIeaﬂ\ctivati0nCounter \

[DeActivationCond)] [ActivationCond] _— Embedded simple

|1 math operation
Activated
entry: ActivationCt = ActivationCt + 1;

A

b B EEE e

=1
2
=3

4
p

=

=
=]
=
@

e If the primary nature of the function is numeric, but some simple logical
operations are done to support the arithmetic, implement the simple logical
functions with Simulink blocks.

E!nal]l]l]ﬁpartzf-' {Subsystem, /Subsystem * - |D|L|
File Edit Wew Simulation Format Tools Help

D& ¢ B e 4| » =fino Jvoml -

Ready [100% [N\ |FixedStepDiscrete v

Embedded simple
logic operations

e If the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, use a Simulink
subsystem to implement the numerical calculations. The Stateflow
software should invoke the execution of this subsystem, using a function-
call.

=N
File Edit Yiew Simulation Tools Add Help £
FEHE| B2 2E|)y 1 o8 |EHs >
a
I mprTbILimitTrap -\
&
by 8
=
{Thl_In1=u1: ..
Thi_InZ =uZ;. .
Mty TRILKUpEC}
o
100%
A 4
\. vl
iK1]
|Ready

nEaIISLFrDmSF_Trans_ng gh =] 3]
File Edit Wiew 3Simulation Farmat Tools Help

Dlﬁm§|%a|@=§?|DQ|} II1U.D Marmal '|@ |H@DE®
B — i — s — - — -
<MyThILKUpFC> |
s N, '
|
e o ysf '
function]
“2 TR . -
Out
<Thi_Quts
Ke_CalFactorl Ke_CalFactorl) Tol_in2 |
s G "
WMyThiLkUp FC Subsys
| THI_Cut MyThILKLpFC _w-ly_r_mhapi:c_}»-
Chart

Ready [100% [FixedstepDiscrete v

) Stateflow {subchart) naDD06part5/Chark.ThIC

File Edit View Simulation Tools Add Help

=10l x|

£l

CHE| B> ¢ 2@y 0o @

(ThICAI l

| (%

entry: ysf = 0;

lUbICaIcCond]

T[ResetCond]

Cp

during: Thl_In1 =ul;..
2 Thl_InZ =uZ, ..
e Wy ThiLkUpFC; ...
ysf=u1,

EN

L]

|Muve

[FInanoosparts

File Edit Miew Simulation Format Tools Help

=lolx|

DR &| 4 @ |e 4| < r =0 [iomd ~|| BB S Bl

S O

ul

e %

Chart

Feady

Ke_CalFactorlpr Ke_CalFactortlpr g 1y

D

ayste

Thi_int
<Thl_In1=

Th_In2
<Thl_InZ=

ILKpFC | — - — - — - — -

¥

function [)

<y Thls (20

MyTbILkUp FC Subsys

[1o0%% [

|Fixedsteppiscrete v

o Use the Stateflow product to implement modal logic, where the control
function to be performed at the current time depends on a combination of
past and present logical conditions. (If there is a need to store the result of
a logical condition test in Simulink, for example, by storing a flag, this is
one indicator of the presence of modal logic, which should be modeled
with Stateflow software.)

Incorrect

nal006parts,

File Edit Yew Simulation Faormat Tools Help

/5L Implementation

D|@E§|%E|@@?|9Q » IISUU INDrmal '”E@

InLin Fing_prev

LinkngFlag

@ <LinTaMLThrshCond»

NLRngFl
natlas InNLRng_prew

ActuatorCmd L -

LinRngFlag NLRngFlag

Ready [100% [[[FixedStepDiscrete Y

a0006part6,/SL Implemenktak _|E| LI
File Edit Wew Simulation Format Toaols Help

D& t2R (e 42|

=
- > D
_

Lookup Table

Fl1o0% [[|FizedStepDiscret 2

Correct

E!nal]l]l]ﬁpartﬁ /SF Implementation *

File Edit Yiew Simulation Format Tools Help

DSEE i RR (4 r s [vmd =] B 68

e RGP U ToNLTrshCond LinRngFCj— - — - — - — - — -

@

Funationy

(E ot oo ™ ML TotinThrshCond NLRngF C/(— o inFing Fancioncall
| . .
Sy S
pr— . o » FetuatorCmd
herge
Tunetiony
<AotuatarSignal>

HLRng FunctionCall

Subsystem
Ready 100% [[|FixedstepDiscrete 4

) Stateflow {chart) naD00Gpart6,'SF Implementation/Chartl _1o(]

Fille Edit View gSimulation Tools Add Help
FHS| @ e 2 |HE> 1 = | Bo@E >
J =

LinearRange
en: LinkngFC;
du LinRngFC;

[NLTOLmThrShCond]T l[LmToNLThrshCond}

MonlinearRange
en NLRngFC;
du: NLRngFC;

) BEEE|e®

E
4

4
|;‘

7]
E

e Simulink should be used to implement numerical expressions containing
continuously-valued states, e.qg., difference equations, integrals,
derivatives, and filters.

Incorrect
Fie Edt Yiew Smulstion Tools Add Help ~
FEEIRED IR L I =
3
function vk = LPFILPF_Coef,u Enable Reset ResetValue)
9
EI [Reset] {yl = ResetValue}
=
2
[Enable] fyk = vk + LPF_Coef*fu - ykm1j}
nable =ykm1 + 06f* (U - ykm
; VLS, . L
2
!I Ik =ykm 1}
A
100%
A4 {ykm1 = yk}
i
K| |
|Create SuparTransition

Correct
E!untitledl,-"DigitaI Lowpass Reset Enabled * - | Ellzl

File Edit Yew Simulation Format Tools Help

DISES & BB (G 3 oo i | e E

C ¥
vk
e

H

Threshold=1

ey

1

gt

Threshold=1

lle
vhmi z

Ready [1o0%s [[|odeds Y

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

LLast Change |V2.00

5.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites |na_0006: Guidelines for Mixed use of Simulink and Stateflow

Within Stateflow, the choice of whether to use a flow chart or a state chart to model
a given portion of the control algorithm functionality should be driven by the nature
of the behavior being modeled.
e If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, use state charts. Some examples are:
o Diagnostic model with pass, fail, abort, and conflict states
o Model that calculates different modes of operation for a control
Description algorithm
e If the primary nature of the function segment involves if-then-else
statements, use flowcharts or truth tables.

Specifics:
¢ If the primary nature of the function segment is to calculate modes or
states, but if-then-else statements are required, add a flow chart to a state
within the state chart. (See 7.5 Flowchart Patterns)

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change |V2.00

5.2. Subsystem Hierarchies

5.2.1. db_0143: Similar block types on the model levels
ID: Title db_0143: Similar block types on the model levels

Priority strongly recommended
Scope NA-MAAB

MAT.LAB All

Version

Prerequisites

To allow partitioning of the model into discreet units, every level of a model must be
designed with building blocks of the same type (i.e. only Subsystem or only basic
blocks). The blocks listed in this rule are used for signal routing. You can place
them at any level of the model.

Description)
Blocks which can be placed on every model level:

Inport {1 »

Outport

Mux

Demux

Bus Selector

Bus Creator

Data Store Memory

Selector s

Ground

Terminator

From i

Goto [A]

Merge Merge |

1

Unit Delay Tt

Rate Transition —El— s
M [

Data Type Conversion Convert
DSM

Note

Rationale

Last Change

ifful =0) |

sk B
case | =
Case ut
default: |
Function-Call Generator fll p

Function-Call Split

Trigger(l)

ElSRES

Enable®

Action

Action port(3)

1.) Starting in R2009a, the Trigger block is allowed at the root level of
the model.
2.) Starting in R2011b, the Enabled block is allowed at the root level of

the model.
3.) Action ports are not allowed at the root level of a model.
If the Trigger or Enable blocks are placed at the root level of the model, then the
model will not simulate in a standalone mode. The model must be referenced
using the Model block.

M Readability M Verification and Validation
M Workflow [0 Code Generation
O Simulation

V2.20

5.2.2. db_0144: Use of Subsystems

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0144: Use of Subsystems
strongly recommended
MAAB

All

Blocks in a Simulink diagram should be grouped together into subsystems based
on functional decomposition of the algorithm, or portion thereof, represented in the
diagram.

Avoid grouping blocks into subsystems primarily for the purpose of saving space in
the diagram. Each subsystem in the diagram should represent a unit of
functionality required to accomplish the purpose of the model or submodel. Blocks

can also be grouped together based on behavioral variants or timing.

If creation of a subsystem is required for readability issues, then a virtual
subsystem should be used.

M Readability M Verification and Validation
M Workflow M Code Generation
[Simulation

Rationale
Last Change |V2.20

5.2.3. db_0040: Model hierarchy
ID: Title db_0040: Model hierarchy

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

o The model hierarchy should correspond to the functional structure of the control
Description

system.
M Readability M Verification and Validation
. M Workflow M Code Generation
Rationale

O Simulation
Last Change (V2.00

5.2.4. na_0037: Use of single variable variant conditionals

ID: Title na_0037: Use of single variable variant conditionals
Priority Recommended

Scope NA-MAAB

MAT_LAB All

Version

Prerequisites

Variant conditional expressions should be composed using either a single
variable with compound conditions or multiple variables with a single condition.
The default variant is an exception to the second rule.

Correct: Multiple variables (INLINE / FUNCTION) with single condition per line
Variant choices (list of child subsystems)

Description —
_d Marme (read-only) Variant object Condition {read-only)
— |Default_Fofa DefaultVar (IMLINE==0} && (FUNC==0)
i Function_Faofa FunctionVar FUNC==
E In_Line_Fofa InLineVar IMLIMNE ==

Correct: Single variable compound conditions

Variant choices (list of child subsystems)

\1/ Name (read-only) Variant object Condition (read-only)
\Z/ AutoTrans autoTrans (transType == 3) | |(transType == 4) || (transType ==5)

Default_d4speed defaultTrans (transType ~= 3) &R (transType ~= 4) && (transType ~= 5) && (transType ~=0)
@/ ManualTrans manualTrans (transType == 0)

Incorrect: Multiple variables, compound conditions

Variant choices (list of child subsystems)

@ Name (read-only) | Variant obiect Condition (read-onlv)

—— |AutoTrans incorrect_1 (INLINE==0) && (transType == 3)

l_l Default_4speed incorrectDefault | (((INLINE==0) && (transType ==3))==0) && (FUNC == 0) && (transType ~=2)
@ ManualTrans incorrect_2 (FUNC == 1) || (transType == 2)

Use of enumerated variables is preferred in the Condition expressions. To

Note improve the readability of the screenshots used in the examples, numerical
values were used.
M Readability O Verification and Validation
Rationale O Workflow M Code Generation

M Simulation
See also na_0036 Default variant
Last Change |V3.00

5.2.5. na_0020: Number of inputs to variant subsystems

ID: Title na_0020: Number of inputs to variant subsystems
Priority Recommended

Scope NA-MAAB

MATLAB All

Version

Prerequisites

Simulink requires variant subsystems to have the same number of inputs.
However, the variant subsystem might not use all of the inputs. In these

Description instances, terminate the unused inputs with the Terminator block.
M Readability O Verification and Validation
. O Workflow M Code Generation
Rationale

M Simulation
Last Change |(V3.00

5.2.6. na_0036: Default variant

ID: Title na_0036 Default variant
Priority Recommended

Scope NA-MAAB

MAT.LAB All

Version

Prerequisites |na_0037 Use of single variable variant conditionals

Description All Variant subsystems and models should be configured so that one subsystem

is always selected. This can be achieved by doing one of the following:
® Using a default variant.
® Defining conditions that exhaustively cover all possible values of the

conditional variables. For example, defining conditions for true and
false values of a Boolean.

Correct

Variant choices (list of child subsystems)

Mame (read-only} | Variant object Condition (read-only)
Default_FofA defaultvar (FUNC ~= 1) && (FUNC ~= 2)
Function_FofA functionVar FUNC ==1

In_Line_FofA inLineVar FUNC == 2

Correct: Assumes FUNC and INLINE are Boolean
Variant choices (list of child subsystems)

14 [N (&

EJ Mame (read-only) Variant obiect Condition {read-onlv)

— |Default_FofA Defaultvar (IMLINE==0) && (FUNC==0)
EJ Function_Fofa FunctionVar FUNC==

E In_Line_FofA InLineVar IMLIME == 1

Incorrect: No active subsystem if FUNC not equal to 1 or 2

Variant choices (list of child subsystems)

@ Name (read-only) Variant object Condition (read-only)
— Function_FofA functionVar FUNC ==1
— In_Line_FofA inLineVar FUNC ==2
M Readability O Verification and Validation
Rationale O Workflow M Code Generation
M Simulation

Last Change |v3.00

5.3. I-MAAB Model Architecture Decomposition

5.3.1. jc_0301: Controller model
ID: Title jc_0301: Controller model

Priority mandatory
Scope J-MAAB
MAT.LAB All

Version

Prerequisites

Control models are organized using the following hierarchical structure. Details on
each layer are provided in the latter rules.
Description Top layer / root level
Trigger layer
Structure layer
Data flow layer

Rationale

Use of the Trigger level is optional. In the diagram below “Type A” shows the use
of a trigger level while “Type B* shows a model without a trigger level.

TypeA TypeB
B—p B—
E— |.> Top Layer E—p |,>
g2 I g
“EVENT Bms Trigger . ’
....... Layer :
O O |[Osfippor »O ﬂ —>
o> POl o> JA ‘< B

""""" I5escribé_a processing timing

Structure Layer
o EVENT
EVENT
ams v —pop
BanalndiCs 4
0 Data Flow |—d
> JD*[H Lalyer —» *D:D*D’
O Readability O Verification and Validation
M Workflow

: ; O Code Generation
O Simulation

Last Change |V2.00

5.3.2.jc_0311: Top layer / root level

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

jc_0311: Top layer / root level
mandatory
J-MAAB

All

Items to describe in a top layer are as follows.

e Overview: Explanation of model feature overview
e Input: Input variables

e Output: Output variables

_Description: *rxmemrem ,l\ Describe the outline of the function

1
Output1 1
I
|
Qutput2 Qutput2| |
|
! 1

|
outputs|—|->foutputd] !
’ \

- \ ControllerA
Input

Top Layer Example
O Verification and Validation

o ——— e = = ——

Output

O Readability
M Workflow

O Simulation O Code Generation
Last Change |V2.00

5.3.3. jc_0321: Trigger layer

ID: Title jc_0321: Trigger layer
Priority mandatory

Scope J-MAAB

MAT'LAB Al

Version

Prerequisites

A trigger layer indicates the processing timing by using Triggered Subsystem or

Function-Call Subsystem.

e The blocks should set Priority, if needed.

e The priority value must be displayed as a Block Annotation. The user should be
able to understand the priority-based order without having to open the block.

Description EventA EventB Task4ms Task2ms
EN EN EN EN

TimingA_function TimingB_function Task4ms_function Task2ms_function

Priority =1 Priority =2 Priority=3 Priority = 4
Trigger Layer Example
M Readability O Verification and Validation
Rationale M Workflow
O Simulation M Code Generation

Last Change |V2.00

5.3.4. jc_0331: Structure layer
ID: Title jc_0331: Structure layer

Priority mandatory
Scope J-MAAB
MAT.LAB All

Version

Prerequisites

Describe a structure layer like the following description example.

e In case of Type B, specify sample time at an Inport block or a Subsystem to
define task time of the Subsystem.
In case of Type B, use a Block Annotation at an Inport block or a Subsystem
and display sample time to clarify task time of the Subsystem

A subsystem of a structure layer should be an atomic subsystem.

Description

TaskZms

Inputi
Inputi Locall

Input2
Input2

Component_B

P - »Locall
Local2 »Localz OQutput2

{3 —+Input3
Input3 Local3 »Local3

(1D

Output2

Component_F Component_H

Structured Layer Example (Type A: No description of processing timing)

1}
Input3
<tsample=0.002> EventB EventA
—>|In utz
Input3 P Local9
Local10f—»Locall0
Inputd Component_K
Input4 <tsample=-1> Local®
<tsample=0.004> Component_|
<tsample=-1> »Locall0
Cutput3|—m{ :)
Locall1 {Locall Output3
Input4
Locall2 »Locall2

Component_J
<tsample=0.004>

Component_L
<tsample=0.002>

Structured Layer Example (Type B: Description of processing timing)

M Readability
M Workflow
O Simulation

Rationale
M Code Generation

Last Change (V2.00

5.3.5. jc_0341: Data flow layer

ID: Title jc_0341: Data flow layer
Priority mandatory

Scope J-MAAB

MATLAB All

Version

Prerequisites

Describe a data flow layer as in the following example.
Description |e

sample time to clarify execution timing of the signal

O Verification and Validation

In case of Type A, use a Block Annotation at an Inport block and display its

Unnecessary display in TypeA.

Ao
— Logcald _
LClEample-00027)
2D >
Local2

<tsample=0.002>

3

Sublnput SubOutput

SubComponent

Local3
<tsample=0.002>

O Readability

Rationale M Workflow

O Simulation

Last Change (V2.00

Cmap

Data Flow Layer Example

O Verification and Validation

O Code Generation

Output2

6.Model Configuration Options

6.1.1. jc_0011: Optimization parameters for Boolean data types

ID:Title jc_0011: Optimization parameters for Boolean data types
Priority strongly recommended

Scope MAAB

MAT'LAB Al

Version

na _0002: Appropriate implementation of fundamental logical and numerical
operations
The optimization option for Boolean data types must be enabled (on).

Prerequisites

Path Parameter Image
Configuration BooleanDataType
Parameters >
Description Optimization > Optimization

Simulation and
code generation
> Implement logic

Simulation and code generation

| Block reduction

Slg nals as /| Implement logic signals as Boolean data (vs. double)
Boolean data (vs.
double)
O Readability O Verification and Validation

M Code Generation
Rationale M Workflow
O Simulation

Last Change V2.20

6.1.2. jc_0021: Model diagnostic settings

ID: Title jc_0021: Model diagnostic settings
Priority strongly recommended

Scope MAAB

MAT_LAB All

Version

Prerequisites

The following diagnostics must be enabled. An enabled diagnostic is set to
either “warning” or “error”. Setting the diagnostic option to “none” is not
permitted. Diagnostics that are not listed can be set to any value (none,
warning, or error).

e Solver Diagnostics
e Algebraic loop

Minimize algebraic loop

e Sample Time Diagnostics

[]
Description .
[]

Multitask rate transition

Data Validity Diagnostics

Inf or NaN block output
Duplicate data store names

e Connectivity
e Unconnected block input ports
e Unconnected block output ports
e Unconnected line

e Unspecified bus object at root Outport block
e Mux blocks used to create bus signals
e Invalid function-call connection
e Element name mismatch
O Readability O Verification and Validation
M Code Generation
Rationale M Workflow

O Simulation

Last Change V2.00

7.Simulink

7.1. Diagram Appearance

7.1.1. na_0004: Simulink model appearance

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

na_0004 Simulink model appearance

Recommended
MAAB

All

The model appearance settings should conform to the following guidelines when
the model is released. The user is free to change the settings during the

development process.
View Options
Model Browser
Screen color
Status Bar
Toolbar
Zoom factor
Block Display Options
Background Color
Foreground Color

Execution Context Indicator

Library Link Display

Linearization Indicators

Model/Block 1/0 Mismatch

Model Block Version

Sample Time Colors

Sorted Order

Signal Display Options

Port Data Types

Signal Dimensions

Storage Class

Test point Indicators

Viewer Indicators

Wide Non-scalar Lines
M Readability

O Workflow
O Simulation

Vv2.00

Setting
unchecked
white
checked
checked
Normal (100%)
Setting
white
black
unchecked
none
checked
unchecked
unchecked
unchecked
unchecked
Setting
unchecked
unchecked
unchecked
checked
checked
checked

O Verification and Validation
O Code Generation

7.1.2. db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size
Priority strongly recommended

Scope MAAB

MAT'LAB All

Version

Prerequisites

All text elements (block names, block annotations and signal labels) except free
text annotations within a model must have the same font style and font size.
Fonts and font size should be selected for legibility.

Description
Note: The selected font should be directly portable (e.g. Simulink/Stateflow
default font) or convertible between platforms (e.g. Arial/Helvetica 12pt).
M Readability [0 Verification and Validation
Rationale O Workflow [0 Code Generation

O Simulation

Last Change V2.00

7.1.3. db_0042: Port block in Simulink models
ID: Title db_0042: Port block in Simulink models

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites

In a Simulink model, the ports comply with the following rules:
e Inports should be placed on the left side of the diagram, but they can be
moved in to prevent signal crossings.
e Outports should be placed on the right side, but they can be moved in to
prevent signal crossings.
e Duplicate Inports can be used at the subsystem level if required, but should
be avoided, if possible.
o Do not use duplicate Inports at the root level.

Correct
@ OZRatio g VO2_Cales
Description __ —
<Throt_Req>
WO2ZCal >
2 I <SlipMode:
Trans=Tal
SlipCalc

Incorrect
() > <\."C)2_Cal-
OZRatio
<TQ_Regs =IZI
<Throt_Reg>
Wo2Cal I
<SlipEst> ! a
L
@ = {} . <Sliphode>
ransTgin
SlipCalc

Notes on the incorrect model
e Inport 2 should be moved in so it does not cross the feed back loop lines.
e Outport 1 should be moved to the right hand side of the diagram.

M Readability O Verification and Validation

Rationale O Workflow [0 Code Generation
O Simulation

Last Change |V2.00

7.1.4. na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

For some items it is not possible to define a single approach that is applicable to all
organizations’ internal processes. However, it is important that within a given
organization, a single consistent approach is followed. An organization applying
the guidelines must select one of the following alternatives to enforce.
Organizationally-Scoped Alternatives (follow one practice):

1. The name of an Inport or Outport is not hidden. ("Format / Hide Name" is

not allowed.)
Description
- ¥
1 }Er-;F{F'h’_LF' | EngRFM_LF
EngRFM_LP ey Fi

T R i ==l

2 EngRPM_UnFilt ngREh_Filt

= " EngRPW_UnFit W EngREM_Uns
EngRFM_UnFilt

EngineRPM_Filter

2. The name of an Inport or Outport must be hidden. ("Format / Hide Name" is

used.)
Exception: inside library subsystem blocks, the names may not be hidden.

EngineRPM_Filter

Correct: Use of signal label

(1 _————m|<SigLabel> LabelF romSub w1
SiqlLabel g <LabelFromSub>
In1 Out?
M Readability [Verification and Validation

. ; O Code Generation
O Simulation

Last Change (V2.00

7.1.5. jc_0081: Icon display for Port block
ID: Title jc_0081: Icon display for Port block

Priority recommended
Scope MAAB
MATLAB

. R14 and later
Version

Prerequisites

The Icon display setting should be set to Port number for Inport and Outport blocks.

Correct
L Incorrect
Description
M Readability O Verification and Validation
Rationale O Workflow O Code Generation

O Simulation

Last Change |V2.20

7.1.6. jm_0002: Block resizing
ID: Title jm_0002: Block resizing

Priority mandatory
Scope MAAB
MAT'LAB All

Version

Prerequisites

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (for example, tunable parameters,
filenames, or equations) in the icon must be readable.

This guideline requires resizing of blocks with variable icons or blocks with a
variable number of inputs and outputs. In some cases, it may not be practical or
desirable to resize the block icon of a subsystem block so that all of the input and
output names within it are readable. In such cases, you may hide the names in the
icon by using a mask or by hiding the names in the subsystem associated with the
icon. If you do this, the signal lines coming into and out of the subsystem block
should be clearly labeled in close proximity to the block.

Correct
L |tunab|e_parameter_\talue }a - 1 input_signall
Description Eonstant . 2+0.5 input_signal2
+ i Trgrigr-,r'?tlfcn input_signal3 output_signal
> > + (dounle) input_signald
Gain From Sum Data Type input_sigrials
Conversion subsystem
Incorrect
1
Constant ?_5"‘0-5 input_signal?
Discrete inpLt_signelGtput_sional
- . M Transfer Fecn
S I
Sum 1
Gain Frarn
Cata Type
Conversion
M Readability O Verification and Validation
Rationale O Workflow [0 Code Generation

O Simulation

Last Change (V2.00

7.1.7. db_0142: Position of block names
ID: Title db_0142: Position of block names

Priority strongly recommended
Scope MAAB

MAT_LAB Al

Version

Prerequisites

Description |If shown the name of each block should be placed below the block.

Correct

0.08z
1
C} EngRPMRaw » EngRPMFilt .'{I}

z-40.95
EngSignal_LowPass

Incorrect
TransSignal_LowPass
0.08z
E} Trans RFMRaw » =095 TransRPMFilt
M Readability [0 Verification and Validation

Rationale O Workflow

. ; O Code Generation
O Simulation

Last Change |V2.00

7.1.8. jc_0061: Display of block names
ID: Title jc_0061: Display of block names

Priority recommended
Scope MAAB
MAT.LAB All

Version

Prerequisites

o Display a block name when it provides descriptive information.

Ini Dutl 0.0%= L
Description z0.85
FuelRateMonitor EngineSpeedFilter

ThrottleAsbitration

e The block name should not be displayed if the block function is known and
understood from the block appearance.

Rationale

Last Change

—_

in - F o o
min 20rt Merge B

* = HND [<= =

:\“‘—>

ll(l-'—

8] e [A] [<Enter Model Rame>]

M Readability O Verification and Validation
O Workflow O Code Generation
O Simulation

V2.00

7.1.9. db_0146: Triggered, enabled, conditional Subsystems

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0146: Triggered, Enabled, Conditional Subsystems
strongly recommended
MAAB

All

The blocks that define subsystems as either conditional or iterative should be
located at a consistent location at the top of the subsystem diagram. These blocks
are:

Enable

For Iterator

Action Port

Switch Case Action

Trigger

While Iterator

Note: The Action port is associated with the If and Case blocks. The Trigger port
is also the function-call block.

Correct
:1 <EngTg>= gl
TotslTg ! [:
(Z} <TransTg> o+

Incorrect

:1 <EngTg> ™+

TotalTg ! C
:E <TransTg> gl
M Readability [0 Verification and Validation
Rationale [Workflow O Code Generation

O Simulation

Last Change |V2.20

7.1.10. db_0140: Display of basic block parameters
ID: Title db_0140: Display of basic block parameters

Priority Recommended
Scope MAAB
MAT_LAB All

Version

Prerequisites

Important block parameters modified from the default values should be displayed.
Note: The attribute string is one method to support the display of block parameters.
The block annotation tab allows you to add the desired attribute information. As of
R2011b, masking basic blocks is a supported method for displaying the
information. This method is allowed if the base icon is distinguishable.

Correct
1
1 - P n
— = zfatez = reset
inital=10
tzample=.01
Description
E
2.0 Merge f»
b b N
+0.5
tzample=-1 inital=[10 4]
Correct: Masked block
1
— [
z
ic=1
Unit Delay
. M Readability O Verification and Validation
Rationale

O Workflow

O Simulation O Code Generation
Last Change |V2.20

7.1.11. db_0032: Simulink signal appearance
ID: Title db_0032: Simulink signal appearance

Priority strongly recommended
Scope MAAB

MAT'LAB Al

Version

Prerequisites

Signal lines
e Should not cross each other, if possible.
e Are drawn with right angles.
e Are not drawn one upon the other.
e Do not cross any blocks.
e Should not split into more than two sub lines at a single branching point.
Correct Incorrect
Description
Constant Tearminator Terminator
| 4... 1 #E
Terminatort Constant Terminatard
g —3
Teminator2 Terminator2
M Readability O Verification and Validation
Rationale O Workilow O Code Generation

O Simulation

Last Change |V2.00

7.1.12. db_0141: Signal flow in Simulink models
ID: Title db_0141: Signal flow in Simulink models

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

e Signal flow in a model is from left to right.
e Exception: Feedback loops
Description |¢ Sequential blocks or subsystems are arranged from left to right.
e Exception: Feedback loops
e Parallel blocks or subsystems are arranged from top to bottom.

Inpat!

0
Inpu“—l—b [Tmpout Al TmpCutE1 P Trprur A1
Dutputh
Inputh, e TmemAT g i ToptutAZ Tl o] Tt 1 futeut
Gt B Fromi
G e 3T | e
InpitB e T [;L;h o TonpOut 0 OutptE
e Tmplut Al =|Tmpuumz Frome o Dt
InputG N Ot
——{Tmpout o1
S Y e
ey o . Cutpuils
s Signal flow should be drawn from left to right
InputE ™ & & CutputE
(8 —Bfro e oot iy
InputF [TmpoutA2 CutputF
[R Tmplut AR From —— QutputF
InputG m "
Ol - o
InputH T Tmelut AT
TrmpOut D
[TmpDut_AZ Goto
TmpDut A3
(10} {npat)
gt =
M Readability O Verification and Validation
0O Workflow O Code Generation

Rationale O Simulation

Last Change (V2.00

7.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority strongly recommended
Scope MAAB

MAT_LAB All

Version

Prerequisites

e Visual depiction of signal flow must be maintained between subsystems.
e Use of Goto and From blocks is allowed if:
¢ At least one signal line is used between connected subsystems.
e Subsystems connected in a feed-forward and feedback loop have at
least one signal line for each direction.

e Using Goto and From blocks to create buses or connect inputs to merge blocks
are exceptions to this rule.

Correct

Description

FuelFilter

=

TiaRearsd ToraEng

s

Incorrect

y¥r
n

v I

MRaw =IPW — e [Fu=IPW] | [IFu=tPw] Fuelhiode]
=iRast WEst |—jp—e= [FuelPWES]
5 - EngRPMCor FuelFault [FuelFault]
TToaEng] ToraEng Fuciods | ez [FusiViods =
uelReq
FuelFilt
G (2

s | el]

M Readability O Verification and Validation
O Workflow [0 Code Generation

Rationale O Simulation

Last Change |V2.00

7.1.14. na_0032: Use of Merge Blocks

ID: Title na_0032: Use of merge blocks
Priority Strongly Recommended

Scope NA-MAAB

MAT.LAB All

Version

Prerequisites |None

When using merge blocks:
e Signals entering a merge block must not branch off to any other block.
e With buses:
o All buses must be identical. This includes:
= Number of elements
= Element names

Description
= Element order
= Element data type
= Element size
o Buses must be either all virtual or all non-virtual.
o All bus lines entering a merge block must not branch off to any other
block.
[0 Readability O Verification and Validation
Rationale M Workflow M Code Generation

O Simulation

See Also jh_0109: Merge blocks
Last Change |V3.00

7.1.15. jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models
Priority strongly recommended

Scope MAAB

MAT'LAB Al

Version

db 0042: Ports in Simulink models
na_0005: Port block name visibility in Simulink models

Prerequisites

For some items, it is not possible to define a single approach applicable to all
organizations’ internal processes However, within a given organization, it is
important to follow a single consistent approach is followed. An organization
applying the guidelines must select one of these alternatives.

1. Names of Inport blocks and Outport blocks must match the corresponding
signal or bus names.
Exceptions:

o When any combination of an Inport block, an Outport block, and
any other block have the same block name, a suffix or prefix
should be used on the Inport and Outport blocks.

Description o One common suffix / prefix is “_in” for Inports and “_out” for
Outports.

o Any suffix or prefix can be used on the ports, however the selected
prefix should be consistent.

o Library blocks and reusable subsystems that encapsulate generic
functionality.

2. When the names of Inport and Outport blocks are hidden, apply a
consistent naming practice for the blocks. Suggested practices include
leaving the names as their default names (for example, Outl), giving them
the same name as the associated signal or giving them a shortened or
mangled version of the name of the associated signal.

M Readability O Verification and Validation

Rationale M Workflow M Code Generation
M Simulation

Last Change (V2.00

7.1.16. jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block
Priority strongly recommended

Scope J-MAAB
MAT_LAB All
Version

Prerequisites

For Trigger port blocks and Enable port blocks, match the name of the signal
triggering the subsystem.
Description
e The block name should match the name of the signal triggering the
subsystem.

OEEd&| 7 Bl

Taskstl
TaskZms
4
\‘\ | [100% | [4

M Readability O Verification and Validation

Rationale 0 Workflow M Code Generation
O Simulation

Last Change |V2.00

7.2. Signals

Signals may be scalars, vectors, or busses. They may carry data or control flows.

You use signal labels to make model functionality more understandable from the Simulink
diagram. You can also use them to control the variable names used in simulation and code
generation. Enter signal labels only once (at the point of signal origination). Often, you may also
want to also display the signal name elsewhere in the model. In these cases, the signal name
should be inherited until the signal is functionally transformed. (Passing a signal through an
integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem
is not.) Once a named signal is functionally transformed, a new name should be associated with
it.

Unless explicitly stated otherwise, the following naming rules apply to all types of signals.

7.2.1. na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals
Priority recommended

Scope MAAB

MAT_LAB Al

Version

Prerequisites
A label must be displayed on a signal originating from the following blocks:

e Inport block
e From block (block icon exception applies — see Note below)
e Subsystem block or Stateflow chart block (block icon exception applies)
e Bus Selector block (the tool forces this to happen)
e Demux block

Description e Selector block

Data Store Read block (block icon exception applies)

Constant block (block icon exception applies)

o ¢

A label must be displayed on any signal connected to the following destination
blocks (directly or by way of a basic block that performs a non transformative

operation):

Outport block

Goto block

Data Store Write block
Bus Creator block
Mux block

Subsystem block
Chart block

Note: Block icon exception (applicable only where called out above): If the signal
label is visible in the originating block icon display, the connected signal does not
need not to have the label displayed, unless the signal label is needed elsewhere
due to a destination-based rule.

Correct
- InPark w0
VailidStart
Crank
Incorrect
AND
M Readability M Verification and Validation
M Workflow M Code Generation

Rationale M Simulation

Last Change |V2.20

7.2.2. na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels
Priority strongly recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites |na_0008: Display of labels on signals

If a label is present on a signal, the following rules define whether that label shall be
created there (entered directly on the signal) or propagated from its true source
(inherited from elsewhere in the model by using the ‘<’ character).

1. Any displayed signal label must be entered for signals that:

a. Originate from an Inport at the Root (top) Level of a model

b. Originate from a basic block that performs a transformative
operation
(For the purpose of interpreting this rule only, the Bus Creator block,
Mux block, and Selector block shall be considered to be included
among the blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:

a. Originate from an Inport block in a nested subsystem
Exception: If the nested subsystem is a library subsystem, a label
may be entered on the signal coming from the Inport to
accommodate reuse of the library block.

b. Originate from a basic block that performs a non-transformative
operation

c. Originate from a Subsystem or Stateflow chart block

Description Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal
to accommodate reuse of the library block.

1 e | EngT.

/ TotalTg H
@ e | StartzrTg
NestedSubsystern
Ready [100% L/ |ode4s
D e
EngTqg
+ Teta TotalTg
StarterTg
Add
M Readability M Verification and Validation
. M Workflow M Code Generation
Rationale

M Simulation

Last Change |V2.00

7.2.3. db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Description |The labels must be visually associated with the corresponding signal and not

overlap other labels, signals, or blocks.
Labels should be located consistently below horizontal lines and close to the
corresponding source or destination block.

i Readability O Verification and Validation
Rationale O Workflow

: ; O Code Generation
O Simulation

Last Change |V2.00

7.2.4. db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals and block inputs / outputs
Priority Mandatory

Scope MAAB

MATLAB Al

Version

Prerequisites

A system must not have any:
e Unconnected subsystem or basic block input.
¢ Unconnected subsystem or basic block outputs
e Unconnected signal lines
In addition:
e An otherwise unconnected input should be connected to a ground block
¢ An otherwise unconnected output should be connected to a terminator

block
Correct
Description
RPM_2_RadPerSec
Terminator,
RPM_2_RadPerSec = Toom ceoooeooo- 5
M Readability M Verification and Validation
i M Workflow O Code Generation
Rationale

O Simulation

Last Change |V2.00

7.3. Block Usage

7.3.1. na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority mandatory

Scope MAAB
MAT'LAB All
Version

Prerequisites

A logical expression may be implemented within an If Condition block instead of
building it up with logical operation blocks, if the expression contains two or fewer
primary expressions. A primary expression is defined here to be one of the

following:
e Aninput
A constant

[]

e A constant parameter

e A parenthesized expression containing no operators except zero or one
instances of the following operators: <, <=,>,>=, ~= == ~ . (See for
the following examples.)

Exception:

A logical expression may contain more than two primary expressions if both of the
following are true:

e The primary expressions are all inputs

e Only one type of logical operator is present

Examples of Acceptable Exceptions:

e uljju2]ju3]|u4]| us
e Ul && u2 && u3 && u4

Description |[Examples of Primary Expressions:

ul
5
K
(ul1>0)
(ul<=G)
(ul>U2)
(~ul)
(EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions:

ul || u2

(ul >0) && (ul < 20)

(ul >0) && (U2 < u3l)

(ul > 0) && (~u2)

(EngineState.ENGINE_RUNNING) && (PRNDLState.PRNDL_PARK)
Note: In this example EngineState. ENGINE_RUNNING and
PRNDLState.PRNDL_PARK are enumeration literals

Examples of unacceptable logical expressions include:

e ul&&u2|lu3 (too many primary expressions)

Rationale

Last Change [V2.20

ul && (u2]| u3d) (unacceptable operator within primary
expression)

(ul>0) && (ul < 20) && (U2 >5) (too many primary expressions that
are not inputs)

(ul > 0) && ((2*u2) > 6) (unacceptable operator within primary
expression)

M Readability O Verification and Validation
M Workflow M Code Generation
[Simulation

7.3.2. na_0002: Appropriate implementation of fundamental logical and
numerical operations

na_0002: Appropriate implementation of fundamental logical and numerical

ID: Title X
operations

Priority mandatory

Scope MAAB

MAT.LAB All

Version

Prerequisites

Blocks that are intended to perform numerical operations must not be
used to perform logical operations.

Incorrect

Description

p]in outt |/

A logical output should never be directly connected to the input of blocks
that operate on numerical inputs.

The result of a logical expression fragment should never be operated on
by a numerical operator.

This guideline for logical operations also applies to enumerated data

types.

Incorrect

i

|

MDD [B2

Blocks that are intended to perform logical operations must not be used to
perform numerical operations.

A numerical output should never be connected to the input of blocks that
operate on logical inputs.

Incorrect

|4 MD | bocles

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V3.00

7.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers
Priority mandatory

Scope MAAB

MATLAB Al

Version

Prerequisites

Description

Control algorithm models must be designed from discrete blocks.
The MathWorks “Simulink Block Data Type Support” table provides
a list of blocks that support production code generation.

o Use blocks that are listed as “Code Generation Support”.

o Do not use blocks that are listed as “Not recommended for

production code” — see footnote 4 in the table.

In addition to the blocks defined by the above rule, do not use the
following blocks

Sources are not allowed:

Sine Wave

=5

Pulse Generator

Random Number

Uniform Random Number

Band-Limited White Noise

= HEE

Additional blocks that are not allowed:
The MAAB Style guide group recommends not using the following blocks. The
list can be extended by individual companies.

Slider Gain 11 p
Manual Switch ::"‘9—?*
. |l
Complex to Magnitude-Angle E i
Magnitude-Angle to Complex 7 I'gl ::: 3
E,e[uj 3
Complex to Real-Imag Tincu) b
E Ftn_L-L
Real-Imag to Complex Sim<" b
. Fiul
Polynomial oF) =5
1) Interpreted
MATLAB Fcn MATLAS Fon I
Goto Tag Visibility el
[
Probe -0, T:[0 0], C:0, DO
=

Notes (1) In R2011a, the MATLAB Fnc was renamed the Interpreted MATLAB

Function

M Readability M Verification and Validation

Rationale M Workflow M Code Generation
M Simulation

Last Change |V2.20

7.3.4. hd_0001: Prohibited Simulink sinks
ID: Title hd_0001: Prohibited Simulink sinks

Priority strongly recommended
Scope MAAB

MATLAB All

Version

Prerequisites
Control algorithm models must be designed from discrete blocks.
The following sinks blocks are not allowed:

To File
it To . .
Deseription 1\ orkspace)| untitlied mat)| simout
Stop -
Simulation ToFile To Workspace Stop Sirmulation
Simulink Scope and Display blocks are allowed in the model diagram. Consider
Note using the Simulink Signal logging and Signal and Scope Manager for data logging
and viewing requirements.
O Readability M Verification and Validation
Rationale O Workflow M Code Generation

M Simulation

Last Change |V2.20

7.3.5. na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

For signal flows, the following rules apply:

e From and Goto blocks must use local scope.
Note: Control flow signals may use global scope.
Control flow signals are output from:

¢ Function-call generators

e |f and Case blocks

Description

e Function call outputs from MATLAB and Stateflow blocks
Control flow signals are identified as dashed lines in the model after updating a
§imulink model.

E Sink Block Parameters: Goto 2
Goto
Send signals to From blocks that have the specified tag. If tag
visibility is 'scoped’, then a Goto Tag Visibility block must be used to
define the visibility of the tag. The block icon displays the selected tag

name (local tags are enclosed in brackets, [, and scoped tag names
are enclosed in braces, {}).

Farameters

Goto Tag: GotoScope Tag Visibility: |Icu:a| -

[GotoScope] — e e — o — - |
|
FromFunc()

@—I na_0011_input na_0011_output 4@

M Readability M Verification and Validation

Rationale M Workflow M Code Generation

M Simulation

Last Change |V2.20

7.3.6. jc_0141: Use of the Switch block
ID: Title jc_0141: Use of the Switch block

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

e The switch condition, input 2, must be a Boolean value.

e The block parameter “Criteria for passing first input” should be set to
Description u2~=0.

Correct

= Function Block Parameters: Switch x|

—Switzh

Pazs through input 1 when input 2 satisfies the selected criterion; othenwize, pazs
through input 3. The inputs are numbered top to bottarm [or left to night]. The input 1
pazz-thraugh criteria are input 2 areater than or equal, greater than, or not equal to
the threzhold. The first and third input ports are data portz, and the second input port
iz the control port.,

ki ain ISignaIData Typez

Criteria for pagzing first input: | uZ ~=10 lI
Threzhold: uzZ »= Threzhold
o

Incorrect

@ doubla double

Ini Ot

Switch
<Threshald=203

b ain | Signal Data Tupes |
Criteria for passingdist input: |uz >= Threshold)
T hreshald:
|20

M Readability M Verification and Validation

Rationale M Workflow M Code Generation

O Simulation

Last Change |V2.20

7.3.7.jc_0121: Use of the Sum block
ID: Title jc_0121: Use of the Sum block

Priority recommended
Scope MAAB
MAT-LAB All

Version

Prerequisites

Description |Sum blocks should:

Rationale

Use the “rectangular” shape.

Be sized so that the input signals do not overlap.

Correct

—

Incorrect

You may use the round shape in feedback loops.
e There should be no more then 3 inputs.
e The inputs may be positioned at 90,180,270 degrees.
e The output should be positioned at 0 degrees.

Correct

1

z
Linit Dealay

-
-

input K autmt

Gain

au

Correct

Incorrect

Incorrect

M Readability O Verification and Validation

O Workflow O Code Generation
O Simulation

Last Change |V2.00

7.3.8. jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block
Priority recommended

Scope J-MAAB

MATLAB Al

Version

Prerequisites

When the relational operator is used to compare a signal to a constant value, the
constant input should be the second (lower) input signal.

Correct Incorrect
o
Description AA - «
EE EE
BA
e o
M Readability [Verification and Validation
Rationale O Workflow [l Code Generation
O Simulation
Last Change |V2.00
7.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks
ID: Title jc_0161: Use of Data Store Read / Write / Memory blocks
Priority strongly recommended
Scope J-MAAB
MATLAB Al
Version
Prerequisites |jc_0341: Data flow layer
Data Store A p Data Store A Data Store -
Description Read Dat,;‘hf;m write Dat-ﬁ;m Memory Dewt-:rr?atrfrm
e Prohibited in a data flow layer.
e Allowed between subsystems running at different rates.
) e Readability [Verification and Validation
Rationale

M Workflow

Last Change

O Simulation O Code Generation

V2.00

7.4. Block Parameters

7.4.1. db_0112: Indexing

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See Also

Rationale

Last Change

db_0112: Indexing
strongly recommended
MAAB

All

Use a consistent vector indexing method for all blocks.

When possible, use zero-based indexing to improve code efficiency. However,
since MATLAB blocks do not support zero-based indexing, one-based indexing can
be used for models containing MATLAB blocks.

e cgsl_0101: Zero-based indexing
e hisl_0021: Consistent vector indexing

M Readability M Verification and Validation
0 Workflow M Code Generation
0 Simulation

V2.20

7.4.2. na_0010: Grouping data flows into signals

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

na_0010: Grouping data flows into signals
strongly recommended
MAAB

All

Vectors

The individual scalar signals composing a vector must have common functionality,
data types, dimensions and units. The most common example of a vector signal is
sensor or actuator data that is grouped into an array indexed by location. The
output of a Mux block must always be a vector. The inputs to a Mux block must
always be scalars.

Busses

Signals that do not meet criteria for us as a vector, as described above, must only
be grouped into bus signals. Use Bus selector blocks may only be used with a bus
signal input; they must not be used to extract scalar signals from vector signals.

Examples
Some examples of vector signals include:

Vector type Size

Row vector [1n]

Column vector [n1]

Wheel speed vector [1 Number of wheels]
Cylinder vector [1 Number of cylinders]

Position vector based on 2-D

coordinates [12]

Position vector based on 3-D

coordinates [13]

Some examples of bus signals include:

Bus Type Elements
Force Vector [FX, Fy, Fz]
Position

Sensor Bus Wheel Speed Vector [Oy, O O O]
Acceleration
Pressure
Sensor Bus
Controller Bus
Actuator Bus

Coolant Temperature
Serial Data Bus Engine Speed,
Passenger Door Open
M Readability [0 Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change (V2.00

7.4.3. db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

To insure that a parameter is tunable, it must be entered in a block dialog field:
e Without any expression.
Description e Without a data type conversion.
e Without selection of rows or columns.

Correct

| tunahle_parameter_value F | tunahle_parameter_vector |> | tunahble_parameter_array |>

Incorrect
| tunable_parameter_value*2 F| tunable_parameter_vectart3 |>| tunable_parameter_array*3 |>
|int16(tunable_parameter_value) F| tunahle_parameter_vector(d) |> | tunable_parameter_array(1,13 |>
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

M Simulation

Last Change |V2.20

7.5. Simulink Patterns

The following rules illustrate sample patterns used in Simulink diagrams. As such, they would
normally be part of a much larger Simulink diagram.

7.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem
Priority strongly recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites

The Switch block:
¢ Should be used for modeling simple if-then-else structures, if the

associated then and else actions involve only the assignment of constant

values.
double
IF_Walue =
boalean \ [double
IF_Condition ."—I
.. double
Description Elze_Value |— jml

The if-then-else action subsystem construct:
e Should be used for modeling if-then-else structures, if the associated

then and/or else actions require complicated computations. This will
maximize simulation efficiency and the efficiency of generated code (Note
that even a basic block, for example a table look-up, may require fairly
complicated computations.)

Rationale

Last Change

B if(u1)
e EPTTr—y
DynamicSlipFlag else
If +
fr
outt
TireSlipConst
b

#|WheelSpeed €lse {} "|Merge

»lc Outt » 9 TireSlip

#|EngSpeed

CalculateTireSlip

e Must be used for modeling if-then-else structures, if the purpose of the
construct is to avoid an undesirable numerical computation, such as
division by zero.

e Should be used for modeling if-then-else structures, if the explicit or
implied then or the else action is just to hold the associated output
value(s).

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code generation
engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-
else structures and case structure implementations.

M Readability M Verification and Validation
O Workflow M Code Generation
O Simulation

V2.00

7.5.2. db_0114: Simulink patterns for If-then-else-if constructs

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0114: Simulink patterns for If-then-else-if constructs
strongly recommended
MAAB

All

The following patterns should be used for If-then-else-if constructs within a
Simulink model:

Equivalent Functionality Simulink pattern

IF THEN ELSE IF with
blocks

if (If_Condition) {

output_signal = If Value; I _Gondior

else if (Else_If Condition) {
output_signal =

Else_If_Value;
} boolean

e|Se { Else_|f_Condition
output_signal =

Else Value;

}

IF THEN ELSE IF
with if/then/else
subsystems:
if(Fault_1_Active &
Fault_2_Active)

boolean g &2 S |
Fault_1_Aciive - |
—_ H elseif((ut)| (W2)) F-=-—-—-— 3 H
ErrMsg = SaftyCrit; bosiean B j
Faul_2_Active else [F¥h !
I
else if (Fault_1_Active | i [e
Fault_2_Active) | o nerget e
DriverWarn
ErrMsg = DriveWarn; NoFauts L
else

ErrMsg = NoFaults;
}

M Readability [0 Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change |V2.00

7.5.3. db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

The following patterns are used for case constructs within Simulink:

Description Equivalent Functionality Simulink Pattern

Case
With switch case block

switch (PRNDL_Enum)

{ Tl e m e
case 1l B e Ry | e -

TqEstimate = ParkV; S | |

break; ; =|J—|,‘ DDDDD T N -
case 2 '3 l—'m

TgEstimae = RevV; ol P by N

break; Wustal o
default

TqEstimate = NeutralV;

break;
}

M Readability O Verification and Validation
Rationale L Workflow O Code Generation

O Simulation

Last Change |V2.20

7.5.4. na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple
Switches

ID: Title na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches
Priority Recommended

Scope NA-MAAB

MATLAB All

Version

MA Check No

na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

Prerequisites

The use of switch constructs should be limited, typically to 3 levels. Replace switch
constructs that have more than 3 levels with an If-Then-Else action subsystem
Description |construct.

Incorrect

ﬁStandards_EHample,«"switch_EHample,."'Switches o ;lglﬂ
Eile Edit Wew Simulation Format Tools Help
DEE&E| +BB|=s 4 |=a|r = fioo [Nom JEeRed nEEE
i a
‘ﬁl F,
€ Valug_Al - L
a : T
ﬂ Switch
[e—
Add |,
Switch1
[0~
Praduct
-
Switch?
Value D1 Froduct?
Switch3
[
Value_D1 Productt _|
Bwnchd
Yalue_D3
Ready [117% lodeds 4
M Readability O Verification and Validation
Rationale 0 Workflow O Code Generation
O Simulation

See also |bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Last Change |V3.00

7.5.5. db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title |db_0116: Simulink patterns for logical constructs with logical blocks
Priority 'strongly recommended

|Scope |MAAB

MAT'LAB Al

Version

Prerequisites |

Use the following patterns for logical combinations within a Simulink model:
Description

Equivalent Functionality Simulink pattern

input_signall

[

AND

input_signalz

input_signal3

Combination of logical signals: input_signald

conjunctive . .
input_signala

input_signalg

AND

k4

b J

OR

input_signal?

input_signald

input_signall

I={ AMD

e OR

¥

input_signalz

input_signal3

Combination of logical signals: “Tnoutsignaid ™|

disjunctive . .
input_signala

input_signals

oR

¥

AMD

output_signal

oR

input_signal?

input_signald

¥

M Readability O Verification and Validation

Rationale O Workflow

X : O Code Generation
O Simulation

Last Change |V1.00

7.5.6. db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals
Priority strongly recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites

output_signal

Simulink is a vectorizeable modeling language allowing for the direct processing of
vector data. The following patterns are used for vector signals within Simulink

Description model:

Equivalent Functionality

Simulink Pattern

Vector loop:

for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) *
tunable_parameter_value;

}

Vector loop:

for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) *
tunable_parameter_vector(i);

}

Vector loop:

output_signal = 1;

for (i=0; i<input_vector_size; i++) {
output_signal = output_signal *
input_vector(i);

Vector loop:

output_signal = 1;

for (i=0; i<input_vector_size; i++) {
output_signal = output_signal /
input_vector(i);

Vector loop:

for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_value;

}

Vector loop:

for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_vector(i);

}

Vector loop:

output_signal = 0;

for (i=0; i<input_vector_size; i++) {
output_signal = output_signal +
input_vector(i);

Vector loop:

output_signal = 0;

for (i=0; i<input_vector_size; i++) {
output_signal = output_signal -
input_vector(i);

- tunable_parameter_value
input_vector output_vector

Gain

%

input_wector

tunable_parameter_vector
output_wector

Gain

I

Product

input_vector output_zignal

autput_signal

input_vectar TT
Product

input_vector

output_vectar
‘ tunahle_parameter_value

Constant

1
input_wectar

input_vector

‘tunable_parameter_vectnr

Constant

output_signal

Sum

2]

Sum

input_wvectar output_signal

?"
input_signal min - -
output_signal_min

Iufi v

1

S [
Minimum or maximum of a signal or a Unit_Delay
vector over time: —

—
input_vector max
> output_vector_max

Mirfila

1

-

[

Lnit_Delay

¥

input_signal

1 output_signal_change

H
Unit_Delay Relational
Operator

input_vector —

Change event of a signal or a vector: TR E e
Z

Unit_Delay Relational

Operator

input_vectar -
output_vector_change
z

Logical
Unit_Delay ~ Relational Uperator
Opetator

M Readability M Verification and Validation

Rationale Al M Code Generation
O Simulation

Last Change (V2.20

7.5.7. jc_0351: Methods of initialization
ID: Title jc_0351: Methods of initialization

Priority recommended
Scope MAAB
MAT.LAB All

Version

Prerequisites |db_0140: Display of block parameters
Simple initialization:
e Blocks such as the Unit Delay, which have an initial value field, can be
used to set simple initial values.

e To determine if the initial value needs to be displayed, see db_0140.

Description

Example

1
S E—

4

Initial Valus =1

Initialization that requires computation:
The following rules apply for complex initializations:
e |Initialization should be performed in a separate subsystem.

e |Initialization subsystem should have a name that indicates that
initialization is performed by the subsystem.

Complex initializations can either be done at a local level (Example A), at a global
level (Example B), or a combination of local and global.

Example A

e v
i

B an S

Initilize_Func_A

v ¥
¥

4

¥

Func_A_Running

Example B

Initialize EventB Taskdms
£ A £

Initialize_function TimingB_function Task4ms_function
Priority =1 Priority =2 Priority =3
Or

)
unc)

YYY
&

' v
o = 1|
M Readability [0 Verification and Validation
Rationale O Workflow M Code Generation

O Simulation

Last Change (V2.00

7.5.8. jc_0111: Direction of Subsystem
ID: Title jc_0111: Direction of Subsystem

Priority strongly recommended
Scope J-MAAB

MATLAB All

Version

Prerequisites
Subsystem must not be reversed.

Correct
(To——wm
I Bhatt 1)
——nz oot
Subsystem
Description
ni Dutl
Subsystemi

1
-
=

Linit Delay

Incorrect

M Readability
O Workflow
O Simulation

Rationale

Last Change |V2.00

o

Inl

n2

Subsystem

1

Z

[l—] Dot

Unit Celawy

i

O Verification and Validation

Subsysteml

O Code Generation

Chuti

8.Stateflow

8.1. Chart Appearance

8.1.1. db_0123: Stateflow port names
ID: Title db_0123: Stateflow port names

Priority strongly recommended
Scope MAAB

MAT_LAB Al

Version

Prerequisites

The name of a Stateflow input/output should be the same as the corresponding
Description |signal.
Exception: Reusable Stateflow blocks may have different port names.

M Readability O Verification and Validation

Rationale O Workflow M Code Generation
O Simulation

Last Change (V1.00

8.1.2. db_0129: Stateflow transition appearance
ID: Title db_0129: Stateflow transition appearance

Priority strongly recommended
Scope MAAB

MAT_LAB Al

Version

Prerequisites

Transitions in Stateflow:
e Do not cross each other, if possible.

e Are not drawn one upon the other.
Description e Do not cross any states, junctions or text fields.
e Allowed, if transitioning to an internal state.

Transition labels can be visually associated to the corresponding transition.
Correct

. [condition] O

[condition2]

@ ()

YV [condition]

() = [condition]
{ { [
action?; actiont; actiont:

v } v ¥ 1

(= @

¥ Dy L7

@

Correct

Transition crosses state boundary to connect to substate

InitState/

[InitComplete |

QuterState/

Incorrect

Transition crosses each other and transition crosses through state.

M Readability O Verification and Validation

Rationale L Workflow [0 Code Generation
O Simulation

Last Change |V2.20

8.1.3. db_0137: States in state machines
ID: Title db_0137: States in state machines

Priority mandatory

Scope MAAB
MAT'LAB All
Version

Prerequisites |db_0149: Flowchart patterns for condition actions

For all levels in a state machine, including the root level, for states with exclusive
decomposition, the following rules apply:

e At least two exclusive states must exist.
e A state cannot have only one substate.
Description e Theinitial state of every hierarchical level with exclusive states is clearly
defined by a default transition. In the case of multiple default transitions,
there must always be an unconditional default transition.

M Readability M Verification and Validation
Rationale M Workflow

' ; M Code Generation
O Simulation

Last Change |V3.00

8.1.4. db_0133: Use of patterns for Flowcharts
ID: Title db_0133: Use of patterns for Flowcharts

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

A Flowchart is built with the help of Flowchart patterns (for example, IF-THEN-
ELSE, FOR LOOP, and so on):

Description e The data flow is oriented from the top to the bottom.
e Patterns are connected with empty transitions.

M Readability O Verification and Validation
Rationale O Workflow

: ; O Code Generation
O Simulation

Last Change |V2.20

8.1.5. db_0132: Transitions in Flowcharts
ID: Title db_0132: Transitions in Flowcharts

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

Prerequisites

The following rules apply to transitions in Flowcharts:
e Conditions are drawn on the horizontal.

e Actions are drawn on the vertical.
e Loop constructs are intentional exceptions to this rule.
e Transitions have a condition, a condition action, or an empty transition.

Transition with condition:

condition
[] =0)

Transition with condition action:

{

action;

}

Empty transition:

@, ==

Description

Transition actions are not used in Flowcharts. Transition actions are only valid
when used in transitions between states in a state machine, otherwise they are not
activated because of the inherent dependency on a valid state to state transition to
activate them.

Transition action:

faction;

. =)

At every junction, except for the last junction of a flow diagram, exactly one
unconditional transition begins. Every decision point (junction) must have a default
path.

[condition]

{

action;

}

A transition may have a comment:

T comment *f

[* comment
[condition]

I comment *f

-

action,

I

M Readability O Verification and Validation
Rationale O Workflow O Code Generation

O Simulation

Last Change (V2.00

8.1.6. jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block
Priority recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

A new line should:
e Start after the entry (en) during (du), and exit (ex) statements.

“u.n

e Start after the completion of an assignment statement “;”.

Correct

ﬁState

en:
entry_value=1;
during value=0;
du:
entry_value=0;
during value=1;
ex

exit_value=1;
. p,

Description

Incorrect
Failed to start a new line after en, du and ex.

e ™y
State
enentry_value=1;
during value=0;
du:entry value=0;
during value=1;
ex:exit_value=2;

h

Incorrect
Failed to start a new line after the completion of an assignment
statemvent

State

en:entry_value=1;during value=0:;du:entry_value=0;
during value=1:exexit_value=2;

M Readability O Verification and Validation
Rationale O Workflow O Code Generation
O Simulation

Last Change |V2.00

8.1.7. jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function
Priority mandatory

Scope J-MAAB

MAT.LAB All

Version

Prerequisites
The return value from a graphical function must be set in only one place.

Correct
Return value A is set in one place
funiction A=F(B,C)

é [B==0] [C==0]
Description ? z;
{
: D=2; [D=3:
1 1

l
D=1
1

{
A=D
}

Incorrect
Return value A is s

et in multiple places.

funiction A=F(B,C)

M Readability
Rationale O Workflow

O Simulation

Last Change |V2.00

M Verification and Validation
M Code Generation

8.1.8. jc_0531: Placement of the default transition

ID: Title jc_0531: Placement

Priority recommended
Scope J-MAAB
MAT.LAB All

Version

Prerequisites

of the default transition

e Default transition is connected at the top of the state.

e The destinat
states in the

Correct

:

ion state of the default transition is put above the other
same hierarchy.

e The default transition is
connected at the top of
the state.

e The destination state of

State1
SubSt_off

Description

tirﬁer+=dT;

the default transition is
put above the other
states in the same
hierarchy.

Incorrect

e Default transition is
connected at the side of
the state (State 1).

e The destination state of

the default transition is
lower than the other
states in the same
hierarchy (SubSt_off).

State1

M Readability [0 Verification and Validation
Rationale OO Workflow [0 Code Generation
0 Simulation

Last Change (V2.00

8.1.9. jc_0521: Use of the return value from graphical functions

ID: Title jc_0521: Use of the return value from graphical functions
Priority recommended

Scope J-MAAB

MATLAB Al

Version

Prerequisites

The return value from a graphical function should not be used directly in a
comparison operation.

Correct
An intermediate variable is used in the conditional expression after the

assignment of the return value from the function "temp_test" to the intermediate
variable "a".

{ &= tamatest) | The data type of the variable in the

Description comparison operation is clear

LK
J'rE‘nierttp:l_ = temp_testl)

Incorrect
Return value of the function “temp test” is used in the conditional expression.

[temptestd ==1]

'E’e”n‘?ﬁ"&”: temp_test()

M Readability M Verification and Validation
Rationale O Workflow M Code Generation
O Simulation

Last Change |V2.00

8.2. Stateflow data and operations

8.2.1. na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators
Priority strongly recommended
Scope MAAB

Prerequisites

The bitwise Stateflow operators (&, |, and *) should not be used in Stateflow
charts unless you want bitwise operations.

o To enable bitwise operations:
Description 1. Select File > Chart Properties

2. Select “Enable C-bit Operations”.

Chart: C_Bit_0Operations

Mame: C Bit Operations
Machine: {machine) na 0001

State Machine Type: [Classir_ -

Update method: |Inherited | Sample Time:

Enable C-bit operations

IUser specified stateftransition execution order

[] Export Chart Level Graphical Functions {Make Global)
IUse Strong Data Typing with Simulink Ij0

[] Execute (enter) Chart At Initialization

[Initialize Outputs Every Time Chart Wakes Up

[] Enable Super Step Semantics

Support variable-size arrays

Debugger breakpoint: [On chart entry [Lodk Editor

Description:

Correct
Use “&&” and “II” for Boolean operation.

I Mame I Data Twpe
] a boolean
b boolean

 [(allb)g&c]

C boolean

- =

Use “&” and “I” for bit operation.

I Mame I Data Tvpe

[i+] d uints
d &F [1+] & uints
>_ f [(|E)] {>< [1+1] £ uiritd

Incorrect
Use “&” and “I” for Boolean operation.

| Mame I Data Twpe

boolean

e

a
[u} boalzan

Cry

1
&
1
1
&
i
1
&
T

e

boolean

Ty BT
[yl

e

- [(alb)&c] -

M Readability M Verification and Validation
O Workflow

_ M Code Generation
Rational O Simulation

Last Change |V2.20

8.2.2.jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

jc_0451: Use of unary minus on unsigned integers in Stateflow
recommended
MAAB

All

Do not perform unary minus on unsigned integers.

Correct
L

si 16_var1=-si16_varZ; [

3

I Mame I Data Tvpe I
] sivar? int16

Incorrect

L . . I Mame | Data Twpe |
ui16_varl=-uil6_var2; [juvaz s
i |

[0 Readability M Verification and Validation
0 Workflow M Code Generation
O Simulation

V2.00

8.2.3. na_0013: Comparison operation in Stateflow

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

na_0013: Comparison operation in Stateflow
recommended
MAAB

All

e Comparisons should be made only between variables of the same data type.
e If comparisons are made between variables of different data types, the
variables need to be explicitly type cast to matching data types.

Correct Incorrect

Same data type in “i” and “n Different data type in “i” and “d”

. [i<n] f . Li<d]

I Mame I Data Tvpe I I Mame I Data Type I
1] uiritd 4] i uiritd
] n uints [i‘:‘i] d i1 6

Correct

: [int16(i)<d] :

I Mame I Data Twpe I

i uintd

?] d int16

e Do not make comparisons between unsigned integers and negative numbers.
Incorrect

<=1
— <

I Mame I Data Twpe I

4] i uintd
[0 Readability M Verification and Validation
Rationale O Workflow M Code Generation

M Simulation

Last Change |V2.10

8.2.4. db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

All charts should use strong data typing with Simulink (The option "Use Strong

Description Data Typing with Simulink 1/0" must be selected).

Chart: Strong_Data_Type

Mame: Strong Data Type
Machine: {machine)db 0122

State Machine Type: |Classir_ -

Update method: |Inherited = | Sample Time:

| Enable C-bit operations

| User spedified stateftransition execution arder

[] Export Chart Level Graphical Functions {Make Global)

IUse Strong Data Typing with Simulink 10

Execute (enter) Chart At Initialization
[Initialize Outputs Every Time Chart Wakes Up
Enable Super Step Semantics

| Support variable-size arrays

Debugger breakpoint: On chart entry Lock Editor
Description:
O Readability M Verification and Validation
Rationale [Workflow M Code Generation

M Simulation

Last Change (V2.00

8.2.5. db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

Internal signals and local auxiliary variables are "Local data" in Stateflow:

e All local data of a Stateflow block must be defined on the chart level or
below the Object Hierarchy.
D _— No local variables exist on the machine level (that is, thereis no
escription
interaction between local data in different charts).

e Parameters and constants are allowed at the machine level.

Correct

4 |Exploring... model/chart state _ (O] x|
File Edt Tools Add Help

\Object Hierarchy |Contents of. (state) modelichart.state

L] model Name Scope Trigger Type Size Min Max Initval FWS Tows Watch
[i] data Local double 0

\ levents(0) data(1) targets(m 1 [[1:1]

Incorrect
|
Exploring... model _[O) x|
File Edt Tools Add Help
Object Hierarchy Contents of. (maching) madel
o Name Scope Trigger Type Size Min Max Inifval FWS ToWS Watch
- @ chat [] data Local double]
] state & <fun
K 1+
\ levents(0) data(1) targets(1) |2_ [1:2]
M Readability [0 Verification and Validation
Rationale L Workflow M Code Generation

O Simulation

Last Change |V2.00

8.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers in

Stateflow
Priority recommended
Scope MAAB
MATLAB Al
Version

Prerequisites

e Do not use hard equality comparisons (Varl == Var2) with two floating point
numbers.

e If a hard comparison is required, a margin of error should be defined and used
in the comparison (LIMIT in the example).

e Hard equality comparisons may be done between two integer data types.

Description Correct
I Mame I Data Type I
[i‘:‘i] di double
[H‘E] d2 double

{diff=(dl -d2 ;!

[(-LIMIT ¢= diff) && { diff <= LIMIT)]

Incorrect

O Readability M Verification and Validation

Rationale 0 Workflow M Code Generation

O Simulation

Last Change |V2.00

8.2.7. jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope
Priority recommended

Scope MAAB

MAT'LAB All

Version

Prerequisites

The same variable should not have multiple meanings (usages) within a single
Stateflow state.

— Correct Incorrect
Description Variable of loop counter must not be The meaning of the variable “”
used other than loop counter. changes from the index of the loop

counter to the sum of a+b

Correct

tempVar is defined as local scope in
both SubState_A and SubState B

/i: opState/ _\\
SubState A/

en:
tempWar = engSpd;
engSpd = FiltFunc{tempWar);

TRANS _CALC ENG_CALC

SubState B/

en:

tempVar = tranSpd;

tranSpd = FiltFunc(tempVar);

‘ Contentz of: jc_0431/Chartf] opState/SubState A J

| I Mame I Scopel F'orll Data Type Mode I Data Ty
iéi] tempifar Local Built-in int32

Contents of: jo_0491/ChartATopState/SubState By

| M ame | Scope | F'oltl Diata Tope Mndel Datal

[i%ﬂ tempt'ar Local Built-in int32

Rationale

M Readability
O Workflow
O Simulation

Last Change V2.20

M Verification and Validation
M Code Generation

8.2.8. jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow
Priority strongly recommended

Scope MAAB

MAT'LAB Al

Version

Prerequisites
Create tunable parameters in Stateflow charts in one of the following ways:
1.) Define the parameters in the Stateflow chart and corresponding
parameters in the base workspace
2.) Include the tunable parameters as an input into the Stateflow chart.
The parameters must be defined in the base workspace.

Base a [59] simulink Root —
@ ml"";‘” V:Dk Column View: |Data Objects | Show Details 2 obiectis
ase Orespace
workspace 2 =
L. 4 B jcosn Name Value DataType |
definitions i Model Workspace [#] inputBasedparam 5 ints
% Configuration {Active) [},ﬁ] chartBasedParam 12 intd
&h Code for je 0541
? Advice for jc_0541
Description % jeosa
S ﬂ] @ Simulink Root . A] -
tate ow Column View: | Stateflow ~ | Show Detsils 2ok
ﬁ Base Workspace
Chart 4 E je 0541 Name Scope - Port Re
definitions Qg Eﬂo?lWotr.ksD[ﬂ’::f] [i#] inputBasedParam Input 1
onfiguration (Active
9 [},%3] chartBasedParam Parameter

&b Code forjc0541
? Advice for jc_0541

By jcosn
Stateflow
chart
inputBasedParam inputBasedParam [E,%\
[0 Readability M Verification and Validation
Rationale O Workflow M Code Generation

O Simulation

Last Change |V2.20

8.2.9. db_0127: MATLAB commands in Stateflow
ID: Title db_0127: MATLAB commands in Stateflow

Priority mandatory
Scope MAAB
MAT.LAB All

Version

Prerequisites

In Stateflow charts:

Description e Do not use the .ml syntax

Individual companies should decide on the use of MATLAB functions. If
they are permitted, then MATLAB functions should only be accessed
through the MATLAB function block.

Correct

XYTrac/
du:
[xForce yForce] = calcWheel(WhellTgTot wheelAng);

el
[xF yF] = calcWhell(WheelTq,wheelAng)
Incorrect
XYTrac/
du:

xForce = WheelTgTot * ml.cos(wheelAng);
yForce = WheelTgTot * mlsin(wheelAng);

O Readability M Verification and Validation
Rationale 0 Workflow M Code Generation
M Simulation

Code generation supports a limited subset of the MATLAB functions. For a
complete list of the supported function, see the MathWorks documentation.

Last Change |V2.20

Note

8.2.10. jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow
Priority strongly recommended

Scope MAAB

MAT.LAB All

Version

Prerequisites
Description |In a Stateflow diagram, pointers to custom code variables are not allowed.

M Readability M Verification and Validation

Rationale 0 Workflow M Code Generation
O Simulation

Last Change |V1.00

8.3. Events

8.3.1. db_0126: Scope of events
ID: Title db_0126: Scope of events

Priority Mandatory
Scope MAAB
MATLAB Ipre R2009b
Version

Prerequisites

The following rules apply to events in Stateflow:
e All events of a Chart must be defined on the chart level or lower.

Description e There is no event on the machine level (that is, there is no interaction
with local events between different charts).

M Readability M Verification and Validation
Rationale M Workflow M Code Generation
M Simulation

Last Change (V2.20

8.3.2. jm_0012: Event broadcasts
ID: Title jm_0012: Event broadcasts

Priority strongly recommended
Scope MAAB

MAT_LAB Al

Version

Prerequisites |db_0126: Scope of events

The following rules apply to event broadcasts in Stateflow:
e Directed event broadcasts are the only type of event broadcasts allowed.
e The send syntax or qualified event names are used to direct the event to a
Description particular state.
e Multiple send statements should be used to direct an event to more than

one state.

Correct: Example using the send syntax:

L [PLA 1 [Input = 10]/ P_A_2/
¢ Parallel_2/ %
. (PB_1 | P_B_2 i

Rationale

M Readability M Verification and Validation
M Workflow M Code Generation

M Simulation

Last Change |V2.20

8.4. Statechart Patterns

8.4.1. db_0150: State machine patterns for conditions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

db_0150: State machine patterns for conditions

strongly recommended
MAAB

All

The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality

ONE CONDITION:
(condition)

UP TO THREE CONDITIONS,
SHORT FORM:

(The use of different logical
operators in this form is not
allowed, use sub conditions
instead)

(condition1 && condition2)
(conditionl || condition2)

TWO OR MORE
CONDITIONS, MULTILINE
FORM:

A sub condition is a set of
logical operations, all of the
same type, enclosed in
parentheses.

(The use of different operators
in this form is not allowed, use
sub conditions instead.)

(conditionl ...
&& condition2 ...
&& condition3)

(conditionl ...
|| condition2 ...
|| condition3)

L]

State Machine Pattern

[condition)

[condition && condition?]

L]

[condition? || condition?]

[conditiont .
&8 condition? ...

]

&& condition3]

[condition? ...
| conditionZ .

|| condition3]

M Readability O Verification and Validation

Rationale 0 Workflow O Code Generation

O Simulation

Last Change (V2.20

8.4.2. db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions
Priority strongly recommended

Scope MAAB

MATLAB Al

Version

Prerequisites

The following patterns are used for transition actions within Stateflow state
machines:

Equivalent
Functionality

ONE TRANSITION

ACTION: A jaction;

action;

State Machine Pattern

TWO OR MORE
Description TRANSITION
ACTIONS,
MULTILINE FORM: : .
(Two or more IEICT[IOH'I.,
transition actions in action?;

one line are not A action?:
allowed.)

actionl;
action2;
actiong3;
M Readability M Verification and Validation
Rationale M Workflow M Code Generation

M Simulation

Last Change |V2.20

8.5. Flowchart Patterns

The following rules illustrate sample patterns used in flow charts. As such they would normally be
part of a much larger Stateflow diagram.

8.5.1. db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions
Priority strongly recommended

Scope

MATLAB
Version

Prerequisites

Description

MAAB

All

The following patterns are used for conditions within Stateflow Flowcharts:

Equivalent
Functionality

ONE CONDITION:

[condition]

UP TO THREE
CONDITIONS,
SHORT FORM:
(The use of different
logical operators in
this form is not
allowed. Use sub
conditions instead.)

[conditionl &&
condition2 &&
condition3]
[conditionl ||
condition2 ||
condition3]

TWO OR MORE
CONDITIONS,
MULTILINE FORM:
(The use of different
logical operators in
this form is not
allowed. Use sub
conditions instead.)

[conditionl ...
&& condition2 ...
&& condition3]
[conditionl ...

|| condition2 ...

|| condition3]

Flowchart Pattern

[condition]

™ comment *f
[condition]

[condition1 && condition2 && condition3]

O

[condition1 || condition2 || condition3]

=)

O

[condition? ..
&& condition2
&8 condition3]

[conditionT ..
| condition2 .
|| condition3]

=)

CONDITIONS WITH

SUBCONDITIONS:

(The use of different

logical operators to

connect sub

conditions is not [(conditionta || condiionThb) ..
allowed. The use of && (conditionZa || condition2b) ..

brackets is &8 condition3]

mandatory.) O [::’O

ditionl
oty .| [(condition1a & condition1b) .

&& (condition2a || | fconditionZa && condition2b) ..

condition2b) ... | condition3]

&& (condition3)] & =
[(conditionla &&

conditionlb) ...
|| (condition2a &&
condition2b) ...
|| (condition3)]

CONDITIONS THAT
ARE VISUALLY
SEPARATED:

(This form can be

[condition [condition?]

combined with the
preceding patterns.)

] ?
[conditionT]

[conditiond] E

M Readability O Verification and Validation
Rationale O Workflow

[conditionl &&
condition2]
[conditionl ||
condition2]

O Code Generation
O Simulation

Last Change |V2.20

8.5.2. db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions
Priority strongly recommended

Scope MAAB

MATLAB All

Version

Prerequisites

The following patterns are used for condition actions within Stateflow Flowcharts:

Description Equivalent Functionality Flowchart Pattern

Rationale

ONE CONDITION ACTION:
action;

TWO OR MORE CONDITION
ACTIONS, MULTILINE FORM:
(Two or more condition actions in
one line are not allowed.)
actionl; ...

action2; ...

action3; ...

CONDITION ACTIONS, WHICH
ARE VISUALLY SEPARATED:
(This form can be combined with

O

&

[* comment *f
action; { .
1 action:

}

{

actiont;
actionZ;
action3;

h

{

actiona;
action1b;

h

the preceding patterns.) gction?
actionla; 1 '
actionlb;
action2; ég
action3; {
action?;
g) I
M Readability O Verification and Validation
O Workflow

O Simulation

Last Change (V2.20

O Code Generation

8.5.3. db_0134: Flowchart patterns for If constructs

ID: Title
Priority
Scope

MATLAB
Version

db_0134: Flowchart patterns for If constructs

strongly recommended
MAAB

All

Prerequisites |db_0148: Flowchart patterns for conditions

Description

db_0149: Flowchart patterns for condition actions

The following patterns are used for If constructs within Stateflow Flowcharts:

Equivalent
Functionality

IF THEN
if (condition){
action;

}

IF THEN ELSE
if (condition) {
actionl;
}
else {
action2;

}

IF THEN ELSE IF
if (conditionl) {
actionl;

else if (condition2) {
action2;

else if (condition3) {
action3;

}

else {
action4;

}

Flowchart Pattern

[condition]

{

action;

}

[condition]

actionz;

}

gctiont;

¥

[condition 1] 5"’"0

[condition2]

{
[zondition2] icti-:-ni; actioni;
{ 1 }

actiond;

i

actiond;

h

Cascade of IF THEN
if (conditionl) {
actionl;
if (condition2) {
action2;
if (condition3) {
action3;
}
}
}

M Readability
M Workflow

M Simulation

Last Change |V1.00

Rationale

[condition1]

{

action;
}

[conditionZ]

o=

1

action?;

}

[condition3]

{

actiond;

}

o=

M Verification and Validation

M Code Generation

8.5.4. db_0159: Flowchart patterns for case constructs

ID: Title

Priority strongly recommended
Scope MAAB

MAT.LAB All

Version

db_0159: Flowchart patterns for case constructs

db 0148: Flowchart patterns for conditions

Prerequisites

db 0149: Flowchart patterns for condition actions

The following patterns must be used for case constructs within Stateflow

Description Flowcharts:

Equivalent Functionality

Flowchart Pattern

O

selection= .
CASE with exclusive
selection [selection == 1]
selection = ...; r
switch (selection) { fCt'Om-
case 1:
actionl; [selection == 2]
break;
case 2: action?;
action2; ¥
break; [selection == 3]
case 3: (
action3; action3;
break; . I
defau.lt: actiond;
action4; }
| ?
Q i
c1 = condition1;
2= cond@t@onQ;
CASE with exclusive]‘?3 = condition3;
conditions
c1 = condition1: él [c1 && 1c2 && 1c3)
c2 = condition; ;ction'l'
¢3 = conditiong3; | :
if (c1 && 'c2 && !c3) {
actionl; [lc1 && ¢2 && 1c3]
} {
else if (Icl && c2 && '¢3) { actionZ,

action2; !

[lol && 162 && c3]

}
else if (Icl && !c2 && ¢3) { (

action3; action3;
} ‘ !
else { actiond,
action4; 1
}
M Readability 0 Verification and Validation
Rationale 0 Workflow OO0 Code Generation

O Simulation

Last Change |V1.00

8.5.5. db_0135: Flowchart patterns for loop constructs

ID: Title
Priority
Scope
MATLAB
Version

Prerequisites

Description

db_0135: Flowchart patterns for loop constructs

recommended
MAAB

All

db 0148: Flowchart patterns for conditions

db 0149: Flowchart patterns for condition actions

The following patterns must be used to create Loops within Stateflow Flowcharts:
Flowchart Pattern

Equivalent Functionality

FOR LOOP
for
(index=0;index<number_of_loops;index++)
t

action;

}

WHILE LOOP
while (condition) {
action;

}

O [index < number_of_loops]

{

indexc++,

&
O

[condition]

{

action,

}

{

action;

}

DO WHILE LOOP

do { {
action; action;
}
while (condition);
[conditian]
M Readability [0 Verification and Validation
Rationale L Workflow OO0 Code Generation

O Simulation

Last Change (V1.00

8.6. State chart architecture

8.6.1. na_0038: Levels in Stateflow charts

ID: Title na_0038: Levels in Stateflow charts
Priority Recommended

Scope NA-MAAB

MATLAB All

Version

Prerequisite

The number of nested States should be limited, typically 3 per level. If
Description additional levels are required, use sub-charts.
Incorrect: Level_4 a and Level_4 b are nested more then 3 deep.

@veljf \
ﬂevelj_af \
Hfl_eve_S_au' N ffl_eve_S_b;' h
Level 4 al Level 4 b/
\ AN 2

Correct: The 4 levels are encapsulated inside an sub chart

l
(i ™

ﬁeva_;}_bf \
Y
Level 3 b a Level_3 b_b
> =
M Readability O Verification and Validation
Rationale O Workflow O Code Generation

O Simulation

Last Change |V3.00

8.6.2. na_0039: Use of Simulink in Stateflow charts

ID: Title na_0039: Use of Simulink in Stateflow charts
Priority Recommended

Scope NA-MAAB

MATLAB

. 2010B and Later
Version

Prerequisite

Do not nest Stateflow charts inside Simulink functions included in Stateflow

Description charts.
Incorrect

Rationale

Last Change

4 Ty pootChart
4 EI simulinkFunctionInside5stateflow
| ChartInsideSimulinkFen

M Readability M Verification and Validation
O Workflow M Code Generation
O Simulation

Vv3.00

8.6.3. na_0040: Number of states per container

ID: Title
Priority
Scope

MATLAB
Version

Prerequisite

Description

Note

Rationale

Last Change

na_0040: Number of states per container
Recommended
NA-MAAB

All

The number of viewable States per container should be limited, typically to 6 to
10 states per container. The number is based on the visible states in the
diagram.

Correct

@eh’

\

Seven/

=/

A container is either a State, Box or root level chart.

M Readability M Verification and Validation
O Workflow M Code Generation
O Simulation

V3.00

8.6.4. na_0041: Selection of function type

ID: Title

na_0041: Selection of function type

Priority Recommended

Scope NA-MAAB
MAT'LAB All
Version

Prerequisite

Stateflow supports three types of functions: Graphical, MATLAB and Simulink.
The appropriate function depends on the type of operations required:

e Simulink
e Transfer functions
e |ntegrators
e Table look-ups
e MATLAB
e Complex equations

Description

e If / then /else logic
e Graphical functions
e If /then / else logic

[0 Readability O Verification and Validation
Rationale M Workflow M Code Generation
O Simulation

Last Change V3.00

8.6.5. na_0042: Location of Simulink functions

ID: Title na_0042: Location of Simulink functions
Priority Recommended

Scope NA-MAAB

MAT_LAB All

Version

Prerequisite \na_0039: Use of Simulink in Stateflow charts

When deciding whether to embed Simulink functions inside a Stateflow chart,
the following conditions make embedding the preferred option. If the Simulink
functions:

e Useonly local Chart data

or
Description e Use a mixture of local Chart data and inputs from Simulink
or
e Are called from multiple locations within the chart
or
e Are not called every time step
) M Readability O Verification and Validation
Rationale

M Workflow

O Simulation O Code Generation

Last Change |V3.00

9.Enumerated Data

9.1.1. na_0033: Enumerated Types Usage

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

See also
Last Change

na_0033: Enumerated Types Usage
Recommended
NA-MAAB

R2010b and later

na _0002: Appropriate implementation of fundamental logical and numerical
operations

An enumerated data type should be used when a signal or parameter can take
on a finite set of integer values, and those values are associated with a set of
named items. The names, called literals, have meaning in the context of the
algorithm or the domain in which it operates. Typically, these literals represent
an operating mode, signal status, build variation, or some other discrete property
that the quantity represented by the variable can take on. A typical automotive
example of this is the modes of a transmission: Park, Reverse Neutral, Drive,
Low

Within a project, there must be provisions in the code build process to ensure
that the same literal is not defined by multiple enumerated data types.

M Readability M Verification and Validation
M Workflow M Code Generation
M Simulation

dm_0002: Enumerated type usage

V3.00

9.1.2. na_0031: Definition of default enumerated value

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Rationale

Last Change

na_0031: Definition of default enumerated value
Recommended
NA-MAAB

R2010b and later

The default value of the enumeration should always be explicitly defined for the
enumerated type.

M Readability M Verification and Validation
O Workflow M Code Generation
O Simulation

V3.00

10.MATLAB Functions

10.1. MATLAB Function Appearance

10.1.1. na_0018: Number of nested if/else and case statement

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites
Description

See also

Rationale

Last Change

na_0018: Number of nested if/else and case statement
Strongly Recommended
NA-MAAB

All

The number of levels of nested if /else and case statements should be limited,
typically to 3 levels.

jr_0002: Number of nested if/else and case statement blocks

M Readability [0 Verification and Validation
O Workflow M Code Generation
O Simulation

V3.00

10.1.2. na_0019: Restricted Variable Names

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Note

See also

Rationale

Last Change

na_0019: Restricted Variable Names
Mandatory
NA-MAAB

All

To improve the readability of the MATLAB code, avoid using reserved C variable
names. For example, avoid using const, TRUE, FALSE, infinity, nil, double, single,
or enum in MATLAB Function code. These names may conflict with the compiler
after C code is generated from the MATLAB code.

Avoid using variable names that conflict with MATLAB Functions, for example
"conv".

Reserved key words are defined in Simulink Coder > User’s Guide > Code
Generation> Configuration > Code Appearance.

Derived from jh_0021: Restricted Variable Names

M Readability M Verification and Validation
O Workflow O Code Generation
O Simulation

V3.00

10.1.3. na_0025: MATLAB Function Header

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See also

Rationale

Last Change

na_0025: MATLAB Function Header
Strongly Recommended
NA-MAAB

All

MATLAB Functions must have a descriptive header. Header content may include,
but is not limited to, the following types of information:

e Function name
e Description of function
e Assumptions and Limitations
e Description of changes from previous versions
e Lists of inputs and outputs
Example:
%% Function Name: NA 0025 Example Header
%
% Description: An example of a header file
%
% Assumptions: Hone
%
% Imputs:
% List of input arguments
%
% Omtputs
% Li=at of output arguments
%
% FRevision: 32.0%
% Fhuthor: MARBS
% ZDhate: July 24,2012%
%
% __
jh_0073: eML Header version
M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation
V3.00

10.2. MATLAB Function Data and Operations

10.2.1. na_0034: MATLAB Function block input/output settings

ID: Title

na_0034: MATLAB Function block input/output settings

Priority Strongly recommended

Scope NA-MAAB
MAT'LAB All
Version

Prerequisites

All inputs and outputs to MATLAB Function blocks should have the data type
explicitly defined, either in the Model Explorer or at the start of the function. This
provides a more rigorous data type check for MATLAB Function blocks and
prevents the need for using assert statements.

Description

See also jh_0063: eML block input / output settings

M Readability M Verification and Validation
Rationale M Workflow M Code Generation

[Simulation

Last Change (V3.00

10.2.2. na_0024: Global Variables

ID: Title na_0024: Global Variables
Priority Strongly recommended
Scope NA-MAAB

MATLAB All

Version

Prerequisites

The preferred method for accessing common data is with signal lines. However, if
required, Data Store Memory can be used to emulate global memory.

Example:
In this example, the same Data Store Memory (ErrorFlag_DataStore) is written to
two separate MATLAB Functions.

function EngineFaultEvaluation (EngineData)

tFcodegen
global ErrorFlag DataStore
Description if (EngineData.REM HIGH)
ErrorFlag DataStore = bitor (ErrorFlag DataStore, HIGHRPMFAULT) ;
end

if (EngineData.RPM LOW)
ErrorFlag DataStore = bitor(ErrorFlag DataStore, LOWRPHFAULT) ;

end

end

function WheelFaultEvaluation (WheelData)
%¥¥codegen

global ErrorFlag DataStore

end

if (WheelData.S5lipHigh)

ErrorFlag DataStore

bitor(ErrorFlag DataStcors, LOWRPMFAULT) ;
end

end

See also ek _0003: Global Variables

M Readability M Verification and Validation

Rationale 0 Workflow M Code Generation

M Simulation

Last Change (V3.00

10.3. MATLAB Function Patterns

10.3.1. na_0022: Recommended patterns for Switch / Case statements

ID: Title na_0022: Recommended patterns for Switch / Case statements
Priority Mandatory

Scope NA-MAAB

MAT.LAB All

Version

Prerequisites

Switch / Case statements must use constant values for the “Case” arguments.
Input variables cannot be used in the “Case” arguments

Correct
function outVar = N 0022 Pass=(SwitchVar)
f(¥codegen B B
switch SwitchVar
case Case_ 1 Parameter % Parameter
outWVar = 0;
case NA 0022.Case 2 % Enumerated Data type

Description
outWVar = 1;

case 3 % Hard Code Value

outVar = 2;
otherwise
outVar = 10;

end
end

Incorrect

See also

Rationale

Last Change

function outWVar = NA 0022 Fail (Case 1,Case 2,Case 3,5witchVar)
*¥codegen h h h h h
switch SwitchVar
case Case 1
outVar = 1;
case Case 2
outWVar = 2;
case Case 3
outVar = 3;
otherwise
outVar = 10;
end
end

jh_0026: Switch / Case statement

O Readability M Verification and Validation
O Workflow M Code Generation
M Simulation

V3.00

10.4. MATLAB Function Usage

10.4.1. na_0016: Source lines of MATLAB Functions

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

See also

Rationale

Last Change

na_0016: Source lines of MATLAB Functions
Mandatory
NA-MAAB

All

The length of MATLAB functions should be limited, with a recommended limit of 60
lines of code. This restriction applies to MATLAB Functions that reside in the
Simulink block diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the
length of sub-functions to 60 lines of code.

IM_0008: Source lines of eML

M Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V3.00

10.4.2. na_0017: Number of called function levels

ID: Title

na_0017: Number of called function levels

Priority
Scope

MATLAB
Version

Prerequisites

Description

Note

See also

Rationale

Last Change

Mandatory
NA-MAAB

All

The number of levels of sub-functions should be limited, typically to 3 levels.
MATLAB function blocks that resides at the Simulink block diagram level counts as
the first level, unless it is simply a wrapper for an external MATLAB file with a .m
extension.

This includes functions that are defined within the MATLAB block and those in
separate .m files.

Standard utility functions, such as built in functions like sqrt or log, are not included
in the number of levels. Likewise, commonly used custom utility functions can be
excluded from the number of levels.

im_0009: Number of called function levels

M Readability M Verification and Validation
O Workflow [1 Code Generation
O Simulation

V3.00

10.4.3. na_0021: Strings

ID: Title
Priority
Scope

MATLAB
Version

Prerequisites

Description

Note

See also

Rationale

Last Change

na_0021: Strings
Strongly recommended
NA-MAAB

All

The use of strings is not recommended. MATLAB Functions store strings as
character arrays. The arrays cannot be resized to accommodate a string value of
different length, due to lack of dynamic memory allocation. Stings are not a
supported data type in Simulink, so MATLAB Function blocks cannot pass the
string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = X_rate_error’; %this causes an error because the array size is now 1 x 12,
not1x 10

If the string is being used for switch / case behavior, consider using enumerated
data types.

jh_0024: Strings

O Readability M Verification and Validation
M Workflow M Code Generation
O Simulation

V3.00

11.Appendix A: Recommendations for Automation Tools

These recommendations are for companies that automate checking of the Style Guidelines. The
MathWorks Automotive Advisory Board (MAAB) developed these recommendations for tool
vendors who create tools developed with MathWorks tools that check models against these
guidelines. In order to provide the maximum information to potential users of the tools, the MAAB
strongly recommends that tool vendors provide a compliance matrix that is easily accessible
when the tool is running. This information should be available without a need to purchase the tool.

The compliance matrix should include the following information:
[0 Version of the guidelines that are checked — shall include the complete title as found on

the title page of this document.

e The MAAB Style Guidelines Title and Version document number will be included
[0 Table consisting of the following information for each guideline.

Guideline ID
Guideline Title
Level of Compliance
Detall

The Guideline ID and Title shall be exactly as included in this document. The Level of
Compliance shall be one of the following.

[0 Correction — The tool checks and automatically or semi-automatically corrects the non-
compliance.

[0 Check —The tool checks and flags non-compliances. It is the developer’s responsibility to
make the correction.

O Partial — The tool checks part of the guideline. The detail section should clearly identify
what is and what is not checked.

[0 None —the guideline is not checked by the tool. It is highly recommended that the
vendor provide a recommendation of how to manually check any guideline not checked
by the tool.

12.Appendix B: Guideline Writing

Guidelines with the following characteristics are easier to understand and use. At minimum,
when writing a new guideline, it should be:
[0 Understandable and unambiguous

[0 Easy to find
O Minimal

Guidelines with these characteristics are easier to understand and use.

"Understandable and unambiguous Guideline description should be precise, clearly worded,
concise and should define property characteristic of a model (or part of a model). Use the words
"must," "shall," "should," and "may" carefully; they have distinct meanings that are important for
model developers and model checkers (human and automated). It is helpful to the reader if the
guideline author describes how the conformant state can be reached (e.g. by selecting particular
options or clicking a certain button). Examples, counterexamples, pictures, diagrams, and
screenshots are also helpful and therefore encouraged.

Minimize the allowable exceptions to a guideline; they blur the guideline and make it harder to
apply. If a guideline has many allowable exceptions, you may be trying to cover too many
characteristics with one guideline - see "minimal" below for some solutions.

By "Easy to find Guideline should have a clear, stable title and be properly located among all the
other guidelines. A guideline's title should describe the topic covered but not the specific
evaluation criteria. This makes the title less likely to change over time and therefore easier to find.
Specific evaluation criteria should be included in the guideline's description. For example, if a
guideline addresses the characters allowed in names, the guideline's title should be something
like "Allowed characters in names," and the guideline's description should indicate specifically
what characters are or are not to be used. If a guideline has prerequisites, they should appear
above or before the dependent guideline. (This may not always be possible if the prerequisite is
in a different section.)

Minimal Guideline should address only one model characteristic at a time. Guidelines should be
atomic. So, for example, instead of writing a big guideline that addresses error prevention and
readability at the same time, make two guidelines — one that addresses error prevention and one
that addresses readability. Make one a prerequisite of the other if appropriate. Also, big
guidelines are more likely than small guidelines to require compromises for wide acceptance. Big
guidelines may therefore end up being weaker, less specific, and less beneficial. Small, focused
guidelines will be less likely to change due to compromise and easier to adopt.

13.Appendix C: Flowchart Reference

The following patterns are used for If-then-else-if constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern
IF THEN
SZ\ [condition]
L
{ . condmon
action;
} acnon
IF THEN ELSE
él\ [condition]
oy
[{ condmon
action?; action?;
1 1 acnon1

IF THEN ELSE IF

[condition 1]
[condition]
[condition3] i-::tic-ni; action;
{ i

{
actiond;

H

action;
H

Cascade of IF THEN

?ig [condition]

actiont;

[condition2]

action?;

¥

[condition3]
1

}

action3;

[condition]

{

action”;

[condition2]

[condition3]

{

action?;

[condition]

{

action?;

}

[conditionZ]

{

action;

i

[condition3]

{

action3;

¥

The following patterns are used the following patterns for case constructs within Stateflow

Flowcharts:
Straight Line Flow Chart Pattern

CASE with exclusive selection

Curved Line Flow Chart Pattern

selection= ..,

selection = ..

¥

[selection == 1]

=)
[selection == 2]
[selection == 3] [selection==4] |[selection == 2] [selection ==1]
{ { {
{ { { action?; actionZ; action;
actiond: action3, | actionZ, action; } } 1
¥ } ¥ }

&

CASE with exclusive conditions

¢l =conditiont;
£Z = condition?;
c3 = condition3;

}
o1 && 102 8& 1¢3]

20

[lcT && c2 && Ic3]

llc && 1c2 && c3]

{

actiond | action2 | actiont;

} } %

actiond:

}

1= condition?;
2 = condition?,;
c3 = condition3;

o1 && Ic2 && Ic3]

action?,

}

Use the following patterns for For Loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern
FOR LOOP

Q [indesx = number_of_loops]

{

index++;

g) }

Curved Line Flow Chart Pattern

{

index =0
1

[Index < number_of loops)
{

action:

Index++

}

WHILE LOOP

O

[condition]

[condition]
i [
action; _
} action,

}

&

DO WHILE LOOP

{

action;

}

[condition]

&

Alternately, use the following patterns for If-then-else-if constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

IF THEN ELSE IF

[condition 1]

[condition2]

[condition] ic’tinni; action;
{ ' I

actiond;

i

Cascade of IF THEN

[condition]

actiont;

[condition2]

{

action?;

¥

[conditiond]

action3;

[condition1] !>Q

[condition2]

[condition3]

{)
ctiond; action3; | action2; actiont;
y! '
[condition1]
action1;
}
[condition2]
action2;
}
[condition3]
action3;
}

14.0bsolete rules

14.1. Removed in version 2.2

JM_0013 : Annotations : The rule was original written due to a printing bug in R13. The bug was
fixed in R14 SP1.

14.2. Removed in version 3.0

No guidelines were removed in version 3.0

15.Glossary

Actions

Actions are part of Stateflow diagram execution. The action can be executed as part of a
transition from one state to another, or depend on the activity status of a state. Transitions can
have condition actions and transition actions. For example,

Condition Transition
action action

Power_on switch_off [¢1] { elec_off}/ light_off;

Fower_off

States can have entry, during, exit, and, on event_name actions. For example,

Fower_onf
entryaction?g;

during: actionz2;
exitaction3;

an switch_offactiond {;

If you enter the name and backslash followed directly by an action or actions (without the entry
keyword), the action(s) are interpreted as entry action(s). This shorthand is useful if you are only
specifying entry actions.

The action language defines the categories of actions you can specify and their associated
notations. An action can be a function call, an event to be broadcast, a variable to be assigned a
value, etc.

Action Language

Sometimes you want actions to take place as part of Stateflow diagram execution. The action can
be executed as part of a transition from one state to another, or it can depend on the activity
status of a state. Transitions can have condition actions and transition actions. States can have
entry, during, exit, and, on event_name actions.

An action can be a function call, an event to be broadcast, a variable to be assigned a value, etc.
The action language defines the categories of actions you can specify and their associated
notations. Violations of the action language notation are flagged as errors by the parser. This
section describes the action language notation rules.

Chart Instance

A chart instance is a link from a Stateflow model to a chart stored in a Simulink library. A chart in
a library can have many chart instances. Updating the chart in the library automatically updates
all the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur given that the specified
expression is true. For example,

neutral

clutch_engaged

engaged @ ‘

[speed = threshold] [speed>threshold]is a
[fﬁifﬁ:J—"_‘_““ix% condition
third

The action language defines the notation to define conditions associated with transitions.

Connective Junction

Connective junctions are decision points in the system. A connective junction is a graphical object
that simplifies Stateflow diagram representations and facilitates generation of efficient code.
Connective junctions provide alternative ways to represent desired system behavior.

This example shows how connective junctions (displayed as small circles) are used to represent
the flow of an if code structure.

.Q - if [c1a]1{

it [c2]{
az
}else if [e3]{
a3
}
[c2]{a2} }
[c3]{a3}

Or the equivalent squared style

[c1] if [c1]{
Q at
{al} if [c2]{
[C2] 32
}else if [c3]{
{82} a3
b
}
[c3]
{a3}
Name Button Description
Icon
Connective @t One use of a Connective junction is to handle situations where
junction I transitions out of one state into two or more states are taken based on

the same event but guarded by different conditions.

Data
Data objects store numerical values for reference in the Stateflow diagram.

Defining Data

A state machine can store and retrieve data that resides internally in its own workspace. It can
also access data that resides externally in the Simulink model or application that embeds the
state machine. When creating a Stateflow model, you must define any internal or external data
referenced by the state machine's actions

Data Dictionary

The data dictionary is a database where Stateflow diagram information is stored. When you
create Stateflow diagram objects, the information about those objects is stored in the data
dictionary once you save the Stateflow diagram.

Decomposition

A state has decomposition when it consists of one or more substates. A Stateflow diagram that
contains at least one state also has decomposition. Representing hierarchy necessitates some
rules around how states can be grouped in the hierarchy. A superstate has either parallel (AND)
or exclusive (OR) decomposition. All substates at a particular level in the hierarchy must be of the
same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state decomposition is indicated when
states have dashed borders. This representation is appropriate if all states at that same level in
the hierarchy are active at the same time. The activity within parallel states is essentially
independent.

Exclusive (OR) State Decomposition. Exclusive (OR) state decomposition is represented by
states with solid borders. Exclusive (OR) decomposition is used to describe system modes that
are mutually exclusive. Only one state, at the same level in the hierarchy, can be active at a time.

Default Transition

Default transitions are primarily used to specify which exclusive (OR) state is to be entered when
there is ambiguity among two or more neighboring exclusive (OR) states. For example, default
transitions specify which substate of a superstate with exclusive (OR) decomposition the system
enters by default in the absence of any other information. Default transitions are also used to
specify that a junction should be entered by default. A default transition is represented by
selecting the default transition object from the toolbar and then dropping it to attach to a
destination object. The default transition object is a transition with a destination but no source
object.

Name Button Description

Icon
Default '[3,__] Use a Default transition to indicate, when entering this level in the
transition hierarchy, which state becomes active by default.

Events

Events drive the Stateflow diagram execution. All events that affect the Stateflow diagram must
be defined. The occurrence of an event causes the status of the states in the Stateflow diagram
to be evaluated. The broadcast of an event can trigger a transition to occur and/or can trigger an
action to be executed. Events are broadcast in a top-down manner starting from the event's
parent in the hierarchy.

Finite State Machine

A finite state machine (FSM) is a representation of an event-driven system. FSMs are also used
to describe reactive systems. In an event-driven or reactive system, the system transitions from
one mode or state, to another prescribed mode or state, provided that the condition defining the
change is true.

Flow Graph
A flow graph is the set of Flowcharts that start from a transition segment that, in turn, starts from a
state or a default transition segment.

Flowchart (also known as Flow Path)
A Flowchart is an ordered sequence of transition segments and junctions where each succeeding
segment starts on the junction that terminated the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same transition segment.

Hierarchy

Hierarchy enables you to organize complex systems by placing states within other higher-level
states. A hierarchical design usually reduces the number of transitions and produces neat, more
manageable diagrams.

History Junction

A History Junction provides the means to specify the destination substate of a transition based on
historical information. If a superstate has a History Junction, the transition to the destination
substate is defined to be the substate that was most recently visited. The History Junction applies
to the level of the hierarchy in which it appears.

Name Button Description
Icon

History Use a History Junction to indicate, when entering this level in the
Junction hierarchy, that the last state that was active becomes the next state to
@ be active.

Inner Transitions

An inner transition is a transition that does not exit the source state. Inner transitions are most
powerful when defined for superstates with XOR decomposition. Use of inner transitions can
greatly simplify a Stateflow diagram.

Library Link
A library link is a link to a chart that is stored in a library model in a Simulink block library.

Library Model

A Stateflow library model is a Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy a chart from a library into
your model, Stateflow does not physically include the chart in your model. Instead, it creates a
link to the library chart. You can create multiple links to a single chart. Each link is called a chart
instance. When you include a chart from a library in your model, you also include its state
machine. Thus, a Stateflow model that includes links to library charts has multiple state
machines. When Stateflow simulates a model that includes charts from a library model, it includes
all charts from the library model even if there are links to only some of its models. However, when
Stateflow generates a stand-alone or Real-Time Workshop® target, it includes only those charts
for which there are links. A model that includes links to a library model can be simulated only if all
charts in the library model are free of parse and compile errors.

Machine

A machine is the collection of all Stateflow blocks defined by a Simulink model exclusive of chart
instances (library links). If a model includes any library links, it also includes the state machines
defined by the models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation; such as a Gain block.

Notation

A notation defines a set of objects and the rules that govern the relationships between those
objects. Stateflow notation provides a common language to communicate the design information
conveyed by a Stateflow diagram.

Stateflow notation consists of:
[0 Aset of graphical objects
[0 A set of nongraphical text-based objects

[0 Defined relationships between those objects

Parallelism

A system with parallelism can have two or more states that can be active at the same time. The
activity of parallel states is essentially independent. Parallelism is represented with a parallel
(AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for example, digital signal
processing or control applications.

Real-Time Workshop®

Real-Time Workshop is an automatic C language code generator for Simulink. It produces C
code directly from Simulink block diagram models and automatically builds programs that can be
run in real-time in a variety of environments.

Real-Time Workshop Target
An executable built from code generated by Real-Time Workshop

S-Function

A customized Simulink block written in C or M-Code. C-code S-Functions can be inlined in Real-
Time Workshop. When using Simulink together with Stateflow for simulation, Stateflow generates
an S-Function (MEX-file) for each Stateflow machine to support model simulation. This generated
code is a simulation target and is called the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks, such as data types,
labels, sample time, dimensionality, and so on, that are determined by connectivity

Signal source
The signal source is the block of origin for a signal. The signal source may or may not be the true
source

Simulink

Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It
supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of
the two. Systems can also be multi-rate, i.e., have different parts that are sampled or updated at
different rates.

It allows you to represent systems as block diagrams that you build using your mouse to connect
blocks and your keyboard to edit block parameters. Stateflow is part of this environment. The
Stateflow block is a masked Simulink model. Stateflow builds an S-Function that corresponds to
each Stateflow machine. This S-Function is the agent Simulink interacts with for simulation and
analysis.

The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow diagrams into Simulink models, you can add
event-driven behavior to Simulink simulations. You create models that represent both data and
control flow by combining Stateflow blocks with the standard Simulink blockset. These combined
models are simulated using Simulink.

State

A state describes a mode of a reactive system. A reactive system has many possible states.
States in a Stateflow diagram represent these modes. The activity or inactivity of the states
dynamically changes based on events and conditions.

Every state has hierarchy. In a Stateflow diagram consisting of a single state, that state's parent
is the Stateflow diagram itself. A state also has history that applies to its level of hierarchy in the
Stateflow diagram. States can have actions that are executed in a sequence based upon action
type. The action types are: entry, during, exit, or on event_name actions.

Name Button Icon Description

State Use a state to depict a mode of the system.

Stateflow Block

The Stateflow block is a masked Simulink model and is equivalent to an empty, untitled Stateflow
diagram. Use the Stateflow block to include a Stateflow diagram in a Simulink model.

The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create models that represent both
data and control flow by combining Stateflow blocks with the standard Simulink and toolbox block
libraries. These combined models are simulated using Simulink.

Stateflow Debugger

Use the Stateflow Debugger to debug and animate your Stateflow diagrams. Each state in the
Stateflow diagram simulation is evaluated for overall code coverage. This coverage analysis is
done automatically when the target is compiled and built with the debug options. The Debugger
can also be used to perform dynamic checking. The Debugger operates on the Stateflow
machine.

Stateflow Diagram

Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is also a graphical
representation of a finite state machine where states and transitions form the basic building
blocks of the system

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event, and target objects.

Stateflow Finder

Use the Finder to display a list of objects based on search criteria you specify. You can directly
access the properties dialog box of any object in the search output display by clicking on that
object.

Substate
A state is a substate if it is contained by a superstate.

Fubstate

Superstate

Substate

Superstate
A state is a superstate if it contains other states, called substates.

Superstate
Fubstate
Suhstate
Target

An executable program built from code generated by Stateflow or Real-Time Workshop.

Top down Processing

Top down processing refers to the way in which Stateflow processes states. In particular,
Stateflow processes superstates before states. Stateflow processes a state only if its superstate
is activated first.

Transition

A transition describes the circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a destination object. The
source is where the transition begins and the destination is where the transition ends. It is often
the occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram. Transition segments are
sometimes loosely referred to as transitions.

Tunable parameters
A Tunable parameters is a parameter that can be adjusted both in the model and in generated
code.

True Source
The true source is the block which creates a signal. The true source is different from the signal
source since the signal source may be a simple routing block such as a demux block.

Virtual Block

When creating models, you need to be aware that Simulink blocks fall into two basic categories:
nonvirtual and virtual blocks. Nonvirtual blocks play an active role in the simulation of a system. If
you add or remove a nonvirtual block, you change the model's behavior. Virtual blocks, by
contrast, play no active role in the simulation. They simply help to organize a model graphically.
Some Simulink blocks can be virtual in some circumstances and nonvirtual in others. Such blocks
are called conditionally virtual blocks. The following table lists the virtual and conditionally virtual
blocks in Simulink.

Virtual Blocks

Block Name

Bus Selector
Demux

Enable

From

Goto

Goto Tag Visibility
Ground

Inport

Mux

Outport

Selector
Signal Specification

Subsystem

Terminator

Trigger

Virtual Scrollbar

Condition Under Which Block Will Be Virtual

Virtual if input bus is virtual

Always virtual

Virtual unless connected directly to an Outport block
Always virtual

Always virtual

Always virtual

Always virtual

Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level) Simulink window.

Always virtual

Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level)

Simulink window

Virtual except in matrix mode

Always virtual

Virtual unless the block is conditionally executed and/or
the

block's Treat as Atomic Unit option is selected

Always virtual

Virtual if the Outport port is not present

A virtual scrollbar enables you to set a value by scrolling through a list of choices. When you
move the mouse over a menu item with a virtual scrollbar, the cursor changes to a line with a
double arrowhead. Virtual scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally or vertically to change the

value.

