

CONTROL ALGORITHM MODELING
GUIDELINES USING MATLAB

®
,

Simulink
®
, and Stateflow

®

Version 3.0

MathWorks Automotive Advisory Board
(MAAB)

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB
®
, SIMULINK

®
, AND

STATEFLOW
®
 ... 1

1. HISTORY.. 6

2. INTRODUCTION .. 7

2.1. MOTIVATION .. 7
2.2. NOTES ON VERSION 3.0 ... 7
2.3. GUIDELINE TEMPLATE .. 7

2.3.1. Guideline ID: .. 8
2.3.2. Guideline Title: ... 8
2.3.3. Priority: .. 8
2.3.4. Scope: ... 9
2.3.5. MATLAB

®
 Versions .. 9

2.3.6. Prerequisites: ... 9
2.3.7. Description: ...10
2.3.8. Rationale: ..10
2.3.9. Last change: ..10

2.4. DOCUMENT USAGE ..10
2.4.1. Guideline Interaction Semantics ..10
2.4.2. Masked Subsystems and Readability Rules ...11

3. SOFTWARE ENVIRONMENT ..12

3.1. GENERAL GUIDELINES ..12
3.1.1. na_0026: Consistent software environment ..12
3.1.2. na_0027: Use of only standard library blocks ..12

4. NAMING CONVENTIONS ...14

4.1. GENERAL GUIDELINES ..14
4.1.1. ar_0001: Filenames ...14
4.1.2. ar_0002: Directory names ...14
4.1.3. na_0035: Adoption of naming conventions ...15

4.2. MODEL CONTENT GUIDELINES ..16
4.2.1. jc_0201: Usable characters for Subsystem name ..16
4.2.2. jc_0211: Usable characters for Inport block and Outport block ..16
4.2.3. jc_0221: Usable characters for signal line name ..17
4.2.4. na_0030: Usable characters for Simulink Bus names ...17
4.2.5. jc_0231: Usable characters for block names ..18
4.2.6. na_0014: Use of local language in Simulink and Stateflow ..19

5. MODEL ARCHITECTURE ..21

5.1. SIMULINK
®

 AND STATEFLOW
®

 PARTITIONING ...21
5.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow..21
5.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines27

5.2. SUBSYSTEM HIERARCHIES ...27
5.2.1. db_0143: Similar block types on the model levels ...27
5.2.2. db_0144: Use of Subsystems ...29
5.2.3. db_0040: Model hierarchy ..30
5.2.4. na_0037: Use of single variable variant conditionals ...30
5.2.5. na_0020: Number of inputs to variant subsystems ..31
5.2.6. na_0036: Default Variant ..31

5.3. J-MAAB MODEL ARCHITECTURE DECOMPOSITION ..32
5.3.1. jc_0301: Controller model ..32
5.3.2. jc_0311: Top layer / root level ..33
5.3.3. jc_0321: Trigger layer ...34
5.3.4. jc_0331: Structure layer ..34

5.3.5. jc_0341: Data flow layer ...35

6. MODEL CONFIGURATION OPTIONS ...37

6.1.1. jc_0011: Optimization parameters for Boolean data types ...37
6.1.2. jc_0021: Model diagnostic settings ...37

7. SIMULINK ..39

7.1. DIAGRAM APPEARANCE ..39
7.1.1. na_0004: Simulink model appearance ..39
7.1.2. db_0043: Simulink font and font size ...40
7.1.3. db_0042: Port block in Simulink models ...40
7.1.4. na_0005: Port block name visibility in Simulink models ...41
7.1.5. jc_0081: Icon display for Port block ...42
7.1.6. jm_0002: Block resizing ..43
7.1.7. db_0142: Position of block names ...43
7.1.8. jc_0061: Display of block names ...44
7.1.9. db_0146: Triggered, enabled, conditional Subsystems ...45
7.1.10. db_0140: Display of basic block parameters ..46
7.1.11. db_0032: Simulink signal appearance ..47
7.1.12. db_0141: Signal flow in Simulink models ..47
7.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks48
7.1.14. na_0032: Use of Merge Blocks ..49
7.1.15. jm_0010: Port block names in Simulink models ..50
7.1.16. jc_0281: Naming of Trigger Port block and Enable Port block ..50

7.2. SIGNALS ..51
7.2.1. na_0008: Display of labels on signals ...51
7.2.2. na_0009: Entry versus propagation of signal labels ...52
7.2.3. db_0097: Position of labels for signals and busses ...53
7.2.4. db_0081: Unconnected signals, block inputs and block outputs ...54

7.3. BLOCK USAGE ...54
7.3.1. na_0003: Simple logical expressions in If Condition block ..54
7.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations56
7.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers ..57
7.3.4. hd_0001: Prohibited Simulink sinks ..59
7.3.5. na_0011: Scope of Goto and From blocks ..59
7.3.6. jc_0141: Use of the Switch block ...60
7.3.7. jc_0121: Use of the Sum block ..61
7.3.8. jc_0131: Use of Relational Operator block ...63
7.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks ...63

7.4. BLOCK PARAMETERS ...64
7.4.1. db_0112: Indexing ...64
7.4.2. na_0010: Grouping data flows into signals ...64
7.4.3. db_0110: Tunable parameters in basic blocks ..65

7.5. SIMULINK PATTERNS ...66
7.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem ..66
7.5.2. db_0114: Simulink patterns for If-then-else-if constructs ...67
7.5.3. db_0115: Simulink patterns for case constructs ..68
7.5.4. na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches69
7.5.5. db_0116: Simulink patterns for logical constructs with logical blocks70
7.5.6. db_0117: Simulink patterns for vector signals ..71
7.5.7. jc_0351: Methods of initialization ...73
7.5.8. jc_0111: Direction of Subsystem ...75

8. STATEFLOW ..77

8.1. CHART APPEARANCE ...77
8.1.1. db_0123: Stateflow port names ...77

8.1.2. db_0129: Stateflow transition appearance ..77
8.1.3. db_0137: States in state machines ...78
8.1.4. db_0133: Use of patterns for Flowcharts ..79
8.1.5. db_0132: Transitions in Flowcharts ...79
8.1.6. jc_0501: Format of entries in a State block ..81
8.1.7. jc_0511: Setting the return value from a graphical function ...82
8.1.8. jc_0531: Placement of the default transition ...83
8.1.9. jc_0521: Use of the return value from graphical functions ...84

8.2. STATEFLOW DATA AND OPERATIONS ...85
8.2.1. na_0001: Bitwise Stateflow operators ...85
8.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow ...87
8.2.3. na_0013: Comparison operation in Stateflow ...87
8.2.4. db_0122: Stateflow and Simulink interface signals and parameters ...88
8.2.5. db_0125: Scope of internal signals and local auxiliary variables ..89
8.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow90
8.2.7. jc_0491: Reuse of variables within a single Stateflow scope ..91
8.2.8. jc_0541: Use of tunable parameters in Stateflow ..93
8.2.9. db_0127: MATLAB commands in Stateflow ..93
8.2.10. jm_0011: Pointers in Stateflow ...94

8.3. EVENTS ...95
8.3.1. db_0126: Scope of events ..95
8.3.2. jm_0012: Event broadcasts ...95

8.4. STATECHART PATTERNS ..97
8.4.1. db_0150: State machine patterns for conditions ...97
8.4.2. db_0151: State machine patterns for transition actions ..98

8.5. FLOWCHART PATTERNS ...98
8.5.1. db_0148: Flowchart patterns for conditions ...98
8.5.2. db_0149: Flowchart patterns for condition actions ..100
8.5.3. db_0134: Flowchart patterns for If constructs ..101
8.5.4. db_0159: Flowchart patterns for case constructs ...103
8.5.5. db_0135: Flowchart patterns for loop constructs ...105

8.6. STATE CHART ARCHITECTURE ...106
8.6.1. na_0038: Levels in Stateflow charts ..106
8.6.2. na_0039: Use of Simulink in Stateflow charts ...107
8.6.3. na_0040: Number of states per container ...108
8.6.4. na_0041: Selection of function type ..108
8.6.5. na_0042: Location of functions ...109

9. ENUMERATED DATA ..111

9.1.1. na_0033: Enumerated Types Usage ..111
9.1.2. na_0031: Definition of default enumerated value ...111

10. MATLAB FUNCTIONS ...112

10.1. MATLAB FUNCTION APPEARANCE ..112
10.1.1. na_0018: Number of nested if/else and case statement ..112
10.1.2. : na_0019: Restricted Variable Names ...112
10.1.3. na_0025: MATLAB Function Header...113

10.2. MATLAB FUNCTION DATA AND OPERATIONS ...113
10.2.1. na_0034: MATLAB Function block input/output settings ..113
10.2.2. na_0024: Global Variables ..114

10.3. MATLAB FUNCTION PATTERNS ...115
10.3.1. na_0022: Recommended patterns for Switch / Case statements ...115

10.4. MATLAB FUNCTION USAGE ..116
10.4.1. na_0016: Source lines of MATLAB Functions ...116
10.4.2. na_0017: Number of called function levels ..116
10.4.3. na_0021: Strings...117

11. APPENDIX A: RECOMMENDATIONS FOR AUTOMATION TOOLS119

12. APPENDIX B: GUIDELINE WRITING ..120

13. APPENDIX C: FLOWCHART REFERENCE ..121

14. OBSOLETE RULES ...127

14.1. REMOVED IN VERSION 2.2 ...127
14.2. REMOVED IN VERSION 3.0 ...127

15. GLOSSARY ...128

1.History

Date Change

02.04.2001 Initial document Release, Version 1.00

04.27.2007 Version 2.00 Update release

07.30.2011 Version 2.20 Update release

08.31.2012 Version 3.0 Update release

2.Introduction

2.1. Motivation
The MAAB guidelines are an important basis for project success and teamwork - both in-house
and when cooperating with partners or subcontractors. Observing the guidelines is one key
prerequisite to achieving

 System integration without problems

 Well-defined interfaces.

 Uniform appearance of models, code and documentation

 Reusable models

 Readable models

 Problem-free exchange of models

 A simple, effective process

 Professional documentation

 Understandable presentations

 Fast software changes

 Cooperation with subcontractors

 Handing over of research or predevelopment projects to product development

2.2. Notes on version 3.0
The current version of this document, 3.0, supports MATLAB releases R2007b through R2011b.
Version 3.0 references rules from the NASA Orion style guidelines
(http://www.mathworks.com/aerospace-defense/standards/nasa.html). Rules that are referenced
from the NASA Orion guideline are noted with a “See also” field that provides the original rule
number.

2.3. Guideline template
Guideline descriptions are documented using the following template. Companies that want to
create additional guidelines are encouraged to use the same template.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority One of mandatory / strongly recommended / recommended

Scope MAAB, NA-MAAB, J-MAAB, Specific Company (for optional local company usage)

MATLAB
®

Version

all
RX, RY, RZ
RX and earlier
RX and later
RX through RY

Prerequisites Links to guidelines, which are prerequisite to this guideline (ID+title)

Description Description of the guideline (text, images)

Rationale Motivation for the guideline

Last Change Version number of last change

Note: The elements of this template are the minimum required items that must be present for
proper understanding and exchange of guidelines. The addition of project- or vendor fields to this
template is possible as long as their meaning does not overlap with any of the existing fields. In

http://www.mathworks.com/aerospace-defense/standards/nasa.html

fact, such additions are even encouraged if they help to integrate other guideline templates and
lead to a wider acceptance of the core template itself.

2.3.1. Guideline ID:

 The guideline ID is built out of two lowercase letters (representing the origin of the rule)

and a four-digit number, separated by an underscore.

 Once a new guideline has an ID, the ID will not be changed.

 The ID is used for references to guidelines.

 The two letter prefixes na, jp, jc and eu are reserved for future MAAB committee rules.

 Legacy prefixes, db, jm, hd, and ar, are reserved.

 No new rules will be written with these legacy prefixes.

2.3.2. Guideline Title:

 The title should be a short, but unique description of the guidelines area of application

(for example, length of names).

 The title is used for the Prerequisites field and for custom checker-tools.

 The title text should appear with a hyperlink that links to the guideline.

Note: The title should not be a redundant short description of the guidelines content. The
description of the guideline might change over time, but the title should remain stable.

2.3.3. Priority:

Each guideline must be rated with one of the following priorities:

 Mandatory

 Strongly recommended

 Recommended

The priority describes the importance of the guideline and determines the consequences of
violations.

Mandatory
Strongly

Recommended
Recommended

DEFINITION

 Guidelines that all
companies agree to
that are absolutely
essential

 Guidelines that all
companies conform to
100%

 Guidelines that are
agreed upon to be a
good practice, but
legacy models
preclude a company
from conforming to
the guideline 100%

 Models should
conform to these
guidelines to the
greatest extent

 Guidelines that are
recommended to
improve the
appearance of the
model diagram, but
are not critical to
running the model

 Guidelines where
conformance is
preferred, but not
required

possible; however
100% compliance is
not required

CONSEQUENCES
If the guideline is violated

 Essential items are
missing

 The model might not
work properly

 The quality and the
appearance
deteriorates

 There may be an
adverse effect on
maintainability,
portability, and
reusability

 The appearance will
not conform with
other projects

WAIVER POLICY
If the guideline is intentionally ignored,

 The reasons must be
documented

2.3.4. Scope:

The scope can be set to one of the following
MAAB (MathWorks Automotive Advisory Board)
J-MAAB (Japan MAAB)
NA-MAAB (North American MAAB)

"MAAB" is a group of automotive manufacturers and suppliers that work closely together with
MathWorks. MAAB includes the sub-groups J-MAAB, and NA-MAAB.

“J-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in
JAPAN and works closely with MathWorks. Rules with J-MAAB scope are local to Japan.

“NA-MAAB” is a subgroup of MAAB that includes automotive manufacturers and suppliers in USA
and Europe and works closely with MathWorks. That rule is local rule in USA and Europe.
Coverage is USA and Europe.

2.3.5. MATLAB® Versions

The guidelines support all versions of MATLAB and Simulink products. If the rule applies to a
specific version or versions, the versions are identified in the MATLAB versions field. The
versions information is in one of the following formats.

 All : All versions of MATLAB

 RX, RY, RZ : A specific version of MATLAB

 RX and earlier : Versions of MATLAB until version RX

 RX and later: Versions of MATLAB from version RX to the current version

 RX through RY: Versions of MATLAB between RX and RY

2.3.6. Prerequisites:

 This field is for links to other guidelines that are prerequisite to this guideline (logical

conjunction).

 Use the guideline ID (for consistency) and the title (for readability) for the links. The

"Prerequisites" field should not contain any other text.

2.3.7. Description:

 This field contains a detailed description of the guideline.

 If needed, images and tables can be added.

Note: If formal notation (math, regular expression, syntax diagrams, and exact numbers/limits) is
available, it should be used to unambiguously describe a guideline and specify an automated
check. However, a human, understandable, informal description must always be provided for
daily reference.

2.3.8. Rationale:

The guidelines can be recommended for one or more of the following reasons.

 Readability: Easily understood algorithms

 Readable models

 Uniform appearance of models, code, and documentation

 Clean interfaces

 Professional documentation

 Workflow: Effective development process and workflow

 Ease of maintenance

 Rapid model changes

 Reusable components

 Problem-free exchange of models

 Model portability

 Simulation: Efficient simulation and analysis

 Simulation speed

 Simulation memory

 Model instrumentation

 Verification & Validation: Ability to verify and validate a model and generated code with:

 Requirements Traceability

 Testing

 Problem-free system integration

 Clean interfaces

 Code generation: Generation of code that is efficient and effective for embedded systems

 Fast software changes

 Robustness of generated code

2.3.9. Last change:

The “Last Change” field contains the document version number.

2.4. Document Usage
The following paragraphs provide information on using this document as reference and for
compiling a project-specific guideline document. Information on automated checking of the
guidelines can be found in Appendix A.

2.4.1. Guideline Interaction Semantics

The initial sections of the document, naming conventions and model architecture, provide basic
guidelines that apply to all types of models. The later sections, Simulink and Stateflow, provide
specific rules for those environments. Some guidelines are dependent on other guidelines and
are explicitly listed throughout the template.

2.4.2. Masked Subsystems and Readability Rules

If users do not view the content of masked subsystems within a model, the guidelines for
readability are not applicable.

3.Software Environment

3.1. General Guidelines

3.1.1. na_0026: Consistent software environment

ID: Title na_0026: Consistent software environment

Priority Recommended

Scope NA-MAAB

MATLAB
Version

See Description

Prerequisites

Description

During software development, it is recommended that a consistent software
environment is used across the project. Software includes, but is not limited, to:

 MATLAB

 Simulink

 C Compiler (for simulation)

 C Compiler (for target hardware)

Consistent software environment implies that the same version of the software is
used across the full project. The version number applies to any patches or
extensions to the software used by a group.

Rationale

 Readability
 Workflow
 Simulation

 Verification and Validation
 Code Generation

See also jh_0042: Required software

Last Change V3.00

3.1.2. na_0027: Use of only standard library blocks

ID: Title na_0027: Use of only standard library blocks

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

Companies should specify a subset of Simulink blocks for use when developing
models. The block list can include custom block libraries developed by the
company or third parties. Models should be built only from these blocks.

Non-compliant blocks can be used during development. If non-compliant blocks
are used, they should be marked either with a color, icon and / or annotation.
These blocks must be removed prior to use in production code generation.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

See also hyl_0201: Use of standard library blocks only

Last Change V3.00

4.Naming Conventions

4.1. General Guidelines

4.1.1. ar_0001: Filenames

ID: Title ar_0001: Filenames

Priority Mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A filename conforms to the following constraints:

FORM filename = name.extension
name: no leading digits, no blanks
extension: no blanks

UNIQUENESS  all filenames within the parent project directory

 cannot conflict with C / C++ or MATLAB

keywords

ALLOWED
CHARACTERS

name
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _
extension:
a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9

UNDERSCORES name:

 can use underscores to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

extension:

 should not use underscores

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V3.00

4.1.2. ar_0002: Directory names

ID: Title ar_0002: Directory names

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A directory name conforms to the following constraints:

FORM directory name = name
name: no leading digits, no blanks

UNIQUENESS all directory names within the parent project directory

ALLOWED
CHARACTERS

name:
 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G
H I J K L M N O P Q R S T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 underscores can be used to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability
 Workflow
 Simulation

 Verification and Validation
 Code Generation

Last Change V1.00

4.1.3. na_0035: Adoption of naming conventions

ID: Title na_0035: Adoption of naming conventions

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

Adoption of a naming convention is recommended. A naming convention provides
guidance for naming blocks, signals, parameters and data types. Naming
conventions frequently cover issues such as:

 Compliance with the programing language and downstream tools

o Length

o Use of symbols

 Readability

o Use of underscores

o Use of capitalization

 Encoding information

o Use of “meaningful” names

o Standard abbreviations and acronyms

o Data type

o Engineering units

o Data ownership

o Memory type

Rationale
 Readability

 Workflow

 Verification and Validation

 Code Generation

 Simulation

Last Change V3.00

4.2. Model Content Guidelines

4.2.1. jc_0201: Usable characters for Subsystem name

ID: Title jc_0201: Usable characters for Subsystem names

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The names of all Subsystem blocks should conform to the following constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 should not have carriage returns

ALLOWED
CHARACTERS

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 underscores can be used to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

4.2.2. jc_0211: Usable characters for Inport block and Outport block

ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The names of all Inport blocks and Outport blocks should conform to the following
constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 should not include carriage returns

ALLOWED
CHARACTERS

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 underscores can be used to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

4.2.3. jc_0221: Usable characters for signal line name

ID: Title jc_0221: Usable characters for signal line names

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

All named signals should conform to the following constraints:

FORM name:

 should not start with a number

 should not have blank spaces

 should not have any control characters

 should not include carriage returns

ALLOWED
CHARACTERS

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 underscores can be used to separate parts

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

4.2.4. na_0030: Usable characters for Simulink Bus names

ID: Title na_0030: Usable characters for Simulink Bus Names

Priority strongly recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

All Simulink Bus names should conform to the following constraints:

FORM name:

 Should not start with a number

 Should not have blank spaces

 Carriage returns are not allowed

ALLOWED
CHARACTERS

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

UNDERSCORES name:

 Can use underscores to separate parts

 Cannot have more than one consecutive
underscore

 Cannot start with an underscore

 Cannot end with an underscore

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

See Also jh_0040: Usable characters for Simulink Bus Names

Last Change V3.00

4.2.5. jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites jc_0201: Usable characters for Subsystem names

Description

All named blocks should conform to the following constraints:

FORM name:

 should not start with a number

 should not start with a blank space

 may not use double byte characters

 carriage returns are allowed

ALLOWED
CHARACTERS

name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Note: this rule does not apply to Subsystem blocks.

Rationale
 Readability

 Workflow
 Verification and Validation

 Simulation  Code Generation

Last Change V2.00

4.2.6. na_0014: Use of local language in Simulink and Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow

Priority strongly recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

The local language should be used only in descriptive fields. Descriptive fields are
text entry points that do not affect code generation or simulation. Examples of
descriptive fields include

Simulink Example

 The Description field in the Block Properties

 Text annotation directly entered in the model

Stateflow Example

 The Description field of the chart or state Properties

Description: Local language can be used.

 Annotation description added using Add Note

Note: It is possible that Simulink can‟t open a model that includes local language
on the different character encoding systems; thus, it is important to pay attention
when using local characters in case of exchanging models between overseas.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

5.Model Architecture
Basic Blocks
This document uses the term “Basic Blocks” to refer to blocks from the base Simulink library.
Examples of basic blocks:

5.1. Simulink
®
 and Stateflow

®
 Partitioning

5.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The choice of whether to use Simulink or Stateflow to model a given portion of the
control algorithm functionality should be driven by the nature of the behavior being
modeled.

 If the function primarily involves complicated logical operations, use
Stateflow diagrams.

 Stateflow should be used to implement modal logic – where the
control function to be performed at the current time depends on a
combination of past and present logical conditions.

 If the function primarily involves numerical operations, use Simulink
features.

Specifics:

 If the primary nature of the function is logical, but some simple numerical
calculations are done to support the logic, implement the simple numerical
functions using the Stateflow action language.

 If the primary nature of the function is numeric, but some simple logical
operations are done to support the arithmetic, implement the simple logical
functions with Simulink blocks.

 If the primary nature of the function is logical, and some complicated
numerical calculations must be done to support the logic, use a Simulink
subsystem to implement the numerical calculations. The Stateflow
software should invoke the execution of this subsystem, using a function-
call.

Embedded simple
logic operations

Embedded simple
math operation

 Use the Stateflow product to implement modal logic, where the control
function to be performed at the current time depends on a combination of
past and present logical conditions. (If there is a need to store the result of
a logical condition test in Simulink, for example, by storing a flag, this is
one indicator of the presence of modal logic, which should be modeled
with Stateflow software.)

Incorrect

Correct

 Simulink should be used to implement numerical expressions containing
continuously-valued states, e.g., difference equations, integrals,
derivatives, and filters.

Incorrect

Correct

Rationale
 Readability
 Workflow
 Simulation

 Verification and Validation
 Code Generation

Last Change V2.00

5.1.2. na_0007: Guidelines for use of Flow Charts, Truth Tables and State
Machines

ID: Title na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites na_0006: Guidelines for Mixed use of Simulink and Stateflow

Description

Within Stateflow, the choice of whether to use a flow chart or a state chart to model
a given portion of the control algorithm functionality should be driven by the nature
of the behavior being modeled.

 If the primary nature of the function segment is to calculate modes of
operation or discrete-valued states, use state charts. Some examples are:

o Diagnostic model with pass, fail, abort, and conflict states
o Model that calculates different modes of operation for a control

algorithm

 If the primary nature of the function segment involves if-then-else
statements, use flowcharts or truth tables.

Specifics:

 If the primary nature of the function segment is to calculate modes or
states, but if-then-else statements are required, add a flow chart to a state
within the state chart. (See 7.5 Flowchart Patterns)

Rationale
 Readability
 Workflow
 Simulation

 Verification and Validation
 Code Generation

Last Change V2.00

5.2. Subsystem Hierarchies

5.2.1. db_0143: Similar block types on the model levels

ID: Title db_0143: Similar block types on the model levels

Priority strongly recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

To allow partitioning of the model into discreet units, every level of a model must be
designed with building blocks of the same type (i.e. only Subsystem or only basic
blocks). The blocks listed in this rule are used for signal routing. You can place
them at any level of the model.

Blocks which can be placed on every model level:

Inport

Outport

Mux

Demux

Bus Selector

Bus Creator

Selector

Ground

Terminator

From

Goto

Merge

Unit Delay

Rate Transition

Data Type Conversion

Data Store Memory

If

Case

Function-Call Generator

Function-Call Split

Trigger
(1)

Enable
(2)

Action port
(3)

Note

1.) Starting in R2009a, the Trigger block is allowed at the root level of
the model.

2.) Starting in R2011b, the Enabled block is allowed at the root level of
the model.

3.) Action ports are not allowed at the root level of a model.
If the Trigger or Enable blocks are placed at the root level of the model, then the
model will not simulate in a standalone mode. The model must be referenced
using the Model block.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

5.2.2. db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Blocks in a Simulink diagram should be grouped together into subsystems based
on functional decomposition of the algorithm, or portion thereof, represented in the
diagram.

Avoid grouping blocks into subsystems primarily for the purpose of saving space in
the diagram. Each subsystem in the diagram should represent a unit of
functionality required to accomplish the purpose of the model or submodel. Blocks

can also be grouped together based on behavioral variants or timing.

If creation of a subsystem is required for readability issues, then a virtual
subsystem should be used.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.20

5.2.3. db_0040: Model hierarchy

ID: Title db_0040: Model hierarchy

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
The model hierarchy should correspond to the functional structure of the control
system.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.00

5.2.4. na_0037: Use of single variable variant conditionals

ID: Title na_0037: Use of single variable variant conditionals

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

Variant conditional expressions should be composed using either a single
variable with compound conditions or multiple variables with a single condition.
The default variant is an exception to the second rule.

Correct: Multiple variables (INLINE / FUNCTION) with single condition per line

Correct: Single variable compound conditions

Incorrect: Multiple variables, compound conditions

Note
Use of enumerated variables is preferred in the Condition expressions. To
improve the readability of the screenshots used in the examples, numerical
values were used.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

See also na_0036 Default variant

Last Change V3.00

5.2.5. na_0020: Number of inputs to variant subsystems

ID: Title na_0020: Number of inputs to variant subsystems

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

Simulink requires variant subsystems to have the same number of inputs.
However, the variant subsystem might not use all of the inputs. In these
instances, terminate the unused inputs with the Terminator block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

5.2.6. na_0036: Default variant

ID: Title na_0036 Default variant

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites na_0037 Use of single variable variant conditionals

Description All Variant subsystems and models should be configured so that one subsystem

is always selected. This can be achieved by doing one of the following:

 Using a default variant.

 Defining conditions that exhaustively cover all possible values of the

conditional variables. For example, defining conditions for true and

false values of a Boolean.

Correct

Correct: Assumes FUNC and INLINE are Boolean

Incorrect: No active subsystem if FUNC not equal to 1 or 2

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

5.3. J-MAAB Model Architecture Decomposition

5.3.1. jc_0301: Controller model

ID: Title jc_0301: Controller model

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

Control models are organized using the following hierarchical structure. Details on
each layer are provided in the latter rules.

 Top layer / root level

 Trigger layer

 Structure layer

 Data flow layer

Use of the Trigger level is optional. In the diagram below “Type A” shows the use
of a trigger level while “Type B“ shows a model without a trigger level.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

5.3.2. jc_0311: Top layer / root level

ID: Title jc_0311: Top layer / root level

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

Items to describe in a top layer are as follows.

 Overview: Explanation of model feature overview

 Input: Input variables

 Output: Output variables

Top Layer Example

Rationale
 Readability
 Workflow

 Verification and Validation

ｘｘｘ　レイヤー トリガレイヤ

A方式 B方式

処理タイミング記述

8ms

データフロー
レイヤ

トップレイヤ

8ms

8ms

8ms

EVENT

EVENT

EVENT

構造レイヤ

TypeA TypeB

Top Layer

Trigger

Layer

Structure Layer Describe a processing timing

Data Flow

Layer

Describe the outline of the functionDescription: *****************

Input
Output

Describe the outline of the functionDescription: *****************

Input
Output

 Simulation  Code Generation

Last Change V2.00

5.3.3. jc_0321: Trigger layer

ID: Title jc_0321: Trigger layer

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

A trigger layer indicates the processing timing by using Triggered Subsystem or
Function-Call Subsystem.

 The blocks should set Priority, if needed.

 The priority value must be displayed as a Block Annotation. The user should be
able to understand the priority-based order without having to open the block.

Trigger Layer Example

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

5.3.4. jc_0331: Structure layer

ID: Title jc_0331: Structure layer

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

Describe a structure layer like the following description example.

 In case of Type B, specify sample time at an Inport block or a Subsystem to
define task time of the Subsystem.

 In case of Type B, use a Block Annotation at an Inport block or a Subsystem
and display sample time to clarify task time of the Subsystem

A subsystem of a structure layer should be an atomic subsystem.

Structured Layer Example (Type A: No description of processing timing)

Structured Layer Example (Type B: Description of processing timing)

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

5.3.5. jc_0341: Data flow layer

ID: Title jc_0341: Data flow layer

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

Describe a data flow layer as in the following example.

 In case of Type A, use a Block Annotation at an Inport block and display its
sample time to clarify execution timing of the signal

Data Flow Layer Example

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

Aタイプの場合は表示不要Unnecessary display in TypeA.

6.Model Configuration Options

6.1.1. jc_0011: Optimization parameters for Boolean data types

ID:Title jc_0011: Optimization parameters for Boolean data types

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
na_0002: Appropriate implementation of fundamental logical and numerical
operations

Description

The optimization option for Boolean data types must be enabled (on).

Path Parameter Image

Configuration
Parameters >
Optimization >
Simulation and

code generation
> Implement logic

signals as
Boolean data (vs.

double)

BooleanDataType

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.20

6.1.2. jc_0021: Model diagnostic settings

ID:Title jc_0021: Model diagnostic settings

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following diagnostics must be enabled. An enabled diagnostic is set to
either “warning” or “error”. Setting the diagnostic option to “none” is not
permitted. Diagnostics that are not listed can be set to any value (none,
warning, or error).

 Solver Diagnostics

 Algebraic loop

 Minimize algebraic loop

 Sample Time Diagnostics

 Multitask rate transition

 Data Validity Diagnostics

 Inf or NaN block output

 Duplicate data store names

 Connectivity

 Unconnected block input ports

 Unconnected block output ports

 Unconnected line

 Unspecified bus object at root Outport block

 Mux blocks used to create bus signals

 Invalid function-call connection

 Element name mismatch

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.00

7.Simulink

7.1. Diagram Appearance

7.1.1. na_0004: Simulink model appearance

ID: Title na_0004 Simulink model appearance

Priority Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The model appearance settings should conform to the following guidelines when
the model is released. The user is free to change the settings during the
development process.

View Options Setting

Model Browser unchecked

Screen color white

Status Bar checked

Toolbar checked

Zoom factor Normal (100%)

Block Display Options Setting

Background Color white

Foreground Color black

Execution Context Indicator unchecked

Library Link Display none

Linearization Indicators checked

Model/Block I/O Mismatch unchecked

Model Block Version unchecked

Sample Time Colors unchecked

Sorted Order unchecked

Signal Display Options Setting

Port Data Types unchecked

Signal Dimensions unchecked

Storage Class unchecked

Test point Indicators checked

Viewer Indicators checked

Wide Non-scalar Lines checked

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.2. db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

All text elements (block names, block annotations and signal labels) except free
text annotations within a model must have the same font style and font size.
Fonts and font size should be selected for legibility.

Note: The selected font should be directly portable (e.g. Simulink/Stateflow
default font) or convertible between platforms (e.g. Arial/Helvetica 12pt).

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.3. db_0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

In a Simulink model, the ports comply with the following rules:

 Inports should be placed on the left side of the diagram, but they can be
moved in to prevent signal crossings.

 Outports should be placed on the right side, but they can be moved in to
prevent signal crossings.

 Duplicate Inports can be used at the subsystem level if required, but should
be avoided, if possible.

o Do not use duplicate Inports at the root level.

Correct

Incorrect

Notes on the incorrect model

 Inport 2 should be moved in so it does not cross the feed back loop lines.

 Outport 1 should be moved to the right hand side of the diagram.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.4. na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

For some items it is not possible to define a single approach that is applicable to all
organizations‟ internal processes. However, it is important that within a given
organization, a single consistent approach is followed. An organization applying
the guidelines must select one of the following alternatives to enforce.
Organizationally-Scoped Alternatives (follow one practice):

1. The name of an Inport or Outport is not hidden. ("Format / Hide Name" is
not allowed.)

2. The name of an Inport or Outport must be hidden. ("Format / Hide Name" is

used.)
Exception: inside library subsystem blocks, the names may not be hidden.

Correct: Use of signal label

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.5. jc_0081: Icon display for Port block

ID: Title jc_0081: Icon display for Port block

Priority recommended

Scope MAAB

MATLAB
Version

R14 and later

Prerequisites

Description

The Icon display setting should be set to Port number for Inport and Outport blocks.
Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.1.6. jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (for example, tunable parameters,
filenames, or equations) in the icon must be readable.
This guideline requires resizing of blocks with variable icons or blocks with a
variable number of inputs and outputs. In some cases, it may not be practical or
desirable to resize the block icon of a subsystem block so that all of the input and
output names within it are readable. In such cases, you may hide the names in the
icon by using a mask or by hiding the names in the subsystem associated with the
icon. If you do this, the signal lines coming into and out of the subsystem block
should be clearly labeled in close proximity to the block.

Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.7. db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description If shown the name of each block should be placed below the block.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.8. jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Display a block name when it provides descriptive information.

 The block name should not be displayed if the block function is known and

understood from the block appearance.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.9. db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, Enabled, Conditional Subsystems

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The blocks that define subsystems as either conditional or iterative should be
located at a consistent location at the top of the subsystem diagram. These blocks
are:

 Enable

 For Iterator

 Action Port

 Switch Case Action

 Trigger

 While Iterator

Note: The Action port is associated with the If and Case blocks. The Trigger port
is also the function-call block.
Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.1.10. db_0140: Display of basic block parameters

ID: Title db_0140: Display of basic block parameters

Priority Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Important block parameters modified from the default values should be displayed.
Note: The attribute string is one method to support the display of block parameters.
The block annotation tab allows you to add the desired attribute information. As of
R2011b, masking basic blocks is a supported method for displaying the
information. This method is allowed if the base icon is distinguishable.

Correct

 `
Correct: Masked block

Rationale
 Readability
 Workflow

 Verification and Validation

 Simulation  Code Generation

Last Change V2.20

7.1.11. db_0032: Simulink signal appearance

ID: Title db_0032: Simulink signal appearance

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Signal lines

 Should not cross each other, if possible.

 Are drawn with right angles.

 Are not drawn one upon the other.

 Do not cross any blocks.

 Should not split into more than two sub lines at a single branching point.

Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.12. db_0141: Signal flow in Simulink models

ID: Title db_0141: Signal flow in Simulink models

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Signal flow in a model is from left to right.

 Exception: Feedback loops

 Sequential blocks or subsystems are arranged from left to right.

 Exception: Feedback loops

 Parallel blocks or subsystems are arranged from top to bottom.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Visual depiction of signal flow must be maintained between subsystems.

 Use of Goto and From blocks is allowed if:

 At least one signal line is used between connected subsystems.

 Subsystems connected in a feed-forward and feedback loop have at
least one signal line for each direction.

 Using Goto and From blocks to create buses or connect inputs to merge blocks
are exceptions to this rule.

Correct

Signal flow should be drawn from left to rightSignal flow should be drawn from left to right

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.14. na_0032: Use of Merge Blocks

ID: Title na_0032: Use of merge blocks

Priority Strongly Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites None

Description

When using merge blocks:

 Signals entering a merge block must not branch off to any other block.

 With buses:

o All buses must be identical. This includes:

 Number of elements

 Element names

 Element order

 Element data type

 Element size

o Buses must be either all virtual or all non-virtual.

o All bus lines entering a merge block must not branch off to any other
block.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

See Also jh_0109: Merge blocks

Last Change V3.00

7.1.15. jm_0010: Port block names in Simulink models

ID: Title jm_0010: Port block names in Simulink models

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
db_0042: Ports in Simulink models
na_0005: Port block name visibility in Simulink models

Description

For some items, it is not possible to define a single approach applicable to all
organizations‟ internal processes However, within a given organization, it is
important to follow a single consistent approach is followed. An organization
applying the guidelines must select one of these alternatives.

1. Names of Inport blocks and Outport blocks must match the corresponding
signal or bus names.
Exceptions:

o When any combination of an Inport block, an Outport block, and
any other block have the same block name, a suffix or prefix
should be used on the Inport and Outport blocks.

o One common suffix / prefix is “_in” for Inports and “_out” for
Outports.

o Any suffix or prefix can be used on the ports, however the selected
prefix should be consistent.

o Library blocks and reusable subsystems that encapsulate generic
functionality.

2. When the names of Inport and Outport blocks are hidden, apply a

consistent naming practice for the blocks. Suggested practices include
leaving the names as their default names (for example, Out1), giving them
the same name as the associated signal or giving them a shortened or
mangled version of the name of the associated signal.

Rationale

 Readability
 Workflow
 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.1.16. jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority strongly recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

For Trigger port blocks and Enable port blocks, match the name of the signal
triggering the subsystem.

 The block name should match the name of the signal triggering the
subsystem.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.2. Signals
Signals may be scalars, vectors, or busses. They may carry data or control flows.

You use signal labels to make model functionality more understandable from the Simulink
diagram. You can also use them to control the variable names used in simulation and code
generation. Enter signal labels only once (at the point of signal origination). Often, you may also
want to also display the signal name elsewhere in the model. In these cases, the signal name
should be inherited until the signal is functionally transformed. (Passing a signal through an
integrator is functionally transforming. Passing a signal through an Inport into a nested subsystem
is not.) Once a named signal is functionally transformed, a new name should be associated with
it.

Unless explicitly stated otherwise, the following naming rules apply to all types of signals.

7.2.1. na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A label must be displayed on a signal originating from the following blocks:

 Inport block

 From block (block icon exception applies – see Note below)

 Subsystem block or Stateflow chart block (block icon exception applies)

 Bus Selector block (the tool forces this to happen)

 Demux block

 Selector block

 Data Store Read block (block icon exception applies)

 Constant block (block icon exception applies)

A label must be displayed on any signal connected to the following destination
blocks (directly or by way of a basic block that performs a non transformative

operation):

 Outport block

 Goto block

 Data Store Write block

 Bus Creator block

 Mux block

 Subsystem block

 Chart block

Note: Block icon exception (applicable only where called out above): If the signal
label is visible in the originating block icon display, the connected signal does not
need not to have the label displayed, unless the signal label is needed elsewhere
due to a destination-based rule.

Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.20

7.2.2. na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites na_0008: Display of labels on signals

Description

If a label is present on a signal, the following rules define whether that label shall be
created there (entered directly on the signal) or propagated from its true source
(inherited from elsewhere in the model by using the „<‟ character).

1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative

operation
(For the purpose of interpreting this rule only, the Bus Creator block,
Mux block, and Selector block shall be considered to be included
among the blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a label
may be entered on the signal coming from the Inport to
accommodate reuse of the library block.

b. Originate from a basic block that performs a non-transformative
operation

c. Originate from a Subsystem or Stateflow chart block
Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal
to accommodate reuse of the library block.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.00

7.2.3. db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description The labels must be visually associated with the corresponding signal and not

overlap other labels, signals, or blocks.

Labels should be located consistently below horizontal lines and close to the
corresponding source or destination block.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.2.4. db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals and block inputs / outputs

Priority Mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A system must not have any:

 Unconnected subsystem or basic block input.

 Unconnected subsystem or basic block outputs

 Unconnected signal lines
In addition:

 An otherwise unconnected input should be connected to a ground block

 An otherwise unconnected output should be connected to a terminator
block

Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.3. Block Usage

7.3.1. na_0003: Simple logical expressions in If Condition block

ID: Title na_0003: Simple logical expressions in If Condition block

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A logical expression may be implemented within an If Condition block instead of
building it up with logical operation blocks, if the expression contains two or fewer
primary expressions. A primary expression is defined here to be one of the
following:

 An input

 A constant

 A constant parameter

 A parenthesized expression containing no operators except zero or one
instances of the following operators: <, <= , > , >= , ~=, ==, ~ . (See for
the following examples.)

Exception:

A logical expression may contain more than two primary expressions if both of the
following are true:

 The primary expressions are all inputs

 Only one type of logical operator is present

Examples of Acceptable Exceptions:

 u1 || u2 || u3 || u4 || u5

 u1 && u2 && u3 && u4

Examples of Primary Expressions:

 u1

 5

 K

 (u1 > 0)

 (u1 <= G)

 (u1 > U2)

 (~u1)

 (EngineState.ENGINE_RUNNING)

Examples of Acceptable Logical Expressions:

 u1 || u2

 (u1 > 0) && (u1 < 20)

 (u1 > 0) && (u2 < u3)

 (u1 > 0) && (~u2)

 (EngineState.ENGINE_RUNNING) && (PRNDLState.PRNDL_PARK)
Note: In this example EngineState.ENGINE_RUNNING and
PRNDLState.PRNDL_PARK are enumeration literals

Examples of unacceptable logical expressions include:

 u1 && u2 || u3 (too many primary expressions)

 u1 && (u2 || u3) (unacceptable operator within primary
expression)

 (u1 > 0) && (u1 < 20) && (u2 > 5) (too many primary expressions that
are not inputs)

 (u1 > 0) && ((2*u2) > 6) (unacceptable operator within primary
expression)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.3.2. na_0002: Appropriate implementation of fundamental logical and
numerical operations

ID: Title
na_0002: Appropriate implementation of fundamental logical and numerical
operations

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Blocks that are intended to perform numerical operations must not be
used to perform logical operations.

Incorrect

 A logical output should never be directly connected to the input of blocks

that operate on numerical inputs.

 The result of a logical expression fragment should never be operated on
by a numerical operator.

 This guideline for logical operations also applies to enumerated data
types.

Incorrect

 Blocks that are intended to perform logical operations must not be used to

perform numerical operations.

 A numerical output should never be connected to the input of blocks that
operate on logical inputs.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

7.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Control algorithm models must be designed from discrete blocks.

 The MathWorks “Simulink Block Data Type Support” table provides

a list of blocks that support production code generation.

o Use blocks that are listed as “Code Generation Support”.

o Do not use blocks that are listed as “Not recommended for

production code” – see footnote 4 in the table.

 In addition to the blocks defined by the above rule, do not use the

following blocks

Sources are not allowed:

Sine Wave

Pulse Generator

Random Number

Uniform Random Number

Band-Limited White Noise

Additional blocks that are not allowed:
The MAAB Style guide group recommends not using the following blocks. The
list can be extended by individual companies.

Slider Gain

Manual Switch

Complex to Magnitude-Angle

Magnitude-Angle to Complex

Complex to Real-Imag

Real-Imag to Complex

Polynomial

MATLAB Fcn
(1)

Goto Tag Visibility

Probe

Notes (1) In R2011a, the MATLAB Fnc was renamed the Interpreted MATLAB

Function

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.3.4. hd_0001: Prohibited Simulink sinks

7.3.5. na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

For signal flows, the following rules apply:

 From and Goto blocks must use local scope.
Note: Control flow signals may use global scope.
Control flow signals are output from:

 Function-call generators

 If and Case blocks

ID: Title hd_0001: Prohibited Simulink sinks

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Control algorithm models must be designed from discrete blocks.

The following sinks blocks are not allowed:

To File
To
Workspace
Stop
Simulation

Note
Simulink Scope and Display blocks are allowed in the model diagram. Consider
using the Simulink Signal logging and Signal and Scope Manager for data logging
and viewing requirements.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

 Function call outputs from MATLAB and Stateflow blocks
Control flow signals are identified as dashed lines in the model after updating a
Simulink model.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.3.6. jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 The switch condition, input 2, must be a Boolean value.

 The block parameter “Criteria for passing first input” should be set to

u2~=0.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.3.7. jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description Sum blocks should:

 Use the “rectangular” shape.

 Be sized so that the input signals do not overlap.

Correct

Incorrect

 You may use the round shape in feedback loops.

 There should be no more then 3 inputs.

 The inputs may be positioned at 90,180,270 degrees.

 The output should be positioned at 0 degrees.

Correct

Incorrect

Correct

Incorrect

Rationale  Readability  Verification and Validation

 Workflow

 Simulation

 Code Generation

Last Change V2.00

7.3.8. jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

When the relational operator is used to compare a signal to a constant value, the
constant input should be the second (lower) input signal.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.3.9. jc_0161: Use of Data Store Read/Write/Memory blocks

ID: Title jc_0161: Use of Data Store Read / Write / Memory blocks

Priority strongly recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites jc_0341: Data flow layer

Description

Data Store
Read

Data Store
Write

Data Store
Memory

 Prohibited in a data flow layer.

 Allowed between subsystems running at different rates.

Rationale
 Readability

 Workflow

 Verification and Validation

 Simulation  Code Generation

Last Change V2.00

7.4. Block Parameters

7.4.1. db_0112: Indexing

ID: Title db_0112: Indexing

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Use a consistent vector indexing method for all blocks.

When possible, use zero-based indexing to improve code efficiency. However,
since MATLAB blocks do not support zero-based indexing, one-based indexing can
be used for models containing MATLAB blocks.

See Also

 cgsl_0101: Zero-based indexing

 hisl_0021: Consistent vector indexing

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.4.2. na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Vectors
The individual scalar signals composing a vector must have common functionality,
data types, dimensions and units. The most common example of a vector signal is
sensor or actuator data that is grouped into an array indexed by location. The
output of a Mux block must always be a vector. The inputs to a Mux block must
always be scalars.

Busses
Signals that do not meet criteria for us as a vector, as described above, must only
be grouped into bus signals. Use Bus selector blocks may only be used with a bus
signal input; they must not be used to extract scalar signals from vector signals.

Examples
Some examples of vector signals include:

Vector type Size

Row vector [1 n]

Column vector [n 1]

Wheel speed vector [1 Number of wheels]

Cylinder vector [1 Number of cylinders]

Position vector based on 2-D
coordinates

[1 2]

Position vector based on 3-D
coordinates

[1 3]

Some examples of bus signals include:

Bus Type Elements

Sensor Bus

Force Vector [Fx, Fy, Fz]

Position

Wheel Speed Vector [Θlf, Θrf, Θlr, Θrr]

Acceleration

Pressure

Controller Bus
Sensor Bus

Actuator Bus

Serial Data Bus

Coolant Temperature

Engine Speed,
Passenger Door Open

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.4.3. db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

To insure that a parameter is tunable, it must be entered in a block dialog field:

 Without any expression.

 Without a data type conversion.

 Without selection of rows or columns.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.5. Simulink Patterns
The following rules illustrate sample patterns used in Simulink diagrams. As such, they would
normally be part of a much larger Simulink diagram.

7.5.1. na_0012: Use of Switch vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The Switch block:

 Should be used for modeling simple if-then-else structures, if the

associated then and else actions involve only the assignment of constant

values.

The if-then-else action subsystem construct:

 Should be used for modeling if-then-else structures, if the associated

then and/or else actions require complicated computations. This will

maximize simulation efficiency and the efficiency of generated code (Note

that even a basic block, for example a table look-up, may require fairly

complicated computations.)

 Must be used for modeling if-then-else structures, if the purpose of the

construct is to avoid an undesirable numerical computation, such as

division by zero.

 Should be used for modeling if-then-else structures, if the explicit or

implied then or the else action is just to hold the associated output

value(s).

In other cases, the degree of complexity of the then and/or else action
computations and the intelligence of the Simulink simulation and code generation
engines determine the appropriate construct.

These statements also apply to more complicated nested and cascaded if-then-
else structures and case structure implementations.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.5.2. db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns should be used for If-then-else-if constructs within a
Simulink model:

Equivalent Functionality Simulink pattern

IF THEN ELSE IF with
blocks

if (If_Condition) {
output_signal = If_Value;
}
else if (Else_If_Condition) {
output_signal =
Else_If_Value;
}
else {
output_signal =
Else_Value;
}

IF THEN ELSE IF
with if/then/else
subsystems:
if(Fault_1_Active &
Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)

{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.5.3. db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
The following patterns are used for case constructs within Simulink:

Equivalent Functionality Simulink Pattern

Case
With switch case block

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;
}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.5.4. na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple
Switches

ID: Title na_0028: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

MA Check No

Prerequisites
na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

Description

The use of switch constructs should be limited, typically to 3 levels. Replace switch
constructs that have more than 3 levels with an If-Then-Else action subsystem
construct.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

See also bn_0003: Use of If-Then-Else Action Subsystem to Replace Multiple Switches

Last Change V3.00

7.5.5. db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
Use the following patterns for logical combinations within a Simulink model:

Equivalent Functionality Simulink pattern

Combination of logical signals:
conjunctive

Combination of logical signals:
disjunctive

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

7.5.6. db_0117: Simulink patterns for vector signals

ID: Title db_0117: Simulink patterns for vector signals

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Simulink is a vectorizeable modeling language allowing for the direct processing of
vector data. The following patterns are used for vector signals within Simulink
model:

Equivalent Functionality Simulink Pattern

Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) *
tunable_parameter_value;
}

Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) *
tunable_parameter_vector(i);
}

Vector loop:
output_signal = 1;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal *
input_vector(i);
}

Vector loop:
output_signal = 1;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal /
input_vector(i);
}

Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_value;
}

Vector loop:
for (i=0; i<input_vector_size; i++) {
output_vector(i) = input_vector(i) +
tunable_parameter_vector(i);
}

Vector loop:
output_signal = 0;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal +
input_vector(i);
}

Vector loop:
output_signal = 0;
for (i=0; i<input_vector_size; i++) {
output_signal = output_signal -
input_vector(i);
}

Minimum or maximum of a signal or a
vector over time:

Change event of a signal or a vector:

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

7.5.7. jc_0351: Methods of initialization

ID: Title jc_0351: Methods of initialization

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites db_0140: Display of block parameters

Description

Simple initialization:

 Blocks such as the Unit Delay, which have an initial value field, can be

used to set simple initial values.

 To determine if the initial value needs to be displayed, see db_0140.

Example

Initialization that requires computation:
The following rules apply for complex initializations:

 Initialization should be performed in a separate subsystem.

 Initialization subsystem should have a name that indicates that

initialization is performed by the subsystem.

Complex initializations can either be done at a local level (Example A), at a global
level (Example B), or a combination of local and global.

Example A

Example B

Or

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

7.5.8. jc_0111: Direction of Subsystem

ID: Title jc_0111: Direction of Subsystem

Priority strongly recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

Subsystem must not be reversed.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.Stateflow

8.1. Chart Appearance

8.1.1. db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
The name of a Stateflow input/output should be the same as the corresponding
signal.
Exception: Reusable Stateflow blocks may have different port names.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

8.1.2. db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Transitions in Stateflow:

 Do not cross each other, if possible.

 Are not drawn one upon the other.

 Do not cross any states, junctions or text fields.

 Allowed, if transitioning to an internal state.

Transition labels can be visually associated to the corresponding transition.
Correct

Correct
Transition crosses state boundary to connect to substate

Incorrect
Transition crosses each other and transition crosses through state.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.1.3. db_0137: States in state machines

ID: Title db_0137: States in state machines

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites db_0149: Flowchart patterns for condition actions

Description

For all levels in a state machine, including the root level, for states with exclusive
decomposition, the following rules apply:

 At least two exclusive states must exist.

 A state cannot have only one substate.

 The initial state of every hierarchical level with exclusive states is clearly

defined by a default transition. In the case of multiple default transitions,

there must always be an unconditional default transition.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

8.1.4. db_0133: Use of patterns for Flowcharts

ID: Title db_0133: Use of patterns for Flowcharts

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A Flowchart is built with the help of Flowchart patterns (for example, IF-THEN-
ELSE, FOR LOOP, and so on):

 The data flow is oriented from the top to the bottom.

 Patterns are connected with empty transitions.

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.1.5. db_0132: Transitions in Flowcharts

ID: Title db_0132: Transitions in Flowcharts

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following rules apply to transitions in Flowcharts:

 Conditions are drawn on the horizontal.

 Actions are drawn on the vertical.

 Loop constructs are intentional exceptions to this rule.

 Transitions have a condition, a condition action, or an empty transition.

Transition with condition:

Transition with condition action:

Empty transition:

Transition actions are not used in Flowcharts. Transition actions are only valid
when used in transitions between states in a state machine, otherwise they are not
activated because of the inherent dependency on a valid state to state transition to
activate them.
Transition action:

At every junction, except for the last junction of a flow diagram, exactly one
unconditional transition begins. Every decision point (junction) must have a default
path.

A transition may have a comment:

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.1.6. jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

A new line should:

 Start after the entry (en) during (du), and exit (ex) statements.

 Start after the completion of an assignment statement “;”.

Correct

Incorrect
Failed to start a new line after en, du and ex.

Incorrect
Failed to start a new line after the completion of an assignment
statement “;”.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.1.7. jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function

Priority mandatory

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

The return value from a graphical function must be set in only one place.

Correct
Return value A is set in one place

Incorrect
Return value A is set in multiple places.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.1.8. jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition

Priority recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

 Default transition is connected at the top of the state.

 The destination state of the default transition is put above the other

states in the same hierarchy.

Correct

 The default transition is
connected at the top of
the state.

 The destination state of
the default transition is
put above the other
states in the same
hierarchy.

Incorrect  Default transition is
connected at the side of
the state (State 1).

 The destination state of

the default transition is
lower than the other
states in the same
hierarchy (SubSt_off).

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.1.9. jc_0521: Use of the return value from graphical functions

ID: Title jc_0521: Use of the return value from graphical functions

Priority recommended

Scope J-MAAB

MATLAB
Version

All

Prerequisites

Description

The return value from a graphical function should not be used directly in a
comparison operation.

Correct
An intermediate variable is used in the conditional expression after the
assignment of the return value from the function "temp_test" to the intermediate
variable "a".

Incorrect
Return value of the function “temp_test” is used in the conditional expression.

The data type of the variable in the

comparison operation is clear

The data type of the variable in the

comparison operation is clear

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.2. Stateflow data and operations

8.2.1. na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators

Priority strongly recommended

Scope MAAB

Prerequisites

Description

The bitwise Stateflow operators (&, |, and ^) should not be used in Stateflow
charts unless you want bitwise operations.

To enable bitwise operations:

1. Select File > Chart Properties

2. Select “Enable C-bit Operations”.

Correct
Use “&&” and “II” for Boolean operation.

Use “&” and “I” for bit operation.

Incorrect
Use “&” and “I” for Boolean operation.

Rational

 Readability
 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.2.2. jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Do not perform unary minus on unsigned integers.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.2.3. na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Comparisons should be made only between variables of the same data type.

 If comparisons are made between variables of different data types, the
variables need to be explicitly type cast to matching data types.

Correct
Same data type in “i” and “n”

Incorrect
Different data type in “i” and “d”

Correct

 Do not make comparisons between unsigned integers and negative numbers.

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.10

8.2.4. db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
All charts should use strong data typing with Simulink (The option "Use Strong
Data Typing with Simulink I/O" must be selected).

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.2.5. db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Internal signals and local auxiliary variables are "Local data" in Stateflow:

 All local data of a Stateflow block must be defined on the chart level or

below the Object Hierarchy.

 No local variables exist on the machine level (that is, there is no

interaction between local data in different charts).

 Parameters and constants are allowed at the machine level.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.2.6. jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

ID: Title
jc_0481: Use of hard equality comparisons for floating point numbers in
Stateflow

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Do not use hard equality comparisons (Var1 == Var2) with two floating point
numbers.

 If a hard comparison is required, a margin of error should be defined and used
in the comparison (LIMIT in the example).

 Hard equality comparisons may be done between two integer data types.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.00

8.2.7. jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The same variable should not have multiple meanings (usages) within a single
Stateflow state.

Correct
Variable of loop counter must not be
used other than loop counter.

Incorrect
The meaning of the variable “i”
changes from the index of the loop
counter to the sum of a+b

Correct
tempVar is defined as local scope in
both SubState_A and SubState_B

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.2.8. jc_0541: Use of tunable parameters in Stateflow

ID: Title jc_0541: Use of tunable parameters in Stateflow

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Create tunable parameters in Stateflow charts in one of the following ways:

1.) Define the parameters in the Stateflow chart and corresponding

parameters in the base workspace

2.) Include the tunable parameters as an input into the Stateflow chart.

The parameters must be defined in the base workspace.

Base
workspace
definitions

Stateflow
chart
definitions

Stateflow
chart

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.2.9. db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow

Priority mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
In Stateflow charts:

 Do not use the .ml syntax

Individual companies should decide on the use of MATLAB functions. If

they are permitted, then MATLAB functions should only be accessed

through the MATLAB function block.

Correct

Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Note
Code generation supports a limited subset of the MATLAB functions. For a
complete list of the supported function, see the MathWorks documentation.

Last Change V2.20

8.2.10. jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description In a Stateflow diagram, pointers to custom code variables are not allowed.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

8.3. Events

8.3.1. db_0126: Scope of events

ID: Title db_0126: Scope of events

Priority Mandatory

Scope MAAB

MATLAB
Version

Pre R2009b

Prerequisites

Description

The following rules apply to events in Stateflow:

 All events of a Chart must be defined on the chart level or lower.

 There is no event on the machine level (that is, there is no interaction

with local events between different charts).

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.3.2. jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites db_0126: Scope of events

Description

The following rules apply to event broadcasts in Stateflow:

 Directed event broadcasts are the only type of event broadcasts allowed.

 The send syntax or qualified event names are used to direct the event to a

particular state.

 Multiple send statements should be used to direct an event to more than

one state.

Correct: Example using the send syntax:

Correct: Example using qualified event names:

Incorrect: Use of a non-directed event

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.4. Statechart Patterns

8.4.1. db_0150: State machine patterns for conditions

ID: Title db_0150: State machine patterns for conditions

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for conditions within Stateflow state machines:

Equivalent Functionality State Machine Pattern

ONE CONDITION:

(condition)

UP TO THREE CONDITIONS,
SHORT FORM:
(The use of different logical
operators in this form is not
allowed, use sub conditions
instead)

(condition1 && condition2)
(condition1 || condition2)

TWO OR MORE
CONDITIONS, MULTILINE
FORM:
A sub condition is a set of
logical operations, all of the
same type, enclosed in
parentheses.
(The use of different operators
in this form is not allowed, use
sub conditions instead.)

(condition1 ...
&& condition2 ...
&& condition3)

(condition1 ...
|| condition2 ...
|| condition3)

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.4.2. db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for transition actions within Stateflow state
machines:

Equivalent
Functionality

State Machine Pattern

ONE TRANSITION
ACTION:

action;

TWO OR MORE
TRANSITION
ACTIONS,
MULTILINE FORM:
(Two or more
transition actions in
one line are not
allowed.)

action1;
action2;
action3;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.5. Flowchart Patterns
The following rules illustrate sample patterns used in flow charts. As such they would normally be
part of a much larger Stateflow diagram.

8.5.1. db_0148: Flowchart patterns for conditions

ID: Title db_0148: Flowchart patterns for conditions

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for conditions within Stateflow Flowcharts:

Equivalent
Functionality

Flowchart Pattern

ONE CONDITION:

[condition]

UP TO THREE
CONDITIONS,
SHORT FORM:
(The use of different
logical operators in
this form is not
allowed. Use sub
conditions instead.)

[condition1 &&
condition2 &&
condition3]
[condition1 ||
condition2 ||
condition3]

TWO OR MORE
CONDITIONS,
MULTILINE FORM:
(The use of different
logical operators in
this form is not
allowed. Use sub
conditions instead.)

[condition1 ...
&& condition2 ...
&& condition3]
[condition1 ...
|| condition2 ...
|| condition3]

CONDITIONS WITH
SUBCONDITIONS:
(The use of different
logical operators to
connect sub
conditions is not
allowed. The use of
brackets is
mandatory.)

[(condition1a ||
condition1b) ...
&& (condition2a ||
condition2b) ...
&& (condition3)]
[(condition1a &&
condition1b) ...
|| (condition2a &&
condition2b) ...
|| (condition3)]

CONDITIONS THAT
ARE VISUALLY
SEPARATED:
(This form can be
combined with the
preceding patterns.)

[condition1 &&
condition2]
[condition1 ||
condition2]

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.5.2. db_0149: Flowchart patterns for condition actions

ID: Title db_0149: Flowchart patterns for condition actions

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for condition actions within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

ONE CONDITION ACTION:
action;

TWO OR MORE CONDITION
ACTIONS, MULTILINE FORM:
(Two or more condition actions in
one line are not allowed.)
action1; ...
action2; ...
action3; ...

CONDITION ACTIONS, WHICH
ARE VISUALLY SEPARATED:
(This form can be combined with
the preceding patterns.)
action1a;
action1b;
action2;
action3;

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V2.20

8.5.3. db_0134: Flowchart patterns for If constructs

ID: Title db_0134: Flowchart patterns for If constructs

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites db_0148: Flowchart patterns for conditions

db_0149: Flowchart patterns for condition actions

Description

The following patterns are used for If constructs within Stateflow Flowcharts:

Equivalent
Functionality

Flowchart Pattern

IF THEN
if (condition){
 action;
}

IF THEN ELSE
if (condition) {
 action1;
}
else {
 action2;
}

IF THEN ELSE IF
if (condition1) {
 action1;
}
else if (condition2) {
 action2;
}
else if (condition3) {
 action3;
}
else {
 action4;
}

Cascade of IF THEN
if (condition1) {
 action1;
 if (condition2) {
 action2;
 if (condition3) {
 action3;
 }
 }
}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

8.5.4. db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs

Priority strongly recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
db_0148: Flowchart patterns for conditions
db_0149: Flowchart patterns for condition actions

Description

The following patterns must be used for case constructs within Stateflow
Flowcharts:

Equivalent Functionality Flowchart Pattern

CASE with exclusive
selection
selection = ...;
switch (selection) {
 case 1:
 action1;
 break;
 case 2:
 action2;
 break;
 case 3:
 action3;
 break;
 default:
 action4;
}

CASE with exclusive
conditions
c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && !c2 && !c3) {
 action1;
}
else if (!c1 && c2 && !c3) {
 action2;
}
else if (!c1 && !c2 && c3) {
 action3;
}
else {
 action4;
}

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

8.5.5. db_0135: Flowchart patterns for loop constructs

ID: Title db_0135: Flowchart patterns for loop constructs

Priority recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
db_0148: Flowchart patterns for conditions
db_0149: Flowchart patterns for condition actions

Description

The following patterns must be used to create Loops within Stateflow Flowcharts:

Equivalent Functionality Flowchart Pattern

FOR LOOP
for
(index=0;index<number_of_loops;index++)
{
 action;
}

WHILE LOOP
while (condition) {
 action;
}

DO WHILE LOOP
do {
 action;
}
while (condition);

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V1.00

8.6. State chart architecture

8.6.1. na_0038: Levels in Stateflow charts

ID: Title na_0038: Levels in Stateflow charts

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisite

Description
The number of nested States should be limited, typically 3 per level. If
additional levels are required, use sub-charts.
Incorrect: Level_4_a and Level_4_b are nested more then 3 deep.

Correct: The 4 levels are encapsulated inside an sub chart

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

8.6.2. na_0039: Use of Simulink in Stateflow charts

ID: Title na_0039: Use of Simulink in Stateflow charts

Priority Recommended

Scope NA-MAAB

MATLAB
Version

2010B and Later

Prerequisite

Description
Do not nest Stateflow charts inside Simulink functions included in Stateflow
charts.
Incorrect

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

8.6.3. na_0040: Number of states per container

ID: Title na_0040: Number of states per container

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisite

Description

The number of viewable States per container should be limited, typically to 6 to
10 states per container. The number is based on the visible states in the
diagram.
Correct

Note A container is either a State, Box or root level chart.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

8.6.4. na_0041: Selection of function type

ID: Title na_0041: Selection of function type

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisite

Description

Stateflow supports three types of functions: Graphical, MATLAB and Simulink.
The appropriate function depends on the type of operations required:

 Simulink

 Transfer functions

 Integrators

 Table look-ups

 MATLAB

 Complex equations

 If / then /else logic

 Graphical functions

 If / then / else logic

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

8.6.5. na_0042: Location of Simulink functions

ID: Title na_0042: Location of Simulink functions

Priority Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisite na_0039: Use of Simulink in Stateflow charts

Description

When deciding whether to embed Simulink functions inside a Stateflow chart,
the following conditions make embedding the preferred option. If the Simulink
functions:

 Use only local Chart data

or

 Use a mixture of local Chart data and inputs from Simulink

or

 Are called from multiple locations within the chart

or

 Are not called every time step

Rationale
 Readability

 Workflow

 Verification and Validation

 Simulation  Code Generation

Last Change V3.00

9.Enumerated Data

9.1.1. na_0033: Enumerated Types Usage

ID: Title na_0033: Enumerated Types Usage

Priority Recommended

Scope NA-MAAB

MATLAB
Version

R2010b and later

Prerequisites
na_0002: Appropriate implementation of fundamental logical and numerical
operations

Description

An enumerated data type should be used when a signal or parameter can take
on a finite set of integer values, and those values are associated with a set of
named items. The names, called literals, have meaning in the context of the
algorithm or the domain in which it operates. Typically, these literals represent
an operating mode, signal status, build variation, or some other discrete property
that the quantity represented by the variable can take on. A typical automotive
example of this is the modes of a transmission: Park, Reverse Neutral, Drive,
Low

Within a project, there must be provisions in the code build process to ensure
that the same literal is not defined by multiple enumerated data types.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

See also dm_0002: Enumerated type usage

Last Change V3.00

9.1.2. na_0031: Definition of default enumerated value

ID: Title na_0031: Definition of default enumerated value

Priority Recommended

Scope NA-MAAB

MATLAB
Version

R2010b and later

Prerequisites

Description
The default value of the enumeration should always be explicitly defined for the
enumerated type.

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.MATLAB Functions

10.1. MATLAB Function Appearance

10.1.1. na_0018: Number of nested if/else and case statement

ID: Title na_0018: Number of nested if/else and case statement

Priority Strongly Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description
The number of levels of nested if /else and case statements should be limited,
typically to 3 levels.

See also jr_0002: Number of nested if/else and case statement blocks

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.1.2. na_0019: Restricted Variable Names

ID: Title na_0019: Restricted Variable Names

Priority Mandatory

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

To improve the readability of the MATLAB code, avoid using reserved C variable
names. For example, avoid using const, TRUE, FALSE, infinity, nil, double, single,
or enum in MATLAB Function code. These names may conflict with the compiler
after C code is generated from the MATLAB code.

Avoid using variable names that conflict with MATLAB Functions, for example
"conv".

Note
Reserved key words are defined in Simulink Coder > User‟s Guide > Code
Generation> Configuration > Code Appearance.

See also Derived from jh_0021: Restricted Variable Names

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.1.3. na_0025: MATLAB Function Header

ID: Title na_0025: MATLAB Function Header

Priority Strongly Recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

MATLAB Functions must have a descriptive header. Header content may include,
but is not limited to, the following types of information:

 Function name

 Description of function

 Assumptions and Limitations

 Description of changes from previous versions

 Lists of inputs and outputs

Example:

See also jh_0073: eML Header version

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.2. MATLAB Function Data and Operations

10.2.1. na_0034: MATLAB Function block input/output settings

ID: Title na_0034: MATLAB Function block input/output settings

Priority Strongly recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

All inputs and outputs to MATLAB Function blocks should have the data type
explicitly defined, either in the Model Explorer or at the start of the function. This
provides a more rigorous data type check for MATLAB Function blocks and
prevents the need for using assert statements.

See also jh_0063: eML block input / output settings

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.2.2. na_0024: Global Variables

ID: Title na_0024: Global Variables

Priority Strongly recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

The preferred method for accessing common data is with signal lines. However, if
required, Data Store Memory can be used to emulate global memory.

Example:
In this example, the same Data Store Memory (ErrorFlag_DataStore) is written to
two separate MATLAB Functions.

See also ek_0003: Global Variables

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.3. MATLAB Function Patterns

10.3.1. na_0022: Recommended patterns for Switch / Case statements

ID: Title na_0022: Recommended patterns for Switch / Case statements

Priority Mandatory

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

Switch / Case statements must use constant values for the “Case” arguments.
Input variables cannot be used in the “Case” arguments

Correct

Incorrect

See also jh_0026: Switch / Case statement

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.4. MATLAB Function Usage

10.4.1. na_0016: Source lines of MATLAB Functions

ID: Title na_0016: Source lines of MATLAB Functions

Priority Mandatory

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

The length of MATLAB functions should be limited, with a recommended limit of 60
lines of code. This restriction applies to MATLAB Functions that reside in the
Simulink block diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the
length of sub-functions to 60 lines of code.

See also IM_0008: Source lines of eML

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.4.2. na_0017: Number of called function levels

ID: Title na_0017: Number of called function levels

Priority Mandatory

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

The number of levels of sub-functions should be limited, typically to 3 levels.
MATLAB function blocks that resides at the Simulink block diagram level counts as
the first level, unless it is simply a wrapper for an external MATLAB file with a .m
extension.

This includes functions that are defined within the MATLAB block and those in
separate .m files.

Note
Standard utility functions, such as built in functions like sqrt or log, are not included
in the number of levels. Likewise, commonly used custom utility functions can be
excluded from the number of levels.

See also im_0009: Number of called function levels

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

10.4.3. na_0021: Strings

ID: Title na_0021: Strings

Priority Strongly recommended

Scope NA-MAAB

MATLAB
Version

All

Prerequisites

Description

The use of strings is not recommended. MATLAB Functions store strings as
character arrays. The arrays cannot be resized to accommodate a string value of
different length, due to lack of dynamic memory allocation. Stings are not a
supported data type in Simulink, so MATLAB Function blocks cannot pass the
string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = ‘x_rate_error’; %this causes an error because the array size is now 1 x 12,
not 1 x 10

Note
If the string is being used for switch / case behavior, consider using enumerated
data types.

See also jh_0024: Strings

Rationale

 Readability

 Workflow

 Simulation

 Verification and Validation

 Code Generation

Last Change V3.00

11.Appendix A: Recommendations for Automation Tools

These recommendations are for companies that automate checking of the Style Guidelines. The
MathWorks Automotive Advisory Board (MAAB) developed these recommendations for tool
vendors who create tools developed with MathWorks tools that check models against these
guidelines. In order to provide the maximum information to potential users of the tools, the MAAB
strongly recommends that tool vendors provide a compliance matrix that is easily accessible
when the tool is running. This information should be available without a need to purchase the tool.

The compliance matrix should include the following information:

 Version of the guidelines that are checked – shall include the complete title as found on

the title page of this document.

 The MAAB Style Guidelines Title and Version document number will be included

 Table consisting of the following information for each guideline.

 Guideline ID

 Guideline Title

 Level of Compliance

 Detail

The Guideline ID and Title shall be exactly as included in this document. The Level of
Compliance shall be one of the following.

 Correction – The tool checks and automatically or semi-automatically corrects the non-

compliance.

 Check – The tool checks and flags non-compliances. It is the developer’s responsibility to

make the correction.

 Partial – The tool checks part of the guideline. The detail section should clearly identify

what is and what is not checked.

 None – the guideline is not checked by the tool. It is highly recommended that the

vendor provide a recommendation of how to manually check any guideline not checked

by the tool.

12.Appendix B: Guideline Writing
Guidelines with the following characteristics are easier to understand and use. At minimum,
when writing a new guideline, it should be:

 Understandable and unambiguous

 Easy to find

 Minimal

Guidelines with these characteristics are easier to understand and use.

"Understandable and unambiguous Guideline description should be precise, clearly worded,
concise and should define property characteristic of a model (or part of a model). Use the words
"must," "shall," "should," and "may" carefully; they have distinct meanings that are important for
model developers and model checkers (human and automated). It is helpful to the reader if the
guideline author describes how the conformant state can be reached (e.g. by selecting particular
options or clicking a certain button). Examples, counterexamples, pictures, diagrams, and
screenshots are also helpful and therefore encouraged.
Minimize the allowable exceptions to a guideline; they blur the guideline and make it harder to
apply. If a guideline has many allowable exceptions, you may be trying to cover too many
characteristics with one guideline - see "minimal" below for some solutions.

By "Easy to find Guideline should have a clear, stable title and be properly located among all the
other guidelines. A guideline's title should describe the topic covered but not the specific
evaluation criteria. This makes the title less likely to change over time and therefore easier to find.
Specific evaluation criteria should be included in the guideline's description. For example, if a
guideline addresses the characters allowed in names, the guideline's title should be something
like "Allowed characters in names," and the guideline's description should indicate specifically
what characters are or are not to be used. If a guideline has prerequisites, they should appear
above or before the dependent guideline. (This may not always be possible if the prerequisite is
in a different section.)

Minimal Guideline should address only one model characteristic at a time. Guidelines should be
atomic. So, for example, instead of writing a big guideline that addresses error prevention and
readability at the same time, make two guidelines – one that addresses error prevention and one
that addresses readability. Make one a prerequisite of the other if appropriate. Also, big
guidelines are more likely than small guidelines to require compromises for wide acceptance. Big
guidelines may therefore end up being weaker, less specific, and less beneficial. Small, focused
guidelines will be less likely to change due to compromise and easier to adopt.

13.Appendix C: Flowchart Reference

The following patterns are used for If-then-else-if constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

IF THEN

IF THEN ELSE

IF THEN ELSE IF

Cascade of IF THEN

The following patterns are used the following patterns for case constructs within Stateflow
Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

CASE with exclusive selection

CASE with exclusive conditions

Use the following patterns for For Loops within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Curved Line Flow Chart Pattern

FOR LOOP

WHILE LOOP

DO WHILE LOOP

Alternately, use the following patterns for If-then-else-if constructs within Stateflow Flowcharts:

Straight Line Flow Chart Pattern Alternate Straight Line Flow Chart Pattern

IF THEN ELSE IF

Cascade of IF THEN

14.Obsolete rules

14.1. Removed in version 2.2
JM_0013 : Annotations : The rule was original written due to a printing bug in R13. The bug was
fixed in R14 SP1.

14.2. Removed in version 3.0
No guidelines were removed in version 3.0

15.Glossary
Actions
Actions are part of Stateflow diagram execution. The action can be executed as part of a
transition from one state to another, or depend on the activity status of a state. Transitions can
have condition actions and transition actions. For example,

States can have entry, during, exit, and, on event_name actions. For example,

If you enter the name and backslash followed directly by an action or actions (without the entry
keyword), the action(s) are interpreted as entry action(s). This shorthand is useful if you are only
specifying entry actions.
The action language defines the categories of actions you can specify and their associated
notations. An action can be a function call, an event to be broadcast, a variable to be assigned a
value, etc.

Action Language
Sometimes you want actions to take place as part of Stateflow diagram execution. The action can
be executed as part of a transition from one state to another, or it can depend on the activity
status of a state. Transitions can have condition actions and transition actions. States can have
entry, during, exit, and, on event_name actions.
An action can be a function call, an event to be broadcast, a variable to be assigned a value, etc.
The action language defines the categories of actions you can specify and their associated
notations. Violations of the action language notation are flagged as errors by the parser. This
section describes the action language notation rules.

Chart Instance
A chart instance is a link from a Stateflow model to a chart stored in a Simulink library. A chart in
a library can have many chart instances. Updating the chart in the library automatically updates
all the instances of that chart.

Condition
A condition is a Boolean expression to specify that a transition occur given that the specified
expression is true. For example,

The action language defines the notation to define conditions associated with transitions.

Connective Junction
Connective junctions are decision points in the system. A connective junction is a graphical object
that simplifies Stateflow diagram representations and facilitates generation of efficient code.
Connective junctions provide alternative ways to represent desired system behavior.
This example shows how connective junctions (displayed as small circles) are used to represent
the flow of an if code structure.

Or the equivalent squared style

Name Button
Icon

Description

Connective
junction

One use of a Connective junction is to handle situations where
transitions out of one state into two or more states are taken based on
the same event but guarded by different conditions.

Data
Data objects store numerical values for reference in the Stateflow diagram.

Defining Data

A state machine can store and retrieve data that resides internally in its own workspace. It can
also access data that resides externally in the Simulink model or application that embeds the
state machine. When creating a Stateflow model, you must define any internal or external data
referenced by the state machine's actions

Data Dictionary
The data dictionary is a database where Stateflow diagram information is stored. When you
create Stateflow diagram objects, the information about those objects is stored in the data
dictionary once you save the Stateflow diagram.

Decomposition
A state has decomposition when it consists of one or more substates. A Stateflow diagram that
contains at least one state also has decomposition. Representing hierarchy necessitates some
rules around how states can be grouped in the hierarchy. A superstate has either parallel (AND)
or exclusive (OR) decomposition. All substates at a particular level in the hierarchy must be of the
same decomposition.

Parallel (AND) State Decomposition. Parallel (AND) state decomposition is indicated when
states have dashed borders. This representation is appropriate if all states at that same level in
the hierarchy are active at the same time. The activity within parallel states is essentially
independent.
Exclusive (OR) State Decomposition. Exclusive (OR) state decomposition is represented by
states with solid borders. Exclusive (OR) decomposition is used to describe system modes that
are mutually exclusive. Only one state, at the same level in the hierarchy, can be active at a time.

Default Transition
Default transitions are primarily used to specify which exclusive (OR) state is to be entered when
there is ambiguity among two or more neighboring exclusive (OR) states. For example, default
transitions specify which substate of a superstate with exclusive (OR) decomposition the system
enters by default in the absence of any other information. Default transitions are also used to
specify that a junction should be entered by default. A default transition is represented by
selecting the default transition object from the toolbar and then dropping it to attach to a
destination object. The default transition object is a transition with a destination but no source
object.

Name Button
Icon

Description

Default
transition

Use a Default transition to indicate, when entering this level in the
hierarchy, which state becomes active by default.

Events
Events drive the Stateflow diagram execution. All events that affect the Stateflow diagram must
be defined. The occurrence of an event causes the status of the states in the Stateflow diagram
to be evaluated. The broadcast of an event can trigger a transition to occur and/or can trigger an
action to be executed. Events are broadcast in a top-down manner starting from the event's
parent in the hierarchy.

Finite State Machine
A finite state machine (FSM) is a representation of an event-driven system. FSMs are also used
to describe reactive systems. In an event-driven or reactive system, the system transitions from
one mode or state, to another prescribed mode or state, provided that the condition defining the
change is true.

Flow Graph
A flow graph is the set of Flowcharts that start from a transition segment that, in turn, starts from a
state or a default transition segment.

Flowchart (also known as Flow Path)

A Flowchart is an ordered sequence of transition segments and junctions where each succeeding
segment starts on the junction that terminated the previous segment.

Flow Subgraph
A flow subgraph is the set of Flowcharts that start on the same transition segment.

Hierarchy
Hierarchy enables you to organize complex systems by placing states within other higher-level
states. A hierarchical design usually reduces the number of transitions and produces neat, more
manageable diagrams.

History Junction
A History Junction provides the means to specify the destination substate of a transition based on
historical information. If a superstate has a History Junction, the transition to the destination
substate is defined to be the substate that was most recently visited. The History Junction applies
to the level of the hierarchy in which it appears.

Name Button
Icon

Description

History
Junction

Use a History Junction to indicate, when entering this level in the
hierarchy, that the last state that was active becomes the next state to
be active.

Inner Transitions
An inner transition is a transition that does not exit the source state. Inner transitions are most
powerful when defined for superstates with XOR decomposition. Use of inner transitions can
greatly simplify a Stateflow diagram.

Library Link
A library link is a link to a chart that is stored in a library model in a Simulink block library.

Library Model
A Stateflow library model is a Stateflow model that is stored in a Simulink library. You can include
charts from a library in your model by copying them. When you copy a chart from a library into
your model, Stateflow does not physically include the chart in your model. Instead, it creates a
link to the library chart. You can create multiple links to a single chart. Each link is called a chart
instance. When you include a chart from a library in your model, you also include its state
machine. Thus, a Stateflow model that includes links to library charts has multiple state
machines. When Stateflow simulates a model that includes charts from a library model, it includes
all charts from the library model even if there are links to only some of its models. However, when
Stateflow generates a stand-alone or Real-Time Workshop

®
 target, it includes only those charts

for which there are links. A model that includes links to a library model can be simulated only if all
charts in the library model are free of parse and compile errors.

Machine
A machine is the collection of all Stateflow blocks defined by a Simulink model exclusive of chart
instances (library links). If a model includes any library links, it also includes the state machines
defined by the models from which the links originate.

Nonvirtual Block
Blocks that perform a calculation; such as a Gain block.

Notation
A notation defines a set of objects and the rules that govern the relationships between those
objects. Stateflow notation provides a common language to communicate the design information
conveyed by a Stateflow diagram.

Stateflow notation consists of:

 A set of graphical objects

 A set of nongraphical text-based objects

 Defined relationships between those objects

Parallelism
A system with parallelism can have two or more states that can be active at the same time. The
activity of parallel states is essentially independent. Parallelism is represented with a parallel
(AND) state decomposition.

Real-Time System
A system that uses actual hardware to implement algorithms, for example, digital signal
processing or control applications.

Real-Time Workshop®
Real-Time Workshop is an automatic C language code generator for Simulink. It produces C
code directly from Simulink block diagram models and automatically builds programs that can be
run in real-time in a variety of environments.

Real-Time Workshop Target
An executable built from code generated by Real-Time Workshop

S-Function
A customized Simulink block written in C or M-Code. C-code S-Functions can be inlined in Real-
Time Workshop. When using Simulink together with Stateflow for simulation, Stateflow generates
an S-Function (MEX-file) for each Stateflow machine to support model simulation. This generated
code is a simulation target and is called the S-Fun target within Stateflow.

Signal propagation
Process used by Simulink to determine attributes of signals and blocks, such as data types,
labels, sample time, dimensionality, and so on, that are determined by connectivity

Signal source
The signal source is the block of origin for a signal. The signal source may or may not be the true
source

Simulink
Simulink is a software package for modeling, simulating, and analyzing dynamic systems. It
supports linear and nonlinear systems, modeled in continuous time, sampled time, or a hybrid of
the two. Systems can also be multi-rate, i.e., have different parts that are sampled or updated at
different rates.
It allows you to represent systems as block diagrams that you build using your mouse to connect
blocks and your keyboard to edit block parameters. Stateflow is part of this environment. The
Stateflow block is a masked Simulink model. Stateflow builds an S-Function that corresponds to
each Stateflow machine. This S-Function is the agent Simulink interacts with for simulation and
analysis.
The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow diagrams into Simulink models, you can add
event-driven behavior to Simulink simulations. You create models that represent both data and
control flow by combining Stateflow blocks with the standard Simulink blockset. These combined
models are simulated using Simulink.

State
A state describes a mode of a reactive system. A reactive system has many possible states.
States in a Stateflow diagram represent these modes. The activity or inactivity of the states
dynamically changes based on events and conditions.
Every state has hierarchy. In a Stateflow diagram consisting of a single state, that state's parent
is the Stateflow diagram itself. A state also has history that applies to its level of hierarchy in the
Stateflow diagram. States can have actions that are executed in a sequence based upon action
type. The action types are: entry, during, exit, or on event_name actions.

Name Button Icon Description

State

Use a state to depict a mode of the system.

Stateflow Block
The Stateflow block is a masked Simulink model and is equivalent to an empty, untitled Stateflow
diagram. Use the Stateflow block to include a Stateflow diagram in a Simulink model.
The control behavior that Stateflow models complements the algorithmic behavior modeled in
Simulink block diagrams. By incorporating Stateflow blocks into Simulink models, you can add
complex event-driven behavior to Simulink simulations. You create models that represent both
data and control flow by combining Stateflow blocks with the standard Simulink and toolbox block
libraries. These combined models are simulated using Simulink.

Stateflow Debugger
Use the Stateflow Debugger to debug and animate your Stateflow diagrams. Each state in the
Stateflow diagram simulation is evaluated for overall code coverage. This coverage analysis is
done automatically when the target is compiled and built with the debug options. The Debugger
can also be used to perform dynamic checking. The Debugger operates on the Stateflow
machine.

Stateflow Diagram
Using Stateflow, you create Stateflow diagrams. A Stateflow diagram is also a graphical
representation of a finite state machine where states and transitions form the basic building
blocks of the system

Stateflow Explorer
Use the Stateflow Explorer to add, remove, and modify data, event, and target objects.

Stateflow Finder
Use the Finder to display a list of objects based on search criteria you specify. You can directly
access the properties dialog box of any object in the search output display by clicking on that
object.

Substate
A state is a substate if it is contained by a superstate.

Superstate
A state is a superstate if it contains other states, called substates.

Target
An executable program built from code generated by Stateflow or Real-Time Workshop.

Top down Processing
Top down processing refers to the way in which Stateflow processes states. In particular,
Stateflow processes superstates before states. Stateflow processes a state only if its superstate
is activated first.

Transition
A transition describes the circumstances under which the system moves from one state to
another. Either end of a transition can be attached to a source and a destination object. The
source is where the transition begins and the destination is where the transition ends. It is often
the occurrence of some event that causes a transition to take place.

Transition Path
A transition path is a Flowchart that starts and ends on a state
.

Transition Segment
A transition segment is a single directed edge on a Stateflow diagram. Transition segments are
sometimes loosely referred to as transitions.

Tunable parameters
A Tunable parameters is a parameter that can be adjusted both in the model and in generated
code.

True Source
The true source is the block which creates a signal. The true source is different from the signal
source since the signal source may be a simple routing block such as a demux block.

Virtual Block
When creating models, you need to be aware that Simulink blocks fall into two basic categories:
nonvirtual and virtual blocks. Nonvirtual blocks play an active role in the simulation of a system. If
you add or remove a nonvirtual block, you change the model's behavior. Virtual blocks, by
contrast, play no active role in the simulation. They simply help to organize a model graphically.
Some Simulink blocks can be virtual in some circumstances and nonvirtual in others. Such blocks
are called conditionally virtual blocks. The following table lists the virtual and conditionally virtual
blocks in Simulink.

Virtual Blocks

Block Name Condition Under Which Block Will Be Virtual

Bus Selector Virtual if input bus is virtual

Demux Always virtual

Enable Virtual unless connected directly to an Outport block

From Always virtual

Goto Always virtual

Goto Tag Visibility Always virtual

Ground Always virtual

Inport Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level) Simulink window.

Mux Always virtual

Outport Virtual when the block resides within any subsystem block
(conditional or not), and does not reside in the root (top-
level)
Simulink window

Selector Virtual except in matrix mode

Signal Specification Always virtual

Subsystem Virtual unless the block is conditionally executed and/or
the
block's Treat as Atomic Unit option is selected

Terminator Always virtual

Trigger Virtual if the Outport port is not present

Virtual Scrollbar
A virtual scrollbar enables you to set a value by scrolling through a list of choices. When you
move the mouse over a menu item with a virtual scrollbar, the cursor changes to a line with a
double arrowhead. Virtual scrollbars are either vertical or horizontal. The direction is indicated by
the positioning of the arrowheads. Drag the mouse either horizontally or vertically to change the
value.

