

© Copyright 2007JMAAB. All rights reserved. 1

CONTROL ALGORITHM MODELING
GUIDELINES USING MATLAB®,

Simulink®, and Stateflow®

Version 4.01（English edition）

Japan MBD Automotive Advisory Board

(JMAAB)
31-Mar- 2015
（correct 19-Jun-2015）

© Copyright 2007JMAAB. All rights reserved. 2

■ Copyright

 The copyright of this document belongs to JMAAB.

 JMAAB provides no guarantees with regard to the contents of this document. JMAAB shall not be
liable for any failures which occur as a result of using this document. Please note that the
information within this document is subject to change or removal without notice.

■ Handling this document

 This document may be reproduced only for internal use and non-commercial purposes. In
addition, when quoting from this document, state explicitly that the quote comes from this
document, and include the name of the author, Title etc., in accordance with the requirements for
citation.

 Please refer to the JMAAB website for any information regarding this deliverable
(http://jmaab.mathworks.jp/).

 For any other inquiries, please contact the JMAAB office (jmaab-office@mathworks.co.jp).

■ Please note:

 This document is English edition of “CONTROL ALGORITHM MODELING GUIDELINES USING
MATLAB®, Simulink® and Stateflow® Version 4.0”.

 There were differences between Japanese edition and English edition until Version 3.0. However,
they were fixed in Version 4.0. Thus, there may be the case that the even the same rules are
different from the past version.

© Copyright 2007JMAAB. All rights reserved. 3

TABLE OF CONTENTS

CONTROL ALGORITHM MODELING GUIDELINES USING MATLAB®, SIMULINK®,
AND STATEFLOW® 1

1. INTRODUCTION 10

1.1. Purpose of these Guidelines 10

1.2. Guideline template 10
1.2.1. ID 10
1.2.2. Title 11
1.2.3. Priority 11
1.2.4. Scope : 11
1.2.5. MATLAB version 11
1.2.6. Prerequisites 12
1.2.7. Description 12
1.2.8. See Also 12
1.2.9. Last Change 12

1.3. Organization of these Guidelines 12

2. NAMING CONVENTIONS 13

2.1. Naming Conventions - Overall summary 13
2.1.1. Rule IDs for characters that can be used in names 13
2.1.2. Rule IDs for character length 13
2.1.3. List of naming rule constraints "character type / character length" 13

2.2. General Rules 13
2.2.1. ar_0001: Usable characters for file names 13
2.2.2. ar_0002: Usable characters for folder names 14
2.2.3. jc_0241: Length restrictions for file names 15
2.2.4. jc_0242: Length restrictions for folder names 15

2.3. Internal model rules 16
2.3.1. jc_0201: Usable characters for Subsystem names 16
2.3.2. jc_0211: Usable characters for Inport block and Outport block 16
2.3.3. jc_0222: Usable characters for signal line and bus names 17
2.3.4. jc_0232: Usable characters for parameter names 17
2.3.5. jc_0231: Usable characters for block names 18
2.3.6. jc_0243: Length restrictions for subsystem names 18
2.3.7. jc_0244: Length restrictions for Inport and Outport names 19
2.3.8. jc_0245: Length restrictions for signal and bus names 19
2.3.9. jc_0246: Length restrictions for parameter names 20
2.3.10. jc_0247: Length restrictions for block names 21

2.4. Notes on other used characters 21
2.4.1. na_0035: Adoption of naming conventions 21
2.4.2. jc_0251: Naming restrictions for signals and parameters. 22
2.4.3. na_0014: Use of local language in Simulink and Stateflow 22

3. MODEL ARCHITECTURE 26

© Copyright 2007JMAAB. All rights reserved. 4

3.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow 26
3.1.2. na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines 26
3.1.3. db_0143: Similar block types on the model levels 26
3.1.4. db_0144: Use of Subsystems 28

4. SIMULINK 30

4.1. Diagram appearance 30
4.1.1. na_0004: Simulink model appearance 30
4.1.2. db_0043: Simulink font and font size 31
4.1.3. db_0042: Port block in Simulink models 31
4.1.4. jm_0002: Block resizing 32
4.1.5. db_0142: Position of block names 33
4.1.6. jc_0061: Display of block names 33
4.1.7. db_0140: Display of block parameters 34
4.1.8. db_0032: Simulink signal appearance 37
4.1.9. db_0141: Signal flow in Simulink models 38
4.1.10. jc_0110: Direction of block 39
4.1.11. jc_0111: Direction of Subsystem 40
4.1.12. jc_0653: Guidelines for avoiding algebraic loops between subsystems 40
4.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks 41
4.1.14. jc_0602: Consistency in model element names 42
4.1.15. db_0146: Triggered, enabled, conditional Subsystems 43
4.1.16. jc_0281: Naming of Trigger Port block and Enable Port block 44
4.1.17. jc_0603: Model description 45
4.1.18. jc_0604: Block shading 46

4.2. Signals 47
4.2.1. na_0010: Grouping data flows into signals 47
4.2.2. na_0008: Display of labels on signals 47
4.2.3. na_0009: Entry versus propagation of signal labels 48
4.2.4. jc_0008 : Definition of a Signal labels. 49

4.2.5. jc_0009 ：Propagation of signal label 50

4.2.6. na_0005: Port block name visibility in Simulink models 52
4.2.7. jc_0082: Display of Inport and Outport block names 1 53
4.2.8. jc_0083: Display of Inport and Outport block names 2 55
4.2.9. db_0097: Position of labels for signals and busses 57
4.2.10. db_0081: Unconnected signals, block inputs and block outputs 57

4.3. Use of of Blocks 58
4.3.1. na_0003: Simple logical expressions for If condition blocks 58
4.3.2. na_0002: Appropriate implementation of fundamental logical and numerical operations 59
4.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers 61
4.3.4. hd_0001: Prohibited Simulink sinks 63
4.3.5. na_0011: Scope of Goto and From blocks 63
4.3.6. jc_0141: Use of the Switch block 64
4.3.7. jc_0121: Use of the Sum block 65
4.3.8. jc_0610: Operator order for Product block 67
4.3.9. jc_0611: Input signal sign during product block division 67
4.3.10. jc_0131: Use of Relational Operator block 68
4.3.11. jc_0161: Use of Data Store Read/Write/Memory blocks 68
4.3.12. Guideline for using the Logical Operator block 69
4.3.13. jc_0011: Optimization parameters for Boolean data types 70
4.3.14. jc_0629: Fcn block use limits 70
4.3.15. jc_0622: Guideline for using the Fcn block 71
4.3.16. jc_0626: Guideline for using the Lookup Table system block 72
4.3.17. jc_0627: Guideline for using the Discrete-Time Integrator block 73

© Copyright 2007JMAAB. All rights reserved. 5

4.3.18. jc_0628: Guideline for using the Saturation Block 74
4.3.19. jc_0650: Block input/output data type with switching function 75
4.3.20. jc_0630: Number of data ports in Multiport Switch block 76
4.3.21. jc_0631: Input of Multiport Switch block to control port 79
4.3.22. jc_0632: Default case port in Multiport Switch block 79

4.4. Initialization 81
4.4.1. jc_0625: Unification of descriptions of external input values as initial values 81
4.4.2. jc_0640: Detection of undefined initial output 82

4.5. Block Parameters 83
4.5.1. db_0112: Indexing 83
4.5.2. db_0110: Tunable parameters in basic blocks 83
4.5.3. jc_0645: Named constant setting 84
4.5.4. jc_0641: Sample time setting 85
4.5.5. jc_0642: Integer rounding mode setting 85
4.5.6. jc_0643: Fixed-point setting 86
4.5.7. jc_0644: Guideline for type setting 87

4.6. Simulink pattern 89
4.6.1. db_0114: Simulink patterns for If-then-else-if constructs 89
4.6.2. db_0115: Simulink patterns for case constructs 90
4.6.3. db_0116: Simulink patterns for logical constructs with logical blocks 91
4.6.4. db_0117: Simulank patterns for vector signals 91
4.6.5. na_0012: Use of Switch vs. If-Then-Else Action Subsystem 93
4.6.6. na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches 94
4.6.7. jc_0658 ：Usage rules for Action Subsystem using conditional control flow 98

4.6.8. jc_0623: Use of Memory block vs. Unit Delay block 101
4.6.9. jc_0624: Guideline for using the Delay block 101
4.6.10. jc_0651: Guideline for use when implementing cast 102
4.6.11. jc_0652: Constant related to timer counter 105
4.6.12. jc_0659: Usage restrictions of signal lines inputted to Merge block 105
4.6.13. jc_0656: Guideline for using the Conditional Control block 107
4.6.14. jc_0657: Retention of output value based on Conditional Control Flow block and Merge

block 108

5. STATEFLOW 112

5.1. Stateflow variable settings 112
5.1.1. db_0123: Stateflow port names 112
5.1.2. jc_0700: Unused data in Stateflow block 112
5.1.3. db_0122: Stateflow and Simulink interface signals and parameters 113
5.1.4. db_0125: Scope of internal signals and local auxiliary variables 114
5.1.5. jc_0701: Usable numbers in first index 115
5.1.6. jc_0702: Stateflow parameters and constants 116
5.1.7. jm_0011: Pointers in Stateflow 117

5.2. Basic appearance of state transition 118
5.2.1. db_0129: Stateflow transition appearance 118
5.2.2. db_0137: States in state machines 119
5.2.3. jc_0711: Division in Stateflow 119
5.2.4. jc_0531: Placement of the default transition 120
5.2.5. jc_0712: Execution timing for default transition path 122
5.2.6. na_0038: Levels in Stateflow charts 123
5.2.7. na_0040: Number of states per container 124
5.2.8. jc_0720: Guideline for using subcharting 125
5.2.9. jc_0721: Guidelines for using parallel states 126

© Copyright 2007JMAAB. All rights reserved. 6

5.2.10. jc_0722: Guidelines for setting local variables in parallel states 127
5.2.11. jc_0723: Prohibited direct transition from external state to child state 127

5.3. Description of state label 128
5.3.1. jc_0730: Independence of state name in charts 128
5.3.2. jc_0731: Slash (/) in the state name 131

5.3.3. jc_0732 ：Distinction between state name and data item name 132

5.3.4. jc_0733: Order of state action types 133
5.3.5. jc_0734: Number of state action types 133
5.3.6. jc_0740: Usage restrictions of action type exit 134
5.3.7. jc_0501: Format of entries in a State block 134
5.3.8. jc_0735: Semicolons in state label 135
5.3.9. jc_0736: Uniform indentations in Stateflow blocks 136
5.3.10. jc_0737: Uniform spaces before and after operators 138
5.3.11. jc_0738: Guidelines for writing comments in state actions 139
5.3.12. jc_0739: Guidelines for describing texts inside states 140
5.3.13. jc_0741: Timing to update the variables used in the state's transition conditions 142

5.4. Conditions and conditional actions 143
5.4.1. jc_0742: Guidelines for writing Boolean operations in condition labels 143
5.4.2. jc_0770: Placement of conditional statements and action statements 145
5.4.3. jc_0771: Placement of comments in transition lines 146
5.4.4. jc_0772: Execution order and transition conditions of transition lines 146
5.4.5. jc_0752: Parentheses of condition actions 147
5.4.6. jc_0743: Guidelines for writing condition actions 148

5.5. State transition 149
5.5.1. jc_0750: Guidelines for drawing transition lines in Stateflow 149
5.5.2. jc_0751 : Backtracking prevention in state transition 150
5.5.3. jc_0754: Transition actions in Stateflow 154
5.5.4. jc_0753: Condition actions and transition actions in Stateflow 155
5.5.5. db_0151: State machine patterns for transition actions 156
5.5.6. na_0013: Comparison operation in Stateflow 156
5.5.7. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow 157
5.5.8. na_0001: Bitwise Stateflow operators 158
5.5.9. jc_0655: Prohibited comparison operation of logical type signal in Stateflow 159
5.5.10. jc_0451: Use of unary minus on unsigned integers in Stateflow 160
5.5.11. jc_0755: Guidelines for use of increments/decrements 161
5.5.12. jc_0756: Prohibited use of operation expressions in array indexes 161
5.5.13. jc_0757: Guidelines for describing condition expressions 162
5.5.14. jc_0491: Reuse of variables within a single Stateflow scope 162
5.5.15. jc_0521: Use of the return value from graphical functions 164

5.6. Internal transition of the state transition 165
5.6.1. jc_0760: Starting point of internal transition in Stateflow 165
5.6.2. jc_0762: Prohibited combination of state action and Flow Chart 167
5.6.3. jc_0763: Usage restrictions of multiple internal transitions 168
5.6.4. jc_0761: Statement method when using multiple internal transitions 169

5.7. Flow Chart foundation 170
5.7.1. db_0132: Transitions in Flow Charts 170
5.7.2. db_0134: Flow Chart patterns for If constructs 171
5.7.3. db_0159: Flowchart patterns for case constructs 173
5.7.4. db_0135: Flow Chart patterns for loop constructs 174
5.7.5. jc_0773: Unconditional transition of a flow chart 175

5.8. Flow Chart details 177

© Copyright 2007JMAAB. All rights reserved. 7

5.8.1. jc_0774: Comments on unconditional transition which has no process 177
5.8.2. jc_0511: Setting the return value from a graphical function 178
5.8.3. jc_0775: Number of terminal junctions in Flow Charts 179
5.8.4. jc_0776: Number of inputs to the terminal junction of Flow Charts 180

5.9. Event 180
5.9.1. db_0126: Scope of events 180
5.9.2. jc_0780: Usage restrictions of events 181
5.9.3. jc_0781: Function Call from Stateflow 181
5.9.4. jm_0012: Event broadcasts 182

5.10. Functions within Stateflow 183
5.10.1. na_0041: Selection of function type 183
5.10.2. na_0042: Location of functions 184
5.10.3. na_0039: Use of Simulink in Stateflow charts 185
5.10.4. db_0127: MATLAB commands in Stateflow 185

6. MISCELLANEOUS: VARIANTS, ENUMERATED TYPE, MATLAB FUNCTIONS
 187

6.1. Variant Subsystem 187
6.1.1. na_0037: Use of single variable variant conditionals 187
6.1.2. na_0020: Number of inputs to variant subsystems 187
6.1.3. na_0036: Default variant 188

6.2. Enumerated type data 188
6.2.1. na_0033: Enumerated Types Usage 188
6.2.2. na_0031: Definition of default enumerated value 189

6.3. MATLAB functions 191
6.3.1. na_0018: Number of nested if/else and case statement 191
6.3.2. na_0025: MATLAB function header 191
6.3.3. na_0034: MATLAB Function block input/output settings 192
6.3.4. na_0024: Global variable 192
6.3.5. na_0022: Recommended patterns for Switch / Case statements 193
6.3.6. na_0016: Source lines of MATLAB Functions 194
6.3.7. na_0017: Number of called function levels 194
6.3.8. na_0021: Strings 195

7. BASIS, LIST OF RULE PARAMETERS 196

7.1. Basis 196
7.1.1. Basis category 196
7.1.2. List of rule basis 196

7.2. Selectable parameters of each rule 200
7.2.1. Interpretation 200
7.2.2. List of rule parameters 200

8. TERMINOLOGY/SUPPLEMENTARY EXPLANATION 207

8.1. Commentary on Simulink terminologies 207
8.1.1. Definition of basic blocks 207
8.1.2. Definition of port blocks. 207
8.1.3. Conditional control flow 207

© Copyright 2007JMAAB. All rights reserved. 8

8.1.4. Blocks with State Variables 208
8.1.5. Branch Syntax with State Variables 209
8.1.6. The definition of subsystem 211
8.1.7. The definition of a dictionary 211
8.1.8. Signal 211
8.1.9. Parameter 212
8.1.10. Signal label and signal name 212
8.1.11. Control Characters 212
8.1.12. Commentary vector signals/path signal 212
8.1.13. Boolean type and boolean value 213
8.1.14. On enumerated types 213

8.2. Stateflow terminology commentary 215
8.2.1. Operators available for Stateflow 215
8.2.2. Transition line condition, condition action, transition action 216
8.2.3. State Actions and Action Types 216
8.2.4. State Transition and Flow Chart 217
8.2.5. Backtrack 218
8.2.6. Note on flowchart outside state 219
8.2.7. How to use custom C code 221

8.3. Initialization 222
8.3.1. Initial value setting in initialization 222
8.3.2. List of blocks that have internal initialization values 223
8.3.3. Initial values of signals registered in the the data dictionary 223
8.3.4. Example of a block where the external input value is the initial value 225
8.3.5. Initial value settings in a system configuration that would enable initialization parameters

 225

8.4. Supplement: Commentary on functions 227
8.4.1. About Atomic Subsystem 227

9. DETERMINING GUIDELINE OPERATION RULES 230

9.1. Necessity of process definition 230

9.2. A version of MATLAB/Simulink 230

9.3. MATLAB/Simulink setting 230

9.4. Usable blocks 230

9.5. Setting of the configuration to be used 231
9.5.1. Optimization parameters 231
9.5.2. Other configurations 231
9.5.3. Configuration settings 231

9.6. Guideline rules that are used 232
9.6.1. The adoption of the guideline rule and the setting of the process 232
9.6.2. The setting of the guideline rule application field and the clarification of the exclusion

condition 232
9.6.3. The decision on the parameter that is stipulated in the guideline 233
9.6.4. Guideline checker adoption process determination 233
9.6.5. Addition of the model analysis process 233
9.6.6. Rule alteration procedure 233
9.6.7. Arrangement of development environment 233

© Copyright 2007JMAAB. All rights reserved. 9

10. MODEL ARCHITECTURE EXPLANATION 235

10.1. The roles of Simulink and Stateflow 235

10.2. Hierarchical structure of a controller model 237
10.2.1. Types of hierarchies 237
10.2.2. Layout method for top layer 237
10.2.3. : Modeling method for function layers and sub-function layers. 238
10.2.4. Modeling method for schedule layers 238
10.2.5. Modeling method for control flow layers 239
10.2.6. Modeling method for selection layers 240
10.2.7. Modeling method for data flow layers 241
10.2.8. Relation between embedded implementation and Simulink models 242

10.3. AUTOSAR Concept 242
10.3.1. What is the AUTOSAR software platform concept? 242
10.3.2. RCP and AUTOSAR software platform 243

10.4. Single-task and multi-task 243
10.4.1. Single-task 243
10.4.2. Multi-task 245
10.4.3. Effect of connecting subsystems with sampling differences 245

11. SIMPLE CHECKING SAMPLE PROGRAM FOR GUIDELINES 247

11.1. Check by automatic setting 247
11.1.1. na_0004: Simulink model appearance settings 247
11.1.2. db_0043: Model font and font size 247
11.1.3. na_0001: Bitwise Stateflow operators 248

12. UPDATE HISTORY 249

12.1. Termination rule 249
12.1.1. Removed in version 2.2 249
12.1.2. Removed in version 3.0 249
12.1.3. Removed in version 3.1 249
12.1.4. Removed in version 4.0 249
12.1.5. Moved to attachment in version 4.0 250

12.2. The flow of the style guideline revision 250

© Copyright 2007JMAAB. All rights reserved. 10

1. Introduction

1.1. Purpose of these Guidelines
These guidelines stipulate important basic rules for describing Simulink / Stateflow models to allow for a

simple, common understanding by authors and users in operating automotive control system of control
models.

They were created with the following main objectives.

 Readability

 Improvement of graphical understandability

 Improvement of readability of functional analysis.

 Prevention of connection mistake

 Comments and so on

 Simulation and verification

 System to enable simulation

 Easy testing

 Code generation

 Improvement of efficiency of generation code.(ROM,RAM efficiency)

 Securement of robustness of a generation code

 Others

1.2. Guideline template
Guideline descriptions are documented using the following template. Use of this template is also

recommended when creating original guidelines.

ID: Title XX_nnnn: Title of the guideline (unique, short)

Priority One of Mandatory / Strongly Recommended / recommended.

Scope MAAB / NAMAAB / JMAAB / company name (if adding company rules)

MATLAB
Version

ALL
RX, RY, RZ
RX and later
RX and earlier
RX through RY

Prerequisites Links to guidelines, which are prerequisite to this guideline (ID + Title)

Description Description of the guideline (text, images).

Notes Notes, footnotes.

See also ID including other helpful guidelines.

Last Change Version number of the Last Change.

Note: This template lists the minimum requirements for a correct understanding of a guideline. New items
may be added to the template as long as they do not duplicate any of the existing items.

1.2.1. ID

An ID consists of 2 lower case letters (identifying the guideline author) and a 4 digit number, separated
by an underscore. An ID is permanent and cannot be changed, and is used when referring to a guideline.

db, jm, hd, ar are IDs used by established members for Ver1.0. na, jp, jc, jt are IDs used from Ver2.0
onwards.

Please use letter combinations other than these as ID when adding your own guidelines.

Parenthesized rules, (ID), are rules that have been changed from rules to a document description.
These document description rules have, like other document descriptions, no priority or scope
classification. They describe valuable approaches, examples for the creation of models. They have no
rules that must be specifically adhered to, or counterexamples, but describe a particular approach or
helpful tips.

© Copyright 2007JMAAB. All rights reserved. 11

1.2.2. Title

The Title is unique and is a brief description of the guidelines.

1.2.3. Priority

The priority level is classified as "Mandatory", "Strongly Recommended", and "Recommended". Priority
does not only indicate the importance of the guideline, but also considers the gravity of the potential
results if they are violated.

Mandatory
Strongly

Recommended
Recommended

DEFINITION

 Guidelines that all
companies agree to that
are absolutely essential

 Guidelines that all
companies conform to
100%

 Guidelines that are
agreed upon to be a
good practice, but
legacy models preclude
a company from
conforming to the
guideline 100%

 Models should conform
to these guidelines to
the greatest extent
possible; however 100%
compliance is not
required

 Guidelines that are
recommended to
improve the appearance
of the model diagram,
but are not critical to
running the model

 Guidelines where
conformance is
preferred, but not
required

CONSEQUENCES
If the guideline is violated

 Essential items are
missing

 The model might not
work properly

 The quality and the
appearance deteriorates

 There may be an
adverse effect on
maintainability,
portability, and
reusability

 The appearance will not
conform with other
projects

WAIVER POLICY
If the guideline is intentionally ignored,

 The reasons must be
documented

1.2.4. Scope :

The scope of a guidelines is set to one of the following:

 MAAB: Guideline that has been agreed by JMAAB and NAMAAB.

 JMAAB: Guideline that has been agreed by the Japan MBD Automotive Advisory Board alone.

 NAMAAB: Guideline that has been agreed by the North America MATLAB Automotive Advisory
Board alone.

MAAB includes the subgroups JMAAB and NAMAAB.
"JMAAB" is a subgroup including automotive manufacturers and suppliers in Japan.
"NAMAAB" is a subgroup including automotive manufacturers and suppliers in the United States and
Europe.

1.2.5. MATLAB version

The guidelines support all MATLAB versions, but some guidelines only support specific versions. The
version information is given in one of the following 5 formats.

© Copyright 2007JMAAB. All rights reserved. 12

 ALL: all MATLAB versions.

 RX, RY, RZ: specific MATLAB versions.

 before RX: MATLAB versions before RX.

 after RX: MATLAB versions after RX.

 RX through RY: MATLAB versions for RX through RY.
Ver4.0 contains rules for R2008b through R2013a.

1.2.6. Prerequisites

The Prerequisites entry gives the ID and Title for the guidelines that are prerequisite to this guideline.

1.2.7. Description

The Description describes the content in detail, using figures and tables.

1.2.8. See Also

This field contains guideline IDs of other helpful guidelines.
Apart from the MAAB guidelines, the following guidelines are referred to.

 Modeling Guidelines for Code Generation(cgsl_)

 Modeling Guidelines for High-Integrity Systems(hisl_)

 NASA Orion Style Guidelines numbers from Orion GN&C MATLAB/Simulink
Standards(Orion_[bn_,ek_,im_,jr_,jh])Ver3.0 are added as related references.
http: //www.mathworks.co.jp/aerospace-defense/standards/nasa.html

 MISRA SLSF Guidelines (MISRA AC SLSF_)
From Ver4.0, MISRA AC SLSF Guidelines, published by MISRA, are added as related references.

The content contained in these guidelines are not included in the text of this document.
The content of these guidelines and the content in the guidelines listed above may vary.
The ultimately correct rules are the MAAB rules, describing the required rules for controller modeling.
They do not correspond to all numbers for the guidelines listed above.

1.2.9. Last Change

This field contains the version number for the Last Change.
However, a version number is not changed for simply printing error corrections or additional explanations.
It lists a modified version which includes changes to the intention of rules, changes in conditions or
additional conditions.

1.3. Organization of these Guidelines
Explanation of this document is described in chapter 1.
 Rules are described in from chapter 2 to chapter 6.
Where rules for prohibited use and limited or restricted use with regard to specific blocks or functions

conflict, list the rules for prohibited use first. Then list the rules for limited use.

１． Prohibited use rule : Recommended

２． Limited / restricted use rule : Strongly Recommended (or Mandatory)
This explanation concerns the listing order. Investigate the adoption of these two rules for the operation
procedures.

Rationals of rules establishment and adjustable parameters of rules are listed in chapter 7.
Of the term as for 8 chapters for beginners comment.
Chapters 9 to 11 the model architecture and operation required by advanced users .
Change history of these guidelines is described in chapter 12.

© Copyright 2007JMAAB. All rights reserved. 13

2. Naming Conventions

2.1. Naming Conventions - Overall summary

2.1.1. Rule IDs for characters that can be used in names

Character restrictions and characters that can be used in names are described in the following rules.
ar_0001: Usable characters for file names
ar_0002: Usable characters for folder names
jc_0201: Usable characters for Subsystem name
jc_0211: Usable characters for Inport block and Outport block
jc_0222: Usable characters for signal line and bus names
jc_0232: Usable characters for parameter names
jc_0231: Usable characters for block names

2.1.2. Rule IDs for character length

Limitations relating to the length of name lengths are described in the following rules.
jc_0241: Length restrictions for file names
jc_0242: Length restrictions for folder names
jc_0243: Length restrictions for Subsystem names
jc_0244: Length restrictions for Inport and Outport names
jc_0245: Length restrictions for signal and bus names
jc_0246: Length restrictions for parameter names
jc_0247: Length restrictions for block names

2.1.3. List of naming rule constraints "character type / character length"

Availability for use
by character type

File name,
folder

Subsystem the code is generated
for, Inport/Outport, signal name,
bus name, parameter name

Other blocks

single-byte
alphabetic character

○ ○ ○

single-byte
numerical character

○ not allowed as the first character, otherwise allowed

single-byte
underscore

○ not allowed for first or last character, no two underscores

in succession

single-byte space not allowed ○

not allowed for
first or last
character, no two
spaces in
succession

line break not allowed

other characters
(local language)

× × ×

Length limitations File name,
folder name

Subsystem the code is generated
for, Inport/Outport, signal name,
bus name, parameter name

Other blocks

character length 3 to 63 characters (example) ～63 characters

2.2. General Rules

2.2.1. ar_0001: Usable characters for file names

ID: Title ar_0001: Usable characters for file names

© Copyright 2007JMAAB. All rights reserved. 14

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

File names are subject to the following constraints.
Subject of Applications

Please operate by determining extention to be subject of application of the rules.
When application of this rule is limited to model names, the 2 types are [mdl] and [slx]

Valid form

filename = name.extension

 name: may not start with a numerical character, no spaces,no any MATLAB
Keywords.

 extension: no spaces

Uniqueness

 None of the file names in a new project folder may be duplicates.
There may be no identically named models, including in subfolders via a MATLAB path.
Usable characters
Name:

a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Extension: (Extensions are determined individually for used tools.)
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9

Underscores

Name:

 Underscores may be used to separate words

 Underscores may not be used in succession

 Underscores may not be used as the first character

 Underscores may not be used as the last character
Extension: (Extensions are determined individually for used tools.)

Underscores may not be used

Notes

Occasions when both test1.slx and test1.m exist.
When running test1 by command line, test1.m is not run and the test1.slx model file can
open. In other words, constants described in test1.m cannot be loaded into the MATLAB
workspace.

If there are model files with identical names in a folder without a path, please use switching
the path according to operation.

Last Change V4.0

2.2.2. ar_0002: Usable characters for folder names

ID: Title ar_0002: Usable characters for folder names

Priority Recommended

Scope MAAB

© Copyright 2007JMAAB. All rights reserved. 15

MATLAB
Version

ALL

Prerequisites

Description

A folder name conforms to the following constraints:

Valid form
directory name =name
name: may not start with a numerical character, no spaces

Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:

 can use underscores to separate words

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Notes
There is no problem even if same folder names are included into path.. (No need of identity.)
As of R2013b, even if local language is used in folder name, C source code can be
generated.

Last Change V4.0

2.2.3. jc_0241: Length restrictions for file names

ID: Title jc_0241: Length restrictions for file names

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description
File names should be made up of 3 to 63 characters (not including dots and extension).

Notes Past versions limited the number of characters to 63 for model referencing.

See Also

Last Change V4.0

2.2.4. jc_0242: Length restrictions for folder names

ID: Title jc_0242: Length restrictions for folder names

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description
Folder names on every level of a model should be made up of 3 to 63 characters.

Notes
It is better to restrict the overall number of folder characters (full path name).
Long full path names may lead to problems such as incomplete display of the path name in

© Copyright 2007JMAAB. All rights reserved. 16

the GUI that is used for the project.

Last Change V4.0

2.3. Internal model rules

2.3.1. jc_0201: Usable characters for Subsystem names

ID: Title jc_0201: Usable characters for Subsystem names

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The names of all subsystem blocks should conform to the following constraints:
Valid form
name:

 should not start with a number

 should not have blank spaces

 should not have carriage returns
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:

 can be used to separate words

 cannot have more than one consecutive underscore

 cannot start with an underscore

 cannot end with an underscore

Notes

Subsystems subject to this are subsystems subject to code generation.
Subsystems (Model-Wide Utilities/Model Info etc.) that have no Input/Output ports are
classified in the annotations, and therefore not subject to this rule.
Also check whether function names for code generation will be subject to this rule.

Last Change V2.2

2.3.2. jc_0211: Usable characters for Inport block and Outport block

ID: Title jc_0211: Usable characters for Inport block and Outport block

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The names of all Inport blocks and Outport blocks should conform to the following
constraints:
Valid form
name:

 may not start with a numerical character

 no spaces

 may not include line breaks

© Copyright 2007JMAAB. All rights reserved. 17

Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:

 Underscores may be used to separate words

 Underscores may not be used in succession

 Underscores may not be used as the first character

 Underscores may not be used as the last character

Last Change V2.2

2.3.3. jc_0222: Usable characters for signal line and bus names

ID: Title jc_0222: Usable characters for signal line and bus names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

Indicates the constraints on signals with a name.
Valid form
name:

 may not start with a numerical character

 no spaces

 no control characters

 may not include line breaks
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:

 Underscores may be used to separate words

 Underscores may not be used in succession

 Underscores may not be used as the first character

 Underscores may not be used as the last character

Notes
The naming convention for signal lines does not differentiate between signal line type
(scalars, vectors, busses).

Last Change V4.0

2.3.4. jc_0232: Usable characters for parameter names

ID: Title jc_0232: Usable characters for parameter names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

© Copyright 2007JMAAB. All rights reserved. 18

Description

Indicates the constraints on signals with a name.
Valid form
name:

 may not start with a numerical character

 no spaces

 no control characters

 may not include line breaks
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _
Underscores
name:

 Underscores may be used to separate words

 Underscores may not be used in succession

 Underscores may not be used as the first character

 Underscores may not be used as the last character

Last Change V4.0

2.3.5. jc_0231: Usable characters for block names

ID: Title jc_0231: Usable characters for block names

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites jc_0201: Usable characters for subsystem names

Description

All block names are subject to the following constraints.
Valid form
name:

 should not start with a number

 should not have blank spaces

 should not include double-byte characters

 can have carriage returns
Usable characters
name:
a b c d e f g h i j k l m n o p q r s t u v w x y z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 _

Notes

This rule does not apply to subsystem blocks, Inport/Outport blocks.

Last Change V2.0

2.3.6. jc_0243: Length restrictions for subsystem names

ID: Title jc_0243: Length restrictions for subsystem names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

© Copyright 2007JMAAB. All rights reserved. 19

Prerequisites

Description

Subsystem name lengths should be 3 to 63 characters.

Notes
It is better to restrict the overall number of characters (full path name including model
name) too.

See Also

Last Change V4.0

2.3.7. jc_0244: Length restrictions for Inport and Outport names

ID: Title jc_0244: Length restrictions for Inport and Outport names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description
Port name lengths should be 3 to 63 characters.

See Also

Last Change V4.0

2.3.8. jc_0245: Length restrictions for signal and bus names

ID: Title jc_0245: Length restrictions for signals and bus names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description Signal and bus name lengths should be 3 to 63 characters.

overall number of characters = sldemo_engine/valve timing/positive edge
to dual edge conversion

Number of characters for
subsystem name

© Copyright 2007JMAAB. All rights reserved. 20

Bus signals can be layered.
It is better to restrict the overall number of characters (full path).

See Also

Last Change V4.0

2.3.9. jc_0246: Length restrictions for parameter names

ID: Title jc_0246: Length restrictions for parameter names

Priority Strongly Recommended

Scope JMAAB

MATLAB ALL

Signal and bus name

Overall number of characters.

Overall
number of
characters

© Copyright 2007JMAAB. All rights reserved. 21

Version

Prerequisites

Description
Parameter name lengths should be 3 to 63 characters.

See Also

Last Change V4.0

2.3.10. jc_0247: Length restrictions for block names

ID: Title jc_0247: Length restrictions for block names

Priority recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description Block name lengths should be 3-63 characters.

See Also

Last Change V4.0

2.4. Notes on other used characters

2.4.1. na_0035: Adoption of naming conventions

ID: Title na_0035: Adoption of naming conventions

Priority Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Adoption of a naming convention is recommended. A naming convention provides
guidance for naming blocks, signals, parameters and data types.
Naming conventions frequently cover issues such as:

Readability:

 Use of underscores

 Use of capitalization
Encoding information:

 Use of meaningful names

 Standard abbreviations and acronyms

 Data type

 Engineering units (system of units)

 Data ownership

 Memory type

Notes

This is an example of a rule relating to readable capitalization.
 All-capital parameters should define storage class..
 All-capital signal (Simulink, mpt objects) names should not be used.

Names are defined for signal lines (label names), but signal line names that only have an
annotative significance without defining Simulink or mpt objects, are given in all capitals to
distinguish them from global signals.

© Copyright 2007JMAAB. All rights reserved. 22

Acronym is a kind of abbreviations mainly used in European languages. It is created from
initial characters of compound word which consists of several words.

See Also

Last Change V4.0

2.4.2. jc_0251: Naming restrictions for signals and parameters.

ID: Title jc_0251: Naming restrictions for signals and parameters.

Priority Mandatory

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

There are 2 constraints on signal names and parameter names inside a model.
1. Please do not use any reserved words, function names or operator names used by

MATLAB such as pi, true and false .
2. Please do not use any words reserved in MATLAB auto coding .

Even when a simulation has been run, problems may on occasions arise when
automatically generating code or when integrating it.
Parameters that may not be used can be checked using iskeyword, but this function only
checks the names that have been registered as MATLAB keywords. Function names and
operator names cannot be checked with this function.
A number of examples is listed below, but care must be taken as there are numerous
examples apart from these.
 MATLAB keywords

'break', 'case', 'catch', 'classdef', 'continue', 'else', 'elseif', 'end',
'for','function',

 'global', 'if', 'otherwise', 'parfor', 'persistent', 'return', 'spmd', 'switch', 'try',
 'while'

 Function names, constant names, operator names
'eps','Enf','intmax','intmin','NaN','pi','realmax','realmin','true','false','inf'

The following are reserved by MATLAB for auto coding.

 const、TRUE、FALSE、 infinity, nil, double, single, or, enum

Notes
Reserved words are defined in the Simulink Coder documentation.
http: //www.mathworks.co.jp/jp/help/symbolic/reserved-variable-and-function-names.html

See Also

Last Change V4.0

2.4.3. na_0014: Use of local language in Simulink and Stateflow

ID: Title na_0014: Use of local language in Simulink and Stateflow

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description
The local language should be used only in descriptive fields.
Descriptive fields are text entry points that do not affect code generation or simulation.

© Copyright 2007JMAAB. All rights reserved. 23

Examples of descriptive fields include the [Description] field in the Block Properties dialog
box.

Simulink Example:

 The description field in the Block Properties dialog box.

 Text annotation directly entered in the model

Description: Local language can be used.

Stateflow Example:

 The Description field in chart or state Properties

 Annotation description added using Add Note

© Copyright 2007JMAAB. All rights reserved. 24

There are also many other places in masked subsystem Disp that correspond to
Description fields, such as user tags, inside block annotations and commented out
subsystems.

 How to select “comment out”

Notes

Description fields may vary between versions.
In recent Simulink versions the use of local language is allowed for subsystem names and
block names.
Both simulation and code generation are possible if only characters that allow for code
generation are designated in the function setting.

Set function
setting
beforehand

© Copyright 2007JMAAB. All rights reserved. 25

See Also

Last Change V2.0

Even if using local language for
subsystem names, simulation execution
and code generation are both possible.

© Copyright 2007JMAAB. All rights reserved. 26

3. Model Architecture

3.1.1. na_0006: Guidelines for mixed use of Simulink and Stateflow

ID: Title na_0006: Guidelines for mixed use of Simulink and Stateflow

Priority Strongly Recommended

Scope NAMAAB

MATLAB
Version

ALL

Prerequisites

Description
The choice of whether to use Simulink or Stateflow to model a given portion of the control
algorithm functionality should be driven by the nature of the behavior being modeled.

Notes The details are this.「10.1 The roles of Simulink and Stateflow」

Last Change V4.0

3.1.2. na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines

ID: Title na_0007: Guidelines for use of Flowcharts, Truth Tables and State Machines

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites na_0006: Guidelines for Mixed use of Simulink and Stateflow

Description

Within Stateflow, the choice of whether to use a Flowchart or a state chart to model a given
portion of the control algorithm functionality should be driven by the nature of the behavior
being modeled.
 If the primary nature of the function segment is to calculate modes of operation or

discrete-valued states, use state charts. Some examples are:

・ Diagnostic model with pass, fail, abort, and conflict states

・ Model that calculates different modes of operation for a control algorithm
 If the primary nature of the function segment involves if-then-else statements, use

Flowcharts or Truth Tables.

Specifics:

If the primary nature of the function segment is to calculate modes or states, but if-then-
else statements are required, add a Flowchart to a state within the state chart. (See
5.7Flow Chart foundation)

Last Change V2.0

3.1.3. db_0143: Similar block types on the model levels

ID: Title db_0143: Similar block types on the model levels

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description
A structure layer(Function or Schedule layer) and data flow layer shall not be mixed at the
same layer. Usable block types in the model layers should be restricted and the list of

© Copyright 2007JMAAB. All rights reserved. 27

usable block types according to model layers should be prepared and agreed upon. To
understand layer concept, refer 10.2 Hierarchical structure of a controller model.

However, the following blocks are not limited to a layer, and can be used on all levels.

Blocks which can be placed on every model level (blocks that can be used on all levels)

Block types Examples of block icons

Inport

Outport

Mux

Demux

Bus Selector

Bus Creator

Selector

Ground

Terminator

From

Goto

Merge

Unit Delay(1)

Rate Transition

© Copyright 2007JMAAB. All rights reserved. 28

Data Type Conversion

Data Store Memory

If

Case

Function-Call Generator

Function-Call Split

Trigger(2)

Enable(3)

Action port(4)

Notes

4) Not only the Unit Delay block but all similar blocks like the Delay block are treated in the
same manner.
2) In R2011a and earlier, Enable block is not allowed at the root level of the model.
3) In R2008b and earlier, Trigger block is not allowed at the root level of the model.
Note: If the Trigger or Enable blocks are placed at the root level of the model, then the
model will not simulate in a standalone mode. The model must be referenced using the
Model block.

4) Action port is allowed at the root level of the model.
Regarding kinds of laysers, please see appendix.
Establish standards for each project on whether to include libraries or virtual subsystems
within the scope of "Subsystems only".

Last Change V4.0

3.1.4. db_0144: Use of Subsystems

ID: Title db_0144: Use of Subsystems

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Blocks in a Simulink diagram should be grouped together into subsystems based on
functional decomposition of the algorithm, or portion thereof, represented in the diagram.
Avoid grouping blocks into subsystems primarily for the purpose of saving space in the
diagram. Each subsystem in the block diagram should represent a unit of functionality
required to accomplish the purpose of the model or submodel. Blocks can also be grouped
together based on behavioral variants or timing.

© Copyright 2007JMAAB. All rights reserved. 29

If creation of subsystems is required for readability issues, then a virtual subsystem should
be used.

Last Change V2.2

© Copyright 2007JMAAB. All rights reserved. 30

4. Simulink

4.1. Diagram appearance

4.1.1. na_0004: Simulink model appearance

ID: Title na_0004: Simulink model appearance

Priority Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The model appearance settings should conform to the following guidelines when the

model is released.

The user is free to change the settings during the

development process.View Options

Setting

Model Browser unchecked

Screen color white

Status Bar checked

Toolbar checked

Zoom factor Normal (100%)

Block Display Options Setting

Background color white

Foreground color black

Execution Context Indicator unchecked

Library Link Display none

Linearization Indicators checked

Model/Block I/O Mismatch unchecked

Model Block version unchecked

Sample Time Colors unchecked

Sorted Order unchecked

Signal Display Options Setting

Port Data Types unchecked

Signal Dimensions unchecked

Storage Class unchecked

Test point Indicators checked

Viewer Indicators checked

© Copyright 2007JMAAB. All rights reserved. 31

Wide Non-scalar Lines checked

Notes
These are an example. Please set standards for each project.

See Also MISRA AC SLSF 023A

Last Change V2.0

4.1.2. db_0043: Simulink font and font size

ID: Title db_0043: Simulink font and font size

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

All text elements (block names, block annotations and signal labels)
except text annotations within a model must have the same font style and font size.
Fonts and font size should be selected for legibility.

Notes
The selected font sould be directly portable (e.g. Simulink/Stateflow default font) or
convertible between platforms (e.g. Arial/Helvetica 12pt).

Last Change V2.0

4.1.3. db_0042: Port block in Simulink models

ID: Title db_0042: Port block in Simulink models

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

In a Simulink model, the ports comply with the following rules:

 Inports should be placed on the left side of the diagram, but they can be moved in
to prevent signal crossings.

 Outports should be placed on the right side, but they can be moved in to prevent
signal crossings.

 Duplicate Inports can be used at the subsystem level if required but should be
avoided if possible.

o Duplicate Inports cannot be used at the root level.

© Copyright 2007JMAAB. All rights reserved. 32

Correct:

Incorrect:

Notes on the incorrect model

 Inport 2 should be moved in so it does not cross the feed back loop
lines.

 Outport 1 should be moved to the right hand side of the diagram
.

Last Change V2.0

4.1.4. jm_0002: Block resizing

ID: Title jm_0002: Block resizing

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

All blocks in a model must be sized such that their icon is completely visible and
recognizable. In particular, any text displayed (e.g. tunable parameters, filenames,
equations) in the icon must be readable.
However, when it is difficult to resize subsystems with many inputs and outputs, the content
of the icon should be made visible in an alternative way.

Correct:

Incorrect:

© Copyright 2007JMAAB. All rights reserved. 33

Notes

This guideline requires resizing of blocks with variable icons relying on option settings or
blocks with variable number of inputs and outputs. However, in some cases, it may not be
practical or desirable to resize the block icon of a subsystem block so that all of the input
and output names within it are readable. In such cases, you may hide the names in the icon
by using a mask or by hiding the names in the subsystem associated with the icon. If you do
this, the signal lines coming into and out of the subsystem block should be clearly labeled in
close proximity to the block.

Last Change V2.0

4.1.5. db_0142: Position of block names

ID: Title db_0142: Position of block names

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

If shown the name of each block should be placed below the block.

Correct:

Incorrect:

Last Change V2.0

4.1.6. jc_0061: Display of block names

ID: Title jc_0061: Display of block names

Priority Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

 Display block names for blocks which have a functional requirement to have the
name displayed, and for blocks with names that have significance.

 Examples of blocks with function names instead of block names.

© Copyright 2007JMAAB. All rights reserved. 34

 No block names are displayed for blocks to which all of the following applies.

* Its function is understood from its appearance.
 (actual blocks are defined for each development project)
* No changes to default block names apart from the number at the end.

 Examples of blocks where names are not displayed

Notes

Through sldiagnostics (model name), the block classification and numbers used in the
model that is used are known.
Based on the results of this command we can infer which blocks are well-know and which
ones aren't.
In line with our own training curriculum, it would be better to display the block names for
blocks whose function is not that well-known.

See Also MISRA AC SLSF 026A

Last Change V4.0

4.1.7. db_0140: Display of block parameters

ID: Title db_0140: Display of block parameters

Priority Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Important block parameters must be displayed.

In R2011b and later, masking basic blocks is a supported method for displaying the
information. This method is allowed if the base icon is distinguishable.

Correct:

© Copyright 2007JMAAB. All rights reserved. 35

 `

Correct: Masked block
Use the display function by masking the basic block

© Copyright 2007JMAAB. All rights reserved. 36

Incorrect: Because of mask,base icon of masked block cannot be seen.

© Copyright 2007JMAAB. All rights reserved. 37

Notes

Displaying properties is a way to realize to show block parameters.
Necessary property information can be added on [Block Annotation] tab.
The block parameters that must be displayed will change depending on the process.
Please change the required information for each process.
The parameters considered to be important vary depending on the used Simulink
version.

See Also MISRA AC SLSF 026E

Last Change V4.0

4.1.8. db_0032: Simulink signal appearance

ID: Title db_0032: Simulink signal appearance

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Please adhere to the following rules for signal lines.

 Should not cross each other, if possible.

 Should bend at right angles (only use vertical and horizontal lines, do not draw them
diagonally)

 Are not drawn one upon the other.

 Should not cross any blocks.

 Should not split into more than two sub lines at a single branching point (cross-
shaped connections are not permitted).

Correct: Incorrect:

© Copyright 2007JMAAB. All rights reserved. 38

Notes

Vertical line that is crossed is now get off holizontal line.

As a result, the cross, the difference of the branch is now clear.

 Should not cross each other, if possible..

 Should not split into more than two sub lines at a single branching point.
Above two rules were made because the branch and cross is hard to recognize.
You can be less restrictive in R2014a and later. Please determine whether adopt it or not
based on the version you use.

Last Change V2.0

4.1.9. db_0141: Signal flow in Simulink models

ID: Title db_0141: Signal flow in Simulink models

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

 Signal flow in a model is from left to right. (Exception: Feedback loops)

 Sequential blocks or subsystems are arranged from left to right. (Exception: Feedback
loops)

 Parallel blocks or subsystems are arranged from top to bottom.

Last Change V2.0

Data flow should be drawn from left to right Signal flow should be drawn from left to right

© Copyright 2007JMAAB. All rights reserved. 39

4.1.10. jc_0110: Direction of block

ID: Title jc_0110: Direction of block

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites db_0141: Signal flow in Simulink models

Description

Any blocks other than blocks with Delay blocks (e.g. Unit Delay) should not be rotated or
reversed.

Correct:

Only the Unit Delay block is reversed.

Incorrect:

The Gain block is also reversed.

Incorrect:

The signal flow is drawn from left to right, but the blocks are used vertically.

See Also

Last Change V4.0

© Copyright 2007JMAAB. All rights reserved. 40

4.1.11. jc_0111: Direction of Subsystem

ID: Title jc_0111: Direction of Subsystem

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites jc_0110: Direction of block

Description

The direction of the subsystem must not be rotated or reversed.

Correct:

Incorrect:

Last Change V2.0

4.1.12. jc_0653: Guidelines for avoiding algebraic loops between subsystems

ID: Title jc_0653: Guidelines for avoiding algebraic loops between subsystems

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

When using Delay blocks (e.g. Unit Delay blocks) with the purpose of preventing algebraic
loops in feedback loops across subsystems, they must be placed on the outside of the
subsystem.
Rationale:
 If a Delay block is placed inside a subsystem, it is difficult to know where it has been

placed, and the Delay may be duplicated. Placing it on the outside makes it explicit.
 Delay blocks inside a subsystem decrease its reusability.
 Inspection times will be longer due to the dependence on past values.

© Copyright 2007JMAAB. All rights reserved. 41

Correct:
The Delay block is placed outside the subsystem

Incorrect:
The Delay block is placed inside the subsystem

See Also

Last Change V4.0

4.1.13. jc_0171: Maintaining signal flow when using Goto and From blocks

ID: Title jc_0171: Maintaining signal flow when using Goto and From blocks

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Visual depiction of signal flow must be maintained between subsystems.
 Use of Goto and From blocks is allowed in the following cases:

 At least one signal line is used between connected systems.
 Subsystems connected in a feed-forward and feedback loop have at least one

signal line for each direction.

© Copyright 2007JMAAB. All rights reserved. 42

Correct:

Incorrect:

Notes
This rule is to visually clarify the connection between subsystems.
Using Goto and From blocks to create buses or connect inputs to merge blocks are
exceptions to this rule.

Last Change V4.0

Rule for bus added by NAMAAB is unclear. Since this rule mentions about connection
between subsystems, bus has no relation.

4.1.14. jc_0602: Consistency in model element names

ID: Title jc_0602: Consistency in model element names

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites
db_0042: Port block in Simulink models
na_0005: Display of Inport and Outport block names
db_0123: Stateflow port names

Description

Names (characters) for the following model elements directly connected to the same signal
should be consistent.

・ Inport block: block name (if the block name is displayed)

・ Outport block: block name (if the block name is displayed)

・ Goto block: tag name (not the block name)

・ From block: tag name (not the block name)

・ Signal line: signal name (including legacy signal names)

© Copyright 2007JMAAB. All rights reserved. 43

・ Subsystem: masked port label names (if the port name is visible from above)
Label name when the port is displaying the label name

・ Inport, Outport prioritize rule na_0005.
However, for signals connected to the following subsystems, the connected boundaries are
regarded as an exception.

 Subsystems linked to a library
 Reusable subsystems

Notes

If a combination of Inport blocks, Outport blocks and other blocks has the same block
name, use a suffix or prefix for the Inport and Outport blocks.
Often used suffixes and prefixes are "in" for Inport blocks and "out" for Outport blocks. Any
prefix or suffix can be used for ports, but consistent prefixes must be selected.

See Also MISRA AC SLSF 036-C

Last Change V4.0

4.1.15. db_0146: Triggered, enabled, conditional Subsystems

ID: Title db_0146: Triggered, enabled, conditional Subsystems

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Conditional input blocks should be located at the tope of the subsystem.
1.Conditional input blocks
 Enable
 For Iterator

© Copyright 2007JMAAB. All rights reserved. 44

 Action Port
 Switch Case Action
 Trigger
 While Iterator

Following blocks also should be uniformely located.
2.Blocks treated as nealy same as conditional input blocks.
 For Each
 For Iterator

Correct:

Incorrect:

Notes

 This guideline intends to improve readability by unifying outer shape of subsystem
and internal location. Regarding For Each block, For Iterator block and While Iterator
block, locations should be unified. However, regarding While Iterator block, it should
be careful since it is difficult to fix the location.

 It is necessary to clarify the positions, when the model information of jc_0603 is
described.

Last Change V4.0

4.1.16. jc_0281: Naming of Trigger Port block and Enable Port block

ID: Title jc_0281: Naming of Trigger Port block and Enable Port block

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

For conditional subsystems including conditional input blocks such as Trigger Port
blocks,
the effect of the signal that triggers the subsystem is recorded both in the source and the
destination.

At the source, names that indicate the effect are given to either of the following:

 Block name

 Subsystem's block name（Part）

 Signal name
At the destination, these names are added to either of the following:

 Block name of the conditional input block (Trigger, Enable Port)

© Copyright 2007JMAAB. All rights reserved. 45

 Part of the subsystem name of the conditional subsystem

Correct: example of a matching block name at the source and block name of the
conditional input block at the destination.

Correct: example of a matching signal name and suffix for the connected subsystem.

Exception:

 In the case of library blocks that encapsulate generic functionality or reusable
subsystems, generic names for the signal should be used.

Notes

The purpose of this rule is to improve readability while also considering the prevention of
connection errors where the automatic checker is checking for connection errors.
A simple name inheritance rule that can be generally interpreted should be established
for the purpose of automatic checks by the checker.

See Also MISRA AC SLSF 026C

Last Change V4.0

4.1.17. jc_0603: Model description

ID: Title jc_0603: Model description

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Description

Define functional units where a model description will be added, and supply a model
description for each functional unit using annotations or ModelInfo blocks.
Use a common format for the model description in the entire model.
For instance, use explicitly understood fixed headings (e.g. "Requirements",
"Summary").

Example:

© Copyright 2007JMAAB. All rights reserved. 46

Notes
Use the example above to determine the notation, placement and headings for the
description.

See Also MISRA AC SLSF 022

Last Change V4.0

4.1.18. jc_0604: Block shading

ID: Title jc_0604: Block shading

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Description

Block shading should not be used to show that signal lines are not connected, except in
the following cases:
 Subsystems without an Output Port
 Subsystems with displayed signal name

Correct:

Incorrect:

Notes

If the signal name is noted in the subsystem, it is explicit that it has an Output Port.
As it will be immediately clear that it is not connected, it will not fall within the restrictions
of this rule.

See Also MISRA AC SLSF 024A

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 47

4.2. Signals

4.2.1. na_0010: Grouping data flows into signals

ID: Title na_0010: Grouping data flows into signals

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Restrictions on use of busses and vectors

・ Mux and Demux blocks must only be used in generating and decomposing vectors.

・ Scalars and vectors must be used for Mux input.

・ BusCreator and BusSelector must only be used in generating and decomposing
busses.

・ To avoid the problem of mixing Mux and busses, connect busses to bus-supported
blocks.

See Also MISRA AC SLSF 015A,B,C,016A,B,C,D,E

Last Change V4.0

4.2.2. na_0008: Display of labels on signals

ID: Title na_0008: Display of labels on signals

Priority recommended

Scope NAMAAB

MATLAB
Version

All

Prerequisites

Description

A label must be displayed on a signal originating from the following blocks:

 Inport block

 From block (block icon exception applies – see Note below)

 Subsystem block or Stateflow chart block (block icon exception applies)

 Bus Selector block (the tool forces this to happen)

 Demux block

 Selector block

 Data Store Read block (block icon exception applies)

 Constant block (block icon exception applies)

A label must be displayed on any signal connected to the following destination blocks
(directly or by way of a basic block that performs a non transformative operation):

 Outport block

 Goto block

 Data Store Write block

 Bus Creator block

 Mux block

 Subsystem block

 Chart block

© Copyright 2013JMAAB. All rights reserved. 48

Note: Block icon exception (applicable only where called out above): If the signal label is
visible in the originating block icon display, the connected signal does not need not to have
the label displayed, unless the signal label is needed elsewhere due to a destination-based
rule.

Correct

Incorrect

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.2

4.2.3. na_0009: Entry versus propagation of signal labels

ID: Title na_0009: Entry versus propagation of signal labels

Priority Strongly Recommended

Scope NAMAAB

MATLAB
Version

All

Prerequisites na_0008: Display of labels on signals

Description

If a label is present on a signal, the following rules define whether that label shall be created
there (entered directly on the signal) or propagated from its true source (inherited from
elsewhere in the model by using the ‘<’ character).

1. Any displayed signal label must be entered for signals that:
a. Originate from an Inport at the Root (top) Level of a model
b. Originate from a basic block that performs a transformative operation

(For the purpose of interpreting this rule only, the Bus Creator block, Mux
block, and Selector block shall be considered to be included among the
blocks that perform transformative operations.)

2. Any displayed signal label must be propagated for signals that:
a. Originate from an Inport block in a nested subsystem

Exception: If the nested subsystem is a library subsystem, a label may be
entered on the signal coming from the Inport to accommodate reuse of the
library block.

b. Originate from a basic block that performs a non-transformative operation
c. Originate from a Subsystem or Stateflow chart block

Exception: If the connection originates from the output of a library
subsystem block instance, a new label may be entered on the signal to
accommodate reuse of the library block.

© Copyright 2013JMAAB. All rights reserved. 49

Rationale

 Readability
 Workflow

 Simulation

 Verification and Validation
 Code Generation

Last Change V2.0

4.2.4. jc_0008 : Definition of a Signal labels.

ID: Title jc_0008 : Definition of a Signal labels.

Priority recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

Defines signal name to input port which is located at system top layer or signal lines which is
output from important block.
 Labels has to be displayed when signal name is defined.
 Signal name needs to be input only once (to the place where signal is occurred).

An important block is a block which outputs the result which is not decided by the kind of
block but is meaningful.

Correct:
Signal name is settled at necessary location, and is displayed.

Correct:
Signal name is settled at necessary location, and is displayed.

© Copyright 2013JMAAB. All rights reserved. 50

Incorrect:
Signal name is not settled.

See Also MISRA AC SLSF 027C,027D,027F,027G,027I,027J

Last Change V4.0

4.2.5. jc_0009 ：Propagation of signal label

ID: Title jc_0009 : Propagation of signal label

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites jc_0008 : Definition of Signal labels

Description

If the signal name is propagated (with signal name), turn propagation signal ON, and
display signal name.
When signal name is defined at different layer, signal name is displayed with
propagation signal ON.
However, in the following cases, without cross the hierarchy, propagation of the
signal display name is required
 Target block: Signal output from the basic block to perform a non-conversion

operation

・ from,goto

・ Bus Creator ,Bus Selector

・ Signal Specification

・ Function Call Split

Propagation signal display example1: Propagation display step over the hierarchy

© Copyright 2013JMAAB. All rights reserved. 51

Propagation signal display example2: Propagation display at same hierarchy

Propagation signal display example2: Propagation display at same hierarchy

Exception to ON the display of the signal propagation
1. Subsystem inside that library and reusable function is set.
2. No signal name is set at Bus Creator outport.

In case there is a signal name at Bus Creator outport, propagation signal is ON for
this signal. However, in case there is no signal name on Bus Creator outport,
propagated signal is transmitted in a state in which all of the bus signal names was
degraded in the past MATLAB. It is also transmitted in empty in the latest MATLAB.
This case, propagation signal is not ON.

Correct
If there is signal name on Bus Creator outport, propagation should be ON.

© Copyright 2013JMAAB. All rights reserved. 52

Correct
If there is no signal name on Bus Creator outport, propagation should be OFF.

Incorrect
In case no signal name is put on Bus. (R2010b)

Last change V4.0

See also
hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

Last change V4.0

4.2.6. na_0005: Port block name visibility in Simulink models

ID: Title na_0005: Port block name visibility in Simulink models

Priority Strongly Recommended

Scope NAMAAB

MATLAB
Version

ALL

© Copyright 2013JMAAB. All rights reserved. 53

Prerequisites

Description

For the display of Inport and Outport block names, select either jc_0082 or jc_0083 and
apply uniformly.

However, understanding the benefits of each of the rules outlined below, they can also
both be used depending on the process or the layer and subsystem type. (It is important to
clearly define the rule for the separate usages)
For instance, they could be used based on rules like the following.
 When creating on the premise of RCP which extends the functionality of the model

at the beginning of the process.
 In the case of Atomic Subsystem + function, jc_0082
 Virtual Subsystems allow jc_0083

 Allow use of either for Atomic Subsystem＋auto, inline.

 Implementation code stage
 Make all conform to jc_0082.

These are some examples of what is possible.

 Benefits of each rule
 jc_0082
These rules are in order to avoid connection errors in layered subsystems.
When connecting subsystems after designing functions for individual subsystems
separately, this is effective in avoiding connection errors, by connecting signals and ports
so that their names match.

 jc_0083
The purpose of this rule is to reduce man-hours.
The advantage of this rule becomes apparent when used for layering by building
subsystems through the selection of already existing specific blocks. In this case
connection errors do not occur as only a layer of existing blocks is dropped.
As the subsystem creation function has no function that automatically copies signal names
to block names, unification of block names and signal names requires man hours.
Moreover, as there is the option of changing signal names in the initial stage of the
process, the concern is that complying with jc_0082 will lead to errors because of an
increase in subsequent hours needed for correction and correction oversights.
Also, the subsystem creation function does not have a correction function for port icon
display or a function for automatically replacing block names with signal names.
Whether using jc_0082 or jc_0083, man-hours will be required for that.
For work that is done this frequently, an automatic correction function using an API should
be used.

Notes

The following 3 rules were highly related.
 na_0005: Port block name visibility in Simulink models
 jm_0010: Inport and Outport block names
 jc_0081: Display of Inport and Outport block icons
Furthermore, 2 techniques were described in na_0005. As it was difficult to know how
these techniques should be described, this rule imposes a choice of one of the two
techniques, as is indicated in the old na_0005. We have then extracted 2 separate new
rules, jc-0082 and jc-0083, to describe these 2 techniques separately. Rules jm_0010
and jc_0081 have been deleted as they have been combined with this rule and split
between jc_0082 and jc_0083.

See Also MISRA AC SLSF 036-C

Last Change V4.0

4.2.7. jc_0082: Display of Inport and Outport block names 1

ID: Title jc_0082: Display of Inport and Outport block names 1

Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 54

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Please set the port block name, the signal name and the icon name as a set.
If the Inport or the Outport block has a signal name,
 the name of the signal line connected to the Inport or the Outport should be the same

as the block name.
 The Inport or the Outport block name should be displayed.

("Format", "Block name not displayed" not possible).
 "Port number" should be selected to display the icon for the Inport or Outport block

name.
Signal names refer to both attaching a label name or the existence of a legacy name.
The rule above is the same for scalars, vectors and busses.

Exception:
 The rule does not need to be adhered to inside library subsystems, masked subsystems

or subsystems where reusable functions have been set.
 Block names do not have to conform completely to the signal name. Please register

any differences in numeric characters used for suffixes or prefixes as specific
characters. Often used suffixes and prefixes are _in for Inport blocks and _out for
Outport blocks. Any prefix or suffix can be used for ports, but consistent prefixes must
be selected.

Correct:
Selecting a port number

Appearance of the subsystem from above

Incorrect:
"Port number and signal name" is selected for the display of the port block icon.

Incorrect:
The port block name and the signal name are different.

© Copyright 2013JMAAB. All rights reserved. 55

Incorrect:
The port block name is not displayed.

Notes

To match it with the checking content of the current guideline checker
na_0005 - 1 has been formulated independently.
The purpose of this rule is to avoid connection errors in layered subsystems.
Function layers in controller models sometimes connect tens of signal lines, and it is
important to build a model where connection errors can be seen at one glance. It is
important, when building a safe system that is an automobile, that its design allows to
discover simple errors at a glance.
When this rule is applied, it is difficult to automatically judge whether all signal names or
block names are correct after they have been automatically replaced.
Signal names, even when they are legacy names, cannot be automatically judged as to
whether the block name may be replaced from the signal name or whether there are any
connection errors.
While extracting the differing parts of the names and confirming them one by one, a
decision needs to be taken on whether to employ the block name or the signal name. If
either is unilaterally changed, they can be made uniform with the automation tool.

See Also MISRA AC SLSF 036-C

Last Change V4.0

4.2.8. jc_0083: Display of Inport and Outport block names 2

ID: Title jc_0083: Display of Inport and Outport block names 2

Priority recommended

Scope NAMAAB

MATLAB
Version

ALL

Prerequisites

Description

Please set the port block name, the signal name and the icon name as a set.
If the Inport or the Outport block has a signal name,

 the signal name should not be the same as the block name in the Inport or the
Outport block. The block name should conform to a number of specific fixed
block names.

・ For instance, in value and out value Inport standardly named in
Simulink

 Icon display of Inport or Outport block should select "Signal name" or "Port
number and signal name".

 Block names for Inport or Outport blocks should be set to not displayed (when
changing the icon display settings described above, the default setting for block
name display changes to OFF, and the user does not need to perform any
specific operation).

Signal names refer to both attaching a label name or the existence of a legacy name.
The rule above is the same for scalars, vectors and busses.

© Copyright 2013JMAAB. All rights reserved. 56

Exception: Names cannot be set to non-display inside library subsystem blocks.
This is used when the signal name is prioritized and no meaningful name is attached to
the block name.

Correct: Use the port number and the signal name display for the icon label
The icon display for the Inport of the Outport block is selected as the signal name

Correct: The signal name display is used for the icon label

Appearance of the subsystem from above

When the "signal name" is given for the icon display, the signal name for inherited signals
is given between < >, but no < > are used for signal names if a direct label has been
entered. Please note that, if entering a list of signals at a bus, extremely long names will
be displayed if no name is given to the bus.
Reference 1: No name given to bus

Reference 2: Name given to bus

Incorrect:
If the signal line of the Inport or Outport block has a name, the icon display only has a port
number, and the block name is displayed.

© Copyright 2013JMAAB. All rights reserved. 57

Incorrect:
After using a port number and signal name display on the icon label, this has been
changed to block name display for the port block.

Notes

Manually changing the icon display takes time and effort. Automatic correction using a
Simulink API surely is desirable.
In that event, an API for automatically conforming the specifically defined port block name
to signal name should also be used.

Last Change V4.0

4.2.9. db_0097: Position of labels for signals and busses

ID: Title db_0097: Position of labels for signals and busses

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The labels must be visually associated with the corresponding signal, and not overlap other
labels, signals or blocks.

Labels should be located close to the corresponding source or destination block below the
signal line.

See Also MISRA AC SLSF 027A

Last Change V2.0

4.2.10. db_0081: Unconnected signals, block inputs and block outputs

ID: Title db_0081: Unconnected signals, block inputs and block outputs

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

A model must not include the following.
 Subsystems or basic blocks with unconnected inputs
 Subsystems or basic blocks with unconnected outputs
 Unconnected signal lines

If unconnected blocks/signal lines are required, they must conform to the following.
 Unconnected inputs should be connected to a ground block.

© Copyright 2013JMAAB. All rights reserved. 58

 Unconnected outputs should be connected to a terminator block.

Correct:

Incorrect:

Notes

By using addterm(‘sys’) command, Terminator blocks and Ground blocks are added to the
terminal which is not connected to sys in Simulink block diagram.
By executing this operation, the model compliant to guidelines can be realized easily.
However, distinguishment of intended block or the block which is forgotten to connect
becomes impossible. To enable identification of them after this operation, please add
annotations near those blocks or change give identifiable names to those blocks. Or please
change size of these blocks so that it is clear these blocks were intentionally added.

Last Change V2.0

4.3. Use of of Blocks

4.3.1. na_0003: Simple logical expressions for If condition blocks

ID: Title na_0003: Simple logical expressions for If condition blocks

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

A logical expression may be implemented within an If condition block instead of building it
up with logical operation blocks, if the expression contains two or fewer primary
expressions. A primary expression is defined as one of the following:

 An input

 A constant

 A constant parameter

 A parenthesized expression. Except for zero or 1 instances of: < , <=, >, >=, ~=, ==,
~, no operator is included. (See examples below)

Exception:
A logical expression may contain 3 or more primary expressions if both of the following are
true:

 The primary expression are all inputs

 Only one type of logical operator is present
Examples of acceptable exceptions:

 u1 | u2 | u3 |u4 | u5

 u1 & u2 & u3 & u4
Examples of primary expressions:

 u1

 (u1 > 0)

 (u1 <= G)

© Copyright 2013JMAAB. All rights reserved. 59

 (u1 > U2)

 (~u1)
Examples of acceptable logical expressions:

 u1 | u2

 (u1 > 0) & (u1 < 20)

 (u1 > 0) & (u2 < u3)

 (u1 > 0) & (~u2)

Examples of unacceptable logical expressions:

u1 & u2 | u3 Too many primary expressions.

Two kinds of operators exist.

u1 & (u2 | u3) Unacceptable operator within the primary

expression.

In parenthesized expression,only relational

operators can be used.

(u1 > 0) & (u1 < 20) & (u2 > 5) Too many primary expressions that are not

inputs.

Allowed number of primary expressions is two or

less.

(u1 > 0) & ((2*u2) > 6) Unacceptable operator within the primary

expression

Multiplication is executed in parenthesized

expression.

In these cases, the primary expression must be computed and entered outside the If
Condition block.

Last Change V2.2

4.3.2. na_0002: Appropriate implementation of fundamental logical and numerical
operations

ID: Title
na_0002: Appropriate implementation of fundamental logical and numerical
operations

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Operations must be performed using the appropriate blocks for logical and numerical
operations.
1. No numerical values may be input on blocks that are awaiting logical values.
2. No logical values may be input on blocks that are awaiting numerical values.

Detailed explanation
 A logical output should not be directly connected to the inputs of blocks that process

numerical inputs.
 The result of a logical expression parameter should not be processed with a numerical

operator.
 This guideline for logical operations also applies to enumerated data types.

Correct:

© Copyright 2013JMAAB. All rights reserved. 60

Incorrect:

 Blocks for performing logical operations may not be used for performing numerical

operations.
 A numerical output should not be connected to the inputs of blocks that process logical

inputs.
Incorrect:

 Blocks for performing numerical operations may not be used for performing logical

operations.
Incorrect:
Although Inputs other than logical values can be made, the Enable Port is a block that awaits
logical signals for which only On/Off exists.
Product blocks perform double and double operations, but as it connects the numerical
operations result to the block that awaits the logical value called Enable Port, the Product
block performs the logical operation.

 Boolean should not be applied relational operation.(Boolean signal should not be

compared with numerical value(0,1,～) or logical value(true, false))

 To invert boolean value, logical operation NOT should be used.

Correct: Boolean signal is inverted by using logical operation.

Correct: Boolean signal is judged by using logical operation.

© Copyright 2013JMAAB. All rights reserved. 61

Correct: Equality of a numerical value and another numerical value is judged.

Signals which are not boolean can be compared with true, false.

Incorrect: Boolean signal is compared with numerical value.

Notes

 “Relational Operator”, ”Compare To Constant” and “Compare To Zero”are the blocks that

expect numerical input.

Although true, false tend to be considered as equal to numerical 0,1, they mean 0, other
than 0. Therefore relational operator should not be applied to boolean signal.

See Also

Last Change V4.0

4.3.3. jm_0001: Prohibited Simulink standard blocks inside controllers

ID: Title jm_0001: Prohibited Simulink standard blocks inside controllers

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

 Controller models must be designed from discrete blocks.
The MathWorks "Simulink Block Data Type Support" table provides a list of blocks that
support code generation.
>The table will be displayed by entering the command showblockdatatypetable.

© Copyright 2013JMAAB. All rights reserved. 62

Please use the blocks that are listed as "Code generation support" in your design. Even if
the blocks are subject to code generation support, do not use them for mass production
code in the following cases.

・ It is dependent to continuous time

・ It refers to non-finite values (Inf, -Inf, NaN)

・ It includes measuring code that is only suitable for rapid prototyping

 In addition to the blocks defined by the rule above, please do not use the following

blocks.

・ Use of the following Sources blocks is prohibited.

Sources are not allowed:

Sine Wave

Pulse Generator

Random Number

Uniform Random Number

Band-Limited White Noise

 Sources blocks that are allowed
The Sources block group is formed by blocks that can all generate code, but the blocks that
can generate mass production code are limited to the following.

・ Constant

・ Enumerated Constant

・ Ground

・ Inport

 Use of the following additional blocks is prohibited.
The MAAB Style Guide does not recommend the use of the following blocks.
This list can be extended by individual companies.

Slider Gain

Manual Switch

Complex to Magnitude-Angle

Magnitude-Angle to Complex

Complex to Real-Imag

Real-Imag to Complex

© Copyright 2013JMAAB. All rights reserved. 63

Polynomial

MATLAB Fcn(1)

Goto Tag Visibility

Probe

Notes

In (1)R2011a, the block name "MATLAB Fcn" was renamed to the block name "Interpreted

MATLAB Function".

Last Change V2.2

4.3.4. hd_0001: Prohibited Simulink sinks

ID: Title hd_0001: Prohibited Simulink sinks

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Controller models must be designed from discrete blocks.

Use of the following Sink blocks is "prohibited".

To File

To Workspace

Stop Simulation

Notes
Simulink Scope blocks and Display blocks can be used in the model diagram. Please
consider using Simulink Signal logging and Signal and Scope Manager for data logging and
reference requirements.

Last Change V2.2

4.3.5. na_0011: Scope of Goto and From blocks

ID: Title na_0011: Scope of Goto and From blocks

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description Goto blocks must use local scope.

© Copyright 2013JMAAB. All rights reserved. 64

Setting tag visualization to global sometimes inhibits subsequent changes from virtual to
non-virtual subsystem. Not using them inside a controller model is therefore preferable.

Notes

Goto and From global tags can only be used outside the Atomic Subsystem. When Goto
and From are used globally, no Atomic Subsystem is present in the layers above. Case of
using From Goto global tag at outside of controller for the connection of controller and plant
model is not subject to this rule.
Same As jc_0161: Use of Data Store Read/Write/Memory blocks

Last Change V4.0

4.3.6. jc_0141: Use of the Switch block

ID: Title jc_0141: Use of the Switch block

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The Switch block must be used under the following conditions
 The Switch condition, input 2, must be a Boolean type.
 The block parameter "Conditions for the passing through of the first input" should be

set to u2~=0.

Correct:

Incorrect:

© Copyright 2013JMAAB. All rights reserved. 65

Last Change V2.2

4.3.7. jc_0121: Use of the Sum block

ID: Title jc_0121: Use of the Sum block

Priority Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

Use conditions of the Sum block
 A rectangular shape should be used.
 The size should be adjusted to ensure there is no input signal overlap.
 Use the + mark for the first input.

Correct:

Incorrect:
1) 2)

1) When using a round shape, the
input cannot use any angles other
than 90 degrees, 180 degrees, and
270 degree.
2) Since the mark has overlapped, it
cannot distinguish.

Correct:

Incorrect:

The 1st input is using the mark of －.

© Copyright 2013JMAAB. All rights reserved. 66

This spoils readability.

Circular shapes can be used for feedback loops. The following 3 conditions must be
adhered to when this is used.
 Please keep the number of inputs up to 2-3.
 The inputs should be positioned at 90°, 180°, 270°.
 The output should be positioned at 0°.
Whether feedback loops are rectangular or circular, the - mark may be used for the
first input.

Correct:

Other notation examples:

Incorrect:
When using a round shape, the input cannot use any angles other than 90 degrees, 180
degrees, and 270 degree.

See Also MISRA AC SLSF 010A

Last Change V4.0

0° 180°

270°

Output

90°

Correct

Correct

Correct

Correct

Correct

Incorrect

© Copyright 2013JMAAB. All rights reserved. 67

4.3.8. jc_0610: Operator order for Product block

ID: Title jc_0610: Operator order for Product block

Priority Recommended

Scope JMAAB

MATLAB
Version

ALL

Prerequisites

Description

If a block is set as a divisor, the first input should be multiplied (*).

Correct:

Incorrect:

Notes
As for jc_0121, it is assumed that the reason that there is no mention of a feedback group is
that there are no cases where the return destination is directly the Product block.

See Also MISRA AC SLSF 010B

Last Change V4.0

4.3.9. jc_0611: Input signal sign during product block division

ID: Title jc_0611: Input signal sign during product block division

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

In the fixed-point model, if division is incorporated into the arithmetic expression, the sign is
the same as the input signal type.
Correct:
The input signal sign is the same.

Incorrect:
The input signal sign is different.

© Copyright 2013JMAAB. All rights reserved. 68

See Also

Notes

In division arithmetic, various utility functions are created when a fixed-point code is
generated. While a utility function is created for each LSB, the problem of LSB precision may
make it difficult to suppress the number. In addition, if the type is different, the number can
easily double in size. Unification of types used can be expected to suppress the number of
utility functions, to improve ROM efficiency, and to cut down on testing manhours.

Last Change V4.0

4.3.10. jc_0131: Use of Relational Operator block

ID: Title jc_0131: Use of Relational Operator block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If using the relational operator for comparison of signals and constants, set the constant
input to the second (bottom) input.

Correct

Incorrect

Last Change V2.0

4.3.11. jc_0161: Use of Data Store Read/Write/Memory blocks

ID: Title jc_0161: Use of Data Store Read/Write/Memory blocks

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Description

 The use case of data Store Read/Write/Memory is determined.
When using it as a memory which memorizes the past value, you should use
UnitDelay , Delay block, etc.
If UnitDelay is used, when readability will fall, Data Store Read/Write/Memory can be
used.
Please determine the case used in a project and use the use part of Data Store
Read/Write/Memory, limiting.

 Arrangement of Data Store Read Memory
To explicitly show the Read and Write scope, position the DSM block in as low a layer
as possible.
Do not position the DSM in the top layer for no reason

© Copyright 2013JMAAB. All rights reserved. 69

 diagnosis

If using between subsystems running at different rates, set diagnosis, data validity,
and multitask store as errors for use.

Notes

Object block

Data Store
Read

Data Store
Write

Data Store
Memory

Know-how for improving readability
If Read and Write are positioned in differing subsystems, and the subsystems are not
directly wired, using a Ground and Terminator to create a dummy line that directly wires
the subsystems can enable visualization of the relationship from a higher level, improving
readability.
Priority order descriptions are necessary for these subsystems(and blocks). Dummy
connection does not bind the turn order. Dummy connection should be drawn based on its
priority.

[Example of writing method]

See Also
hisl_0013: Guideline for using the Data Store block
MISRA AC SLSF 005C

Last Change V4.0

4.3.12. Guideline for using the Logical Operator block

ID: Title jc_0621: Guideline for using the Logical Operator block

Priority Strongly Recommended

Turn is early.
Turn is late.

© Copyright 2013JMAAB. All rights reserved. 70

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Unify the Logical Operator block icon shape to either "square" or "characteristics".
Unless there is otherwise a particular reason, set to "square".

Icon shape: Square

Icon shape: Characteristics

See Also

Last Change V4.0

4.3.13. jc_0011: Optimization parameters for Boolean data types

ID: Title jc_0011: Optimization parameters for Boolean data types

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
na_0002: Appropriate implementation of fundamental logical and numerical
operations

Description

The optimization parameter for Boolean signals must be enabled. In the Configuration
Parameter Dialog Box, select Use Logic Signal as Boolean Data (vs double) under
Simulation and Code Generation of Optimization.

Last Change V2.2

4.3.14. jc_0629: Fcn block use limits

ID: Title jc_0629: Fcn block use limits

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The Fcn block is not used in the Controller Model for the purpose of code generation.
If using the Fcn block, use the MathOperation block within the subsystem, and build an
expression.
Example

© Copyright 2013JMAAB. All rights reserved. 71

Notes

If using an Fcn block, it is advantageous in terms of readability because the numerical
expression is displayed from the top.
If a subsystem consisting of numerical expressions only has been designed, implementing
subsystem masking, and displaying the numerical expression within the disp command,
makes it appear equivalent to Fcn, and improves readability from the upper layer.

See Also MISRA AC SLSF 005B

Update
History

V4.0

4.3.15. jc_0622: Guideline for using the Fcn block

ID: Title jc_0622: Guideline for using the Fcn block

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If using the Fcn block, always enclose in parentheses in arithmetic with priority order.
(Rather than blindly rely on the priority order, use parentheses for clarification.)
Correct:
Since there is a priority order in the Fcn block operation, parentheses are attached.

Incorrect:
Even though there is a priority order in the Fcn block operation, parentheses are not
attached.

See Also

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 72

4.3.16. jc_0626: Guideline for using the Lookup Table system block

ID: Title jc_0626: Guideline for using the Lookup Table system block

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

For the lookup manual option in the Lookup Table, Lookup Table 2D, Lookup Table nD, and
Lookup Table Dynamic, use "Interpolation - Use Final Value". (R2011a)
However, exclude cases when all input and output are a real number (double, single).
This rule is not merely for the purpose of preventing overflow of the Lookup Table output (if
that is the purpose, use the saturation at integer overflow in the Lookup Table block), it is
for the purpose of clearly defining the Lookup Table maximum and minimum values to
prevent unexpected results in other operation blocks using the Lookup Table output.

■ Lookup Table block up to R2011a

■ Lookup Table R2011b and later (same as n-d Lookup Table)

Interpolation method: Prohibit 3D spline, and use linear shape.
Extrapolation method: Prohibit linear shape and 3D spline, and use clip.
Extrapolation option: Check "Use the final break point, or the final table value for input
based on it".

© Copyright 2013JMAAB. All rights reserved. 73

See Also

Notes

The options shown below usable in versions R2011a or earlier do not have upward
compatibility with versions R2011b or later. As a result, in these Guidelines it is limited to
"Interpolation - Use Final Value".
Option name with no upward compatibility

・ Use nearest input

・ Use bottom input value

・ Use top input value

Last Change V4.0

4.3.17. jc_0627: Guideline for using the Discrete-Time Integrator block

ID: Title jc_0627: Guideline for using the Discrete-Time Integrator block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

For the Discrete-Time Integrator, set the saturation upper limit and lower limit.

If performing settings for generation of mpt.Parameter and other codes in the parameters,

© Copyright 2013JMAAB. All rights reserved. 74

the data type should be set to auto.

See Also

Last Change V4.0

4.3.18. jc_0628: Guideline for using the Saturation Block

ID: Title jc_0628: Guideline for using the Saturation block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

For the maximum value and minimum value of Saturation or Dynamic Saturation blocks,
use should be limited to to significant values within the maximum and minimum range.
If setting the type maximum and minimum for both the Saturation or Dynamic Saturation
blocks, use the "Saturation at Integer Overflow" in the Data Type Conversion block.
(For details, see jc_0651)

Correct:
A significant value should be used for the Saturation limit value.

In regards to the type maximum value 63.9990234375, the Saturation upper limit value is
set to a value 10 differing from the type maximum value.

Correct:
If limiting the type maximum and minimum values, use the Data Type Conversion block.

© Copyright 2013JMAAB. All rights reserved. 75

Incorrect:
In the Saturation Block, upper and lower limit processing is performed within the type
maximum and minimum ranges after downcasting.

The type maximum value is set in Saturation.

See Also MISRA SLSF0002A

Last Change V4.0

4.3.19. jc_0650: Block input/output data type with switching function

ID: Title jc_0650: Block input/output data type with switching function

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

For blocks (Switch, Multiport Switch, Index Vector) with switching functions, use the same
data type for data ports and output port.
Correct:

© Copyright 2013JMAAB. All rights reserved. 76

Incorrect:

Notes

Signal flow switching port is described as control port, other input ports are described as
data ports.

See Also

Last Change V4.0

4.3.20. jc_0630: Number of data ports in Multiport Switch block

ID: Title jc_0630: Number of data ports in Multiport Switch block

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Set the "data port number" in the "Multiport Switch" block" to two or more.

Correct:

Data
ports

Control port

© Copyright 2013JMAAB. All rights reserved. 77

Incorrect:

Correct:
If extracting index elements from the array, use the Selector block.

© Copyright 2013JMAAB. All rights reserved. 78

See Also MISRA AC SLSF 013A

Notes

Only the Index Vector and Multiport Switch option settings differ, and both are blocks that
have the same functions. If there have been multiple inputs of the vector signal, output the
vector in accordance with the index number. If the number of data ports is one, it will
change to a block that extracts scalar from inside the vector. If, without knowing this, the
input pattern of the index portion has been reduced to just one, the block should in fact be
cut back. However, if the block role has not been recognized, there is a possibility that
reducing the port number will be acceptable. In this case, the intended action will not occur.
To confirm whether the design intentions were intentionally prepared or unintentionally
used, use the Selector block in the block that extracts any single desired element from the
vector.
In addition, if extracting a specific fixed scalar from the vector, it should be considered that
there is a possibility that a path should be used rather than a vector.

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 79

4.3.21. jc_0631: Input of Multiport Switch block to control port

ID: Title jc_0631: Input of Multiport Switch block to control port

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Set the input to the "Multiport Switch" block control port to an unsigned integer.

Usable data type

 uint8, uint16, uint32

 Enumerated data type (does not literally use negative values)

Notes

See Also
hisl_0022: Selection of index signal data type
MISRA AC SLSF 013B

Last Change V4.0

4.3.22. jc_0632: Default case port in Multiport Switch block

ID: Title jc_0632: Default case port in Multiport Switch block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If the order of the Multiport Switch block data ports is "index specified", the following
settings should be performed:
 Set the default case data ports to "additional data port"
 Set the default case diagnosis to "none"

Data
ports

Control port

Data
ports

Control port

© Copyright 2013JMAAB. All rights reserved. 80

See Also hisl_0022: Selection of index signal data type

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 81

4.4. Initialization

4.4.1. jc_0625: Unification of descriptions of external input values as initial values

ID: Title jc_0625: Unification of descriptions of external input values as initial values

Priority Recommended

Scope JMAAB

MATLAB
Version

R2011b and later

Prerequisites

Description

For the Unit Delay, which sets external input values as the initial values, unify to any of the
following:
1. Discrete/Delay (Recommended)
2. Additional Math& Discrete/Additional Discrete block group (Unit Delay External IC,

etc.)
3. Own configured library
Example
1. Delay Block usage example

© Copyright 2013JMAAB. All rights reserved. 82

2. Unit Delay External IC

Excluding the Unit Delay External IC mask, the modeling is the same as the 3rd case
below.

3. Own configured library

See Also

Last Change V4.0

4.4.2. jc_0640: Detection of undefined initial output

ID: Title jc_0640: Detection of undefined initial output

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

To prevent omission of the initial value setting when system configuration enabling initialized
parameters is performed, enable "Specification Shortage Initialization Detection".
Select <diagnosis><data validity><specification shortage initialization detection><classic>.
And <Check undefined subsystem initial output> flag is "On"

© Copyright 2013JMAAB. All rights reserved. 83

Notes

While normally the initial value is not valid, if the conditions are met, it is the Outport block
and Merge block that change to blocks that have the initial value.

When I meet the following conditions, there is not the need to use this rule.

・The output signal line of the Merge block has the setting of the Simulink object.

Because an initial value is set to a signal, so initial value is explicit.

See Also MISRA AC SLSF 007

Last Change V4.0

4.5. Block Parameters

4.5.1. db_0112: Indexing

ID: Title db_0112: Indexing

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
Use a consistent vector indexing method for all blocks.
When possible, use zero-based indexing to improve code efficiency.

Notes
If mixing the one-based and zero-based indexing, establish the operations rules, and
enable understanding of which index is being used.

See Also
cgsl_0101: Zero-based indexing
hisl_0021: Consistent vector indexing

Last Change V2.2

4.5.2. db_0110: Tunable parameters in basic blocks

ID: Title db_0110: Tunable parameters in basic blocks

Priority Strongly Recommended

© Copyright 2013JMAAB. All rights reserved. 84

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

To ensure that a parameter is tunable, it must be entered in a block dialog field as follows:
 Without any expression.
 Without a data type conversion.
 Without selection of rows or columns.
Correct:

Incorrect:

Last Change V2.2

4.5.3. jc_0645: Named constant setting

ID: Title jc_0645: Named constant setting

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Block parameters that are targets of calibration should be defined as named constants.

Examples of parameters outside of calibration target:
● Iniitial value parameter 0
● Increment, decrement 1
● Gain block 1

Correct:

Incorrect:

See Also MISRA AC SLSF 006B

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 85

4.5.4. jc_0641: Sample time setting

ID: Title jc_0641: Sample time setting

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

All blocks with settings related to sample time in the parameters must be set so as to
succeed to the input side settings.

However, the blocks below are not targeted:

 Port block
 Atomic Subsystem
 Blocks with status variables such as Unit Delay blocks and Memory blocks
 Signal conversion blocks such as DataType Conversion and Rate Transition
 Blocks that do not have external inputs such as Constant blocks

See Also MISRA AC SLSF 009D

Last Change V4.0

4.5.5. jc_0642: Integer rounding mode setting

ID: Title jc_0642: Integer rounding mode setting

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If "simple" is selected in Integer Rounding Mode, since it is dependent on the configuration
hardware setting, it should be set together with the configuration

© Copyright 2013JMAAB. All rights reserved. 86

Set <the division rounding of configuration><hardware execution><signed integer>.

Incorrect
<the division rounding of configuration><hardware execution><signed integer> is set
“Undefined”.

Notes

If "Division Rounding of Signed Integer" option is set to "Simplest",
automatically selects either "Rounding in Negative Infinite Direction" or "0",
and generates the most efficient code.

Effects of <the division rounding of configuration><hardware execution><signed integer>
option.

"No setting" or “Undefined” (Depends on versions)

Select when the compiler action cannot be expressed in either "Zero" or "Rounding in
Negative Infinite Direction", or when the action is unknown.
"Zero"
If the quotient is between two integers, the compiler selects an integer that is closer to 0 for
the result.
"Rounding in Negative Infinite Direction"
If the quotient is between two integers, the compiler selects an integer that is closer to
negative infinity for the result.

See Also

Last Change V4.0

4.5.6. jc_0643: Fixed-point setting

ID: Title jc_0643: Fixed-point setting

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
If the fixed-point setting is used for the data type, and "slope and bias" is selected for
scaling, the bias must be set to 0

© Copyright 2013JMAAB. All rights reserved. 87

See Also

Last Change V4.0

4.5.7. jc_0644: Guideline for type setting

ID: Title jc_0644: Guideline for type setting

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If the type is set by data object, the type is not set on the block side.
However, this excludes the following:

 ・ Reusable internal part of function

 ・ Data Type Conversion block

 ・ Type setting by fixdt

 ・ Double type, boolean type designation

© Copyright 2013JMAAB. All rights reserved. 88

Notes

 Set the signal name in the signal line on the model block side, and associate it with the
signal object.

 ・Inport block...Data type ”auto”

 ・Outport block...Data type ”auto”

 ・Sum block...Output data type ”Inherit via back propagation”

 The type setting is performed in the data dictionary, while the storage class setting is
optional.

Exceptional items

 Inside of reusable function
Even if all block structures are identical, difference of input/output data type leads to

different C source codes and it’s not reuseable. Regarding reusable functions, data types

of input/output blocks should be fixed.

 Data Type Conversion block
Purpose of Data Type Conversion is to set data type. If needed, data type is explicitly set by
using this block.

 Data types set by using fixdｔ
If fixed point is selected, detailed setting is necessary since each block can have different
data points. Complete control of data type by using only data object is impossible.

 double type, boolean type
Some block type needs explicit setting to boolean.Double type is generally used in plant
model and RCP. It is not subject to this rule.
In some cases, embedded software uses double type. However those cases are special
case. Since number of double type use must be minimized, careful setting on necessary
blocks is needed.

See Also

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 89

4.6. Simulink pattern
Below is an explanation of the classic patterns often used in the Simulink model.

4.6.1. db_0114: Simulink patterns for If-then-else-if constructs

ID: Title db_0114: Simulink patterns for If-then-else-if constructs

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns should be used for If-then-else-if constructs:

Functionality Simulink pattern

Switch Block is used
IF THEN ELSE IF construct

if (If_Condition)
{
 output_signal = If_Value;
}
else if (Else_If_Condition)
{
 output_signal = Else_If_Value;
}
else
{
 output_signal = Else_Value;
}

IF THEN ELSE IF construct
using Action Subsystem

if (Fault_1_Active &
Fault_2_Active)
{
 ErrMsg = SaftyCrit;
}
else if (Fault_1_Active |
Fault_2_Active)
{
 ErrMsg = DriveWarn;
}
else
{
 ErrMsg = NoFaults;
}

Notes
While listed as an example explanation, If Action Subsystem is normally not used when
switching the fixed value.

Update History V2.0

© Copyright 2013JMAAB. All rights reserved. 90

4.6.2. db_0115: Simulink patterns for case constructs

ID: Title db_0115: Simulink patterns for case constructs

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for case constructs:

Function Simulink pattern

Case constructs
using Switch Case Action
Subsystem

switch (PRNDL_Enum)
{
case 1
 TqEstimate = ParkV;
 break;
case 2
 TqEstimae = RevV;
 break;
default
 TqEstimate = NeutralV;
 break;
}

Case construct
using Multiport Switch block

 switch (Selection) {
 case 1:
 output_signal =

look1_binlxpw(In2,y1,x1,3U);
 break;
 case 2:
 output_signal =

look1_binlxpw(In3,y2,x2,3U);
 break;
 case 3:
 output_signal =

look1_binlxpw(In4,y3,x3,3U);
 break;
 default:
 output_signal =

look1_binlxpw(In5,y4,x4,3U);
 break;
 }

Update History V4.0

Change
classifications

Matched the Multiport Switch block example to the latest version code generation function
and replace
Deleted unneeded examples

© Copyright 2013JMAAB. All rights reserved. 91

4.6.3. db_0116: Simulink patterns for logical constructs with logical blocks

ID: Title db_0116: Simulink patterns for logical constructs with logical blocks

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Use the following patterns for logical constructs:

Function Simulink pattern

Conjunctive normal form

Disjunctive normal form

Update History V1.0

4.6.4. db_0117: Simulank patterns for vector signals

ID: Title db_0117: Simulank patterns for vector signals

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

© Copyright 2013JMAAB. All rights reserved. 92

Description

The following patterns are used for vector signals:

Functionality Simulink pattern

Vector signal and parameter
(scalar) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] *
tunable_parameter_value;
}

(Reference: generated code of
R2013b)
for (i = 0; i < input_vectorDim; i++) {
output_vector[i] =
tunable_parameter_value *
input_vector[i];
}

Vector signal and parameter
(vector) multiplication

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] *
tunable_parameter_vector[i];
}

Vector signal element multiplication

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal *
input_vector[i];
}

Vector signal element division

output_signal = 1;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal /
input_vector[i];
}

Vector signal and parameter
(scalar) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] +
tunable_parameter_value;
}

Vector signal and parameter
(vector) addition

for (i=0; i>input_vector_size; i++) {
output_vector[i] = input_vector[i] +
tunable_parameter_vector[i];
}

© Copyright 2013JMAAB. All rights reserved. 93

Vector signal element addition

output_signal = 0;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal +
input_vector[i];
}

Vector signal element subtraction

output_signal = 0;
for (i=0; i>input_vector_size; i++) {
output_signal = output_signal -
input_vector[i];
}

Retention of minimum
value/maximum value

Edge detection

Update
History

V1.0

4.6.5. na_0012: Use of Switch vs. If-Then-Else Action Subsystem

ID: Title na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Priority Strongly Recommended

Scope NAMAAB

MATLAB
Version

All

Prerequisites

Description
The Switch block should be used for modeling simple if-then-else structures, if the
associated then and else actions involve only the assignment of constant values.

© Copyright 2013JMAAB. All rights reserved. 94

The if-then-else Action Subsystem should be used in the following cases:
 If the associated then action or else action requires complex calculations, use the if-

then-else construct from within the conditional control flow for modeling. By doing
so, not only the simulation efficiency, but also the generated code efficiency, will
improve to the maximum limit (in basic blocks such as Table Lookup, pay attention
to cases where quite complex calculations are required).

Last Change V4.0

4.6.6. na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches

ID: Title na_0028: Use of If-Then-Else Action Subsystem to replace multiple switches

Priority Recommended

Scope NAMAAB

MATLAB
Version

All

Prerequisites
na_0012: Use of Switch vs. If-Then-Else Action Subsystem
db_0114: Simulink patterns for If-then-else-if constructs

Description

Frequent use of the condition bifurcation by Switch block should be avoided.
It should be operated based on a set upper limit target value. (For example, up to 3
levels)
If the target value is exceeded, in its place a conditional control flow using the If-Then-
else Action Subsystem can be listed.

Incorrect: Nest is in 4 levels

© Copyright 2013JMAAB. All rights reserved. 95

Correct: With if-action Subsystem in 4th level, nest is limited to within a single level.

Incorrect: Not divided in if-action form.

© Copyright 2013JMAAB. All rights reserved. 96

In the cases where the C code limit is reflected, it can be split into Atomic Subsystem +
Function Setting. In this case, there is no need to use the if-then-else Action Subsystem,
but the Switch block configuration can be split partway through, and merely
encapsulated in the subsystem.

Example of model with 5-level nest
Incorrect:

Correct: Description method that avoids layering of Switch nest

© Copyright 2013JMAAB. All rights reserved. 97

Notes

While listed as an example explanation, If Action Subsystem is normally not used in
switching the fixed value
In both the Correct and Incorrect above, if the user does not add a function conversion
setting, the generated C code is the same. (Confirmed in R2010b to R2013a)
This rule is not a constraint in the C code.

See Also Orion_bn_0003: In place of multiple Switch, use the If-Then-Else Action Subsystem

Last Change V3.0

© Copyright 2013JMAAB. All rights reserved. 98

4.6.7. jc_0658 ：Usage rules for Action Subsystem using conditional control flow

ID: Title jc_0658: Usage rules for Action Subsystem using conditional control flow

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites na_0012: Use of Switch vs. If-Then-Else Action Subsystem

Description

If the associated all actions do not have a status variable, the If-Then-Else Action
Subsystem (Conditional Subsystem) should not be used.

This rule adds strict limits to na_0012.

No status variable: Use the Switch, Multiport Switch, and Index Vector.
With status variable: The If-Then-Else Action Subsystem is usable as necessary.

However, if the Action Subsystem exists in a layered lower layer, and if the status
variable exists only in the lower Action Subsystem, the upper layer Action Subsystem is
not used.
For cases where a certain number of blocks or more are included in the related then
Action and else Action rather than the Action Subsystem, use and list the normal
subsystem and block that have a switching function (Switch, Multiport Switch, Index
Vector). (Define and use the upper limit value for number of blocks.)

Correct:

Example of model with 5-level nest
Correct:
Since there is no internal state, layering using the subsystem is not performed.

© Copyright 2013JMAAB. All rights reserved. 99

Correct:
The Atomic Subsystem is used to split either side of the Switch without using Action
Subsystem.

Incorrect:
Layering using an unnecessary Action Subsystem is performed.

© Copyright 2013JMAAB. All rights reserved. 100

If a function can be achieved even without using the Action Subsystem, then layering
using the Action Subsystem is not performed.

In the Incorrect example, when the lowest level UnitDelay existing on the third level is
initialized, first, the conditional subsystem initialization is executed one time on the upper
first level, and then the conditional subsystem is initialized on the second level for a total
of two times of initial value settings. In order not to generate unnecessary code, in levels
where the state variable does not exist, it is recommended that no listing be made in
conditional subsystems.

In addition, this rule does not coexist with na_0028, and becomes a selective expression
rule.
Select and use either one within the model.
na_0028 is based on the concept that the model (not the code) complexity is reduced by
dropping to a level. This rule is a rule for the purpose of avoiding execution of
unnecessary initializations.

Since there is no block that has a state
variable in this level, there is no need to
use the Action Subsystem.

Initialization of this state
variable is also executed
at the time of initialization
of the upper layer, and
executed several times
in the same cycle.
While there is no problem
with the calculation result,
wasteful processes are
performed.

© Copyright 2013JMAAB. All rights reserved. 101

Notes

While unrelated to the regulations in this rule, the bifurcation of systems where the
bifurcation condition nest has a deep structure is split by function conversions so as to
lower the code bifurcation nest. For this purpose, functions before and after the Switch
block are divided into respective subsystems, and function settings are performed for the

Atomic Subsystem＋function. However, since there is a possibility that unintentional

implementation could result in addition of unnecessary RAM, a check of trade-offs is
required. Since both have their strengths and drawbacks, select a description method
that matches the model.

See Also

Last Change V4.0

4.6.8. jc_0623: Use of Memory block vs. Unit Delay block

ID: Title jc_0623: Use of Memory block vs. Unit Delay block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

・ The Memory block is not used within discrete type models or subsystems.
(Use the Unit_Delay Block.)

・ The Unit_Delay Block is not used within continuous type models or subsystems.
(Use the Memory Block.)

See Also

Last Change V4.0

4.6.9. jc_0624: Guideline for using the Delay block

ID: Title jc_0624: Guideline for using the Delay block

Priority Recommended

Scope JMAAB

MATLAB
Version

R2011b and later

Prerequisites

Description

 If wanting to obtain a vector signal that includes past values, rather than lining up
multiple Unit Delays, the Tapped Delay block should be used.

 If wanting to obtain the oldest value only, the Delay block should be used.

Tapped Delay block example
Correct:

Incorrect:

© Copyright 2013JMAAB. All rights reserved. 102

Delay block example
Correct:

Incorrect:

Notes

Supplement
 The Tapped Delay and Delay blocks are set with arrays holding past values, and have

improved code visibility to assist code efficiency.
 If the number of delays is frequent (for example, five or more), using the Delay block

means performing settings for use of code using a cycling buffer, which can assist
execution speed.

See Also

Last Change V4.0

4.6.10. jc_0651: Guideline for use when implementing cast

ID: Title jc_0651: Guideline for use when implementing cast

© Copyright 2013JMAAB. All rights reserved. 103

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites jc_0628: Guideline for using the Saturation block

Description

If implementing down cast, it should be split with operations (addition, subtraction,
multiplication, division) for other purposes.
This is virtually the same purpose as clearly listing parentheses, and clarifying the
execution order.
Dividing the operations and cast can help to clarify the order of execution and up to which
operation should use which data type in the block structure.
Blocks implementing down cast consist of the following three types of blocks:
1. Data Type Conversion
2. Gain: However, value is 1
3. Saturation

If there is not otherwise a particular reason, use Data Type Conversion.
Gain block is an alternative block that is often used when Data Type Conversion cannot be
used due to tool constraints.
Saturation is used when implementing a saturation process and down cast in a single
block. However, use of Saturation is not desirable when the saturation process is used for
purposes of overflow prevention.
If using something other than Data Type Conversion, use block names or annotations to
add comments for clarifying that it is a cast.

Correct:

Example of using Data Type Conversion

Perform cast, unify the internal data type, and clearly show the calculation order.
Incorrect:

All cast processes is consigned to auto code.

Correct:

Example 1: using other than Data Type Conversion

© Copyright 2013JMAAB. All rights reserved. 104

Shows that it is a cast in the Gain block name.

Correct:

Example 2: using other than Data Type Conversion

Change to a value smaller than the type constraints, and implement cast.
Use comments near Saturation to clarify the cast implementation.

Incorrect:

Since operations and cast are processed in the same block, the precision of calculations in
progress cannot be confirmed. In this case, it can not see the accuracy of the calculation
during during division. (Simulink automatically changes to 32bit operation. And after
operation, it is restored to 16bit. Although it relies on Simulink function, It is better to set
data type explicitly.)

Incorrect:

While there is an exclusive Gain block for cast, it is not clearly understood that its purpose
is cast.

Notes

Although Correct and Incorrect both depend on the configuration setting, since virtually the same
code can be obtained,
the purpose is not for the generation code, but for becoming able to confirm the process in the model.

Block usage pattern

 Usage pattern
Saturation process

Implementation block
Down cast

Implementation block

Type conversion only
(No saturation process)

－
DataTypeConversion

(No overflow saturation)

－
Gain: 1

(No overflow saturation)

Type conversion after
saturation process

for purposes of overflow
prevention

DataTypeConversion
(With overflow saturation)

Gain: 1
(With overflow saturation)

Not for purposes of overflow
prevention

(with significance)
Type conversion after

saturation process

Saturation/Dynamic Saturation
(Type conversion in output type setting)

Saturation/
Dynamic Saturation

DataTypeConversion
(No overflow saturation)

© Copyright 2013JMAAB. All rights reserved. 105

Gain: 1
(No overflow saturation)

See Also MISRA SLSF0002A

Last Change V4.0

4.6.11. jc_0652: Constant related to timer counter

ID: Title jc_0652: Constant related to timer counter

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The constant related to the Timer Counter is not expressed by the number of occurreces
but by that specific time.
If the number does not match the time, use a comment to list the time unit.

Can also list in ＜Block Property＞＜Explanation＞ or mpt.Parameter description, and

display by using block annotation. Use a consistent method, and insert descriptions of the
time unit also for the listing content. [List the time units that have been determined, such as
second(s), milliseconds (msec), etc.]

Correct:
Constant is expressed in time

Incorrect:
Constant is not expressed in time

Notes
If real number is used, total value may not be equal to real counting time. In that case, set
in consideration of the tolerance.

See Also

Last Change V4.0

4.6.12. jc_0659: Usage restrictions of signal lines inputted to Merge block

ID: Title jc_0659: Usage restrictions of signal lines inputted to Merge block

Priority Strongly Recommended

Scope JMAAB

© Copyright 2013JMAAB. All rights reserved. 106

MATLAB
Version

All

Prerequisites

Description

No blocks should be positioned between the Conditional Subsystem and Merge block.
Correct:

Incorrect:

Notes

Analysis:
A virtual block can be inserted between the Conditional Subsystem and Merge block.
Reference: Virtual block
http: //www.mathworks.co.jp/jp/help/simulink/ug/about-blocks.html
The above subsystem can also output normal results.

However, if the above is allowed, there is a possibility of inducing two mistakes.
This is because it is difficult to understand all of the virtual block types shown in the above
Help, and to use the correct combinations.
For example, the Example 1 DataTypeConversion block is not a virtual block. This will not
operate correctly.
Example 1

This uses the checker 'mathworks.design.MergeBlkUsage', to detect this case as a
violation.
In the next Example 2, the configuration is virtually the same as the Incorrect example, and
the input signal to the Bus Creator block is connected from the Ground.
Example 2

© Copyright 2013JMAAB. All rights reserved. 107

In this description, since the Ground block is always active, the bus name b signal always
has an output value of 0, and correct results cannot be obtained.
The checker 'mathworks.design.MergeBlkUsage' recognizes that this case is correct.
If a model in the Incorrect example is created, and then converted to the Example 2 type in
accordance with later changes in specifications, it will result in unintentional actions.
The intention of this rule is prevention of these mistakes beforehand.

See Also

Last Change V4.0

4.6.13. jc_0656: Guideline for using the Conditional Control block

ID: Title jc_0656: Guideline for using the Conditional Control block

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

In the Conditional Control Flow block (if block, Switch Case block), use the settings below
to make all actions in the conditions explicit.
 For the if block, set "else condition display" to On for use.
 For the Switch Case block, set "display default case" to On for use.

Correct:
Modeling when a function showing the default action exists

Correct:
Modeling when a function showing the default action does not exist

© Copyright 2013JMAAB. All rights reserved. 108

Incorrect:
Default port does not exist.

Incorrect:
Default port is not used and all values of used data type are defined.

As seen in this model, even if conditions are set on the full range of input signal types, if
data type of input signal is changed, undefined range can exist. This description does not
mean clarification has been made for all conditions.

See Also
hisl_0010: Guideline for using the if block and Action Subsystem block
hisl_0011: Guideline for using the if block and Action Subsystem block
MISRA AC SLSF 011B

Last Change V4.0

4.6.14. jc_0657: Retention of output value based on Conditional Control Flow block and
Merge block

ID: Title
jc_0657: Retention of output value based on Conditional Control Flow block and
Merge block

© Copyright 2013JMAAB. All rights reserved. 109

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

If using the Conditional Control block (if block, Switch Case block) to switch the executed
function, and using the Merge block to select the results, and if, depending on the
conditions, retaining past values only, connection of the condition ports to the Terminator
block will clarify retention of past values. (This is different to setting default port)
Correct:
Switch-case example

Correct:
if-else example

If performing automatic code generation, a highly efficient code is outputted without taking
up excess RAM. This means that, if past values are retained even in other than default
(else), connections to the Terminator block can be used.

Incorrect:

© Copyright 2013JMAAB. All rights reserved. 110

While the automatic code generation results are the same as above, it is not clear
whether actions outside of conditions are OK with retention of past values.
Incorrect:

Incorrect:

© Copyright 2013JMAAB. All rights reserved. 111

While the actions are clear, design of excessive subsystems is necessary for retaining
past values, and in some cases the code efficiency deteriorates because of verbose RAM
allocation.

Notes
It is better to describe comments around Terminator blocks in order to clearly show that it
is the block structure to retain past values.

See Also

hisl_0010: Guideline for using the if block and Action Subsystem block
hisl_0011: Guideline for using the Switch Case block and Action Subsystem block
hisl_0015: Guideline for using the Merge block
MISRA AC SLSF 011B

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 112

5. Stateflow
Explanation of the Stateflow® chart appearance, data and operation, event, state chart pattern, and
flowchart pattern guidelines

5.1. Stateflow variable settings

5.1.1. db_0123: Stateflow port names

ID: Title db_0123: Stateflow port names

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The name of a Stateflow block input/output should be the same as the corresponding signal.
Exception: Stateflow blocks performing reusable function settings may have different port
names.

Stateflow blocks include the Chart block, MATLAB block, and Truth Table, etc.
If adopting jc_0602, this rule is included within it. If jc_0602 is not adopted, use this rule for
the Stateflow description only.

 Notes

This rule is not a rule for C code generation.(if data objects are used.)
This rule is for improving model readability.

See Also MISRA AC SLSF 036-C

Last Change V1.0

5.1.2. jc_0700: Unused data in Stateflow block

ID: Title jc_0700: Unused data in Stateflow block

Priority Strongly Recommended

The C source uses the signal object name which is
set on Simulink.

Mismatch with Simulink
signal name

Same as Simulink signal
name

© Copyright 2013JMAAB. All rights reserved. 113

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Unused data and events should not exist in the Stateflow block.

In R2010b and later, set the configuration parameter

diagnosis ＞Stateflow＞"Unused data and events" to other than "None".

See Also MISRA AC SLSF 037G

Last Change V4.0

5.1.3. db_0122: Stateflow and Simulink interface signals and parameters

ID: Title db_0122: Stateflow and Simulink interface signals and parameters

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description
Use the Simulink and Stateflow types as equivalent.
Select File > Chart Property > “Strict type specification in Simulink I/O".

© Copyright 2013JMAAB. All rights reserved. 114

Notes

Attention: This option is going to be deleted on future version.
Property name difference of versions.
Up to R2008b, "Retain data type in Simulink and I/O"
From R2009a, "Strict type specification in Simulink I/O"
If “Use Strong Data Typing with Simulink I/O” is deactivated and Simulink data type is not
double, Stateflow cannot be executed.

Last Change V2.0

5.1.4. db_0125: Scope of internal signals and local auxiliary variables

ID: Title db_0125: Scope of internal signals and local auxiliary variables

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Variables only used inside the Stateflow Chart must satisfy the following conditions:
 All local data of Stateflow block must be defined on the Chart level or below the Object

Hierarchy.
 No local variables exist on the machine level. (That is, there is no interaction between

local data in different charts).
 Parameters and constants are allowed at the machine level.
 Local data having the same name should not be included within the charts/states with

parent-child relationships.

Correct:
Local variable is defined under Chart

© Copyright 2013JMAAB. All rights reserved. 115

Incorrect:
Local variable is defined on machine level on which signals can be shared among several
charts.

See Also MISRA AC SLSF 037 B

Last Change V4.0

5.1.5. jc_0701: Usable numbers in first index

ID: Title jc_0701: Settable numbers in first index

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Set the first index of arrays used in Stateflow to "0" or "1".
Caution:
Since the first index if not specified is handled as "0", there is no need for designation
unless specifically required.
Correct:

© Copyright 2013JMAAB. All rights reserved. 116

Incorrect:

See Also

Last Change V4.0

5.1.6. jc_0702: Stateflow parameters and constants

ID: Title jc_0702: Stateflow parameters and constants

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

・Parameters and constants within Stateflow should not directly use numbers.

・Labels should be used for the parameters and constants within Stateflow.

Exceptions:

・"0" can be used as an initial value for variables.

・"1: can be used for variable increments and decrements.

Usage examples for ordinary parameters
Correct:

© Copyright 2013JMAAB. All rights reserved. 117

Incorrect:

See Also MISRA AC SLSF 048G、H

Last Change V4.0

5.1.7. jm_0011: Pointers in Stateflow

ID: Title jm_0011: Pointers in Stateflow

Priority Strongly Recommended

Scope MAAB

MATLAB
 Version

All

Prerequisites

Description

In the Stateflow diagram, pointers to custom code variables should not be used.

Direct reference to pointer variable while accessing to device driver is inhibited.

Incorrect:
void *pointerToVar = (void *) 0x32344a3;

Correct
uint32 Var = Signal;

Notes

This rule is not a rule prohibiting use of pointers within the custom code. Within the custom
code, pointers to variables within the custom code may be used for access.

Direct reference from Stateflow to variables declared in C code is possible.

 Variable declarations in custom C source code.
MyStruct gMyStructVar;
MyStruct *gMyStructPointerVar=NULL;

 Description in Stateflow chart

© Copyright 2013JMAAB. All rights reserved. 118

Stateflow can directly refer to the signals of gMyStructVar and gMyStructPointerVar which
are defined in in C source code.
However, use of signals which is not defined in any model makes model difficult to
understand. Although this rule doesn’t limit, it is better to not use it.

Last Change V1.0

5.2. Basic appearance of state transition

5.2.1. db_0129: Stateflow transition appearance

ID: Title db_0129: Stateflow transition appearance

Priority Strongly Recommended

Scope MAAB

MATLAB
 Version

All

Prerequisites

Description

・In Stateflow transitions, the following regulations are applied:

 Do not cross each other as much as possible.
 Do not draw upon the other.
 Do not cross any states, junctions or text fields.

However, crossing with forced transition from external states to internal states is
possible.

・For transition labels, set to show visual relationships with the corresponding transition.

Correct:

Correct:
Transition crosses state boundary to connect to substrate

© Copyright 2013JMAAB. All rights reserved. 119

This rule is a rule for prohibiting transition overlap, and does not prohibit state transitions
from outside to center, or from center to outside.

Incorrect:
Transitions crosses each other and transition crosses through state.

Last Change V2.2

5.2.2. db_0137: States in state machines

ID: Title db_0137: States in state machines

Priority Mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites
jc_0743: Guideline for writing condition actions
jc_0531: Placement of the default transitions

Description

In all levels in a state machine, including the root level, for states with exclusive
decomposition, the following rules apply:
 In the same level, at least two exclusive states must exist.
If parallel is selected, only one state can be established.

Notes
In the old description, jc_0531 was here: Only part of the default transition was listed, and
it was deleted since there were duplicated roots.

Last Change V4.0

5.2.3. jc_0711: Division in Stateflow

ID: Title jc_0711: Division in Stateflow

Priority Recommended

Scope JMAAB

© Copyright 2013JMAAB. All rights reserved. 120

MATLAB
Version

All

Prerequisites

Description
If using division, the user must perform modeling of process for avoiding division by zero.

Notes

See Also MISRA AC SLSF 038B

Last Change V4.0

5.2.4. jc_0531: Placement of the default transition

ID: Title jc_0531: Placement of the default transition

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites db_0137: States in state machines

Description

Default transitions should be drawn so that the following conditions are satisfied:
 If an exclusive (OR) and substate exist, the default transition is internally established.
 Multiple default transitions cannot be included in the same level.
 Default transitions are directly connected to the upper part of the state or junction.
 The transition destination state or transition destination junction for the default

transition is positioned in the far upper left within the same level.
 The default transition must not exceed the state boundary.
 The default transition within a state chart must have a non-guard path to the state.
Correct:

Incorrect:
Multiple default transitions are included in the same level.

© Copyright 2013JMAAB. All rights reserved. 121

Incorrect:
The default transition is positioned in the side area.
The transition destination state of the default transition is not the highest within the same
level.

Incorrect: The default transition exceeds the boundary.

Incorrect:
There is no non-guard transition.

[! C1]

© Copyright 2013JMAAB. All rights reserved. 122

Notes

 If the state with default transition is placed on most left-upper position,
transition goes from top to bottom or from left to right.

 Violation of“the default transition within a state chart must have a non-
guard path to the state.” can be avoided by setting
<Configuration><Diagnostics><Stateflow><No unconditional default transitions> to
warning or error.

See Also
Guidelines

MISRA AC SLSF 042ABCDE
MISRA AC SLSF 051A (051A is a rule about layouts)

Last Change V4.0

5.2.5. jc_0712: Execution timing for default transition path

ID: Title jc_0712: Execution timing for default transition path

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

In all Stateflow Charts, "Execute the specified Chart at time of initialization" must be
deactivated.

Release the selection of File > Chart Property > “Execute the specified Chart at time of
initialization".

© Copyright 2013JMAAB. All rights reserved. 123

See Also MISRA AC SLSF 034D

Last Change V4.0

5.2.6. na_0038: Levels in Stateflow charts

ID: Title na_0038: Levels in Stateflow charts

Priority Recommended

Scope MAAB

MATLAB
Version

All

See Also

Description

Within a single Viewer (Subviewer), multiple layering should be limited.
For example, within a single Viewer (Subviewer), limiting goals for up to 3 levels
should be established.
If the constraint goals are exceeded, use subcharting to switch the screen.

Incorrect: Level_4_a and Level_4_b have more than 3 levels, and are nested.

© Copyright 2013JMAAB. All rights reserved. 124

Correct: The 4th level is encapsulated in a subchart.

See Also

Last Change V3.0

5.2.7. na_0040: Number of states per container

ID: Title na_0040: Number of states per container

Priority Recommended

Scope MAAB

MATLAB
Version

All

See Also

Description

The number of viewable states per Stateflow Viewer (Subviewer) should be limited.
(Typically to 6 to 9 states per Viewer)
This number is based on the visible states in the diagram.

Correct:

© Copyright 2013JMAAB. All rights reserved. 125

See Also

Last Change V3.0

5.2.8. jc_0720: Guideline for using subcharting

ID: Title jc_0720: Guideline for using subcharting

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Subcharting is used in the following cases.
 State machine is hard to view on the screen.
 Hard to view in printed state.
This rule is not applicable to Atomic Subchart.
Subchart Example:

See Also MISRA AC SLSF 039B

© Copyright 2013JMAAB. All rights reserved. 126

Last Change V4.0

5.2.9. jc_0721: Guidelines for using parallel states

ID: Title jc_0721: Guidelines for using parallel states

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Parallel states should not be used for the purpose of grouping.
That is, the substates of parallel states should not be parallel states.
Correct:

Incorrect:
Substates of parallel states are parallel states.

© Copyright 2013JMAAB. All rights reserved. 127

The four states (A, B, C, D) are in the same execution order, even if there is no parent
(Group1, Group2).

See also MISRA AC SLSF 040B

Last Change V4.0

5.2.10. jc_0722: Guidelines for setting local variables in parallel states

ID: Title jc_0722: Guidelines for setting local variables in parallel states

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
Unless the same data is required by two or more parallel states, the scope of local variables
should be set to be restricted to one parallel state.

See also MISRA AC SLSF 037D

Last Change V4.0

5.2.11. jc_0723: Prohibited direct transition from external state to child state

ID: Title jc_0723: Prohibited direct transition from external state to child state

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
The transition from external state to child state is prohibited.
However, it is possible to transfer from child state to an external parent state.

© Copyright 2013JMAAB. All rights reserved. 128

 When viewed from the child, other parents that exist in parallel to one's own parent, or

the child of other parents, exist outside of objects that have been encapsulated.
Based on this premise, transitions that are direct transitions into other objects from
outside of an object should be prohibited.

If this transition is set, there is a high possibility that the concept of encapsulating the state
is incorrect.
Unless it is configured with a correct understanding of the concept of the state, the system
will become complicated and the content would not be understood. By using such
transitions, the state will become complicated, the specification will not be clear, and it will
be a factor in causing mistakes in the specification itself.

Correct: Incorrect:

However, if the super state A0 is a virtual state that does not exist in reality and was
created in order to use the internal transition or unify transition lines, it is classified in the
state referred to as virtual state or "pseudo state" expressed in UML. For this kind of state,
the above rules do not apply.
Virtual states, or states referred to as pseudo states, and normal states should be written
differently by distinction, and the scope of application of rules should be made clear.

See also

Last Change V4.0

5.3. Description of state label

5.3.1. jc_0730: Independence of state name in charts

ID: Title jc_0730: Independence of state name in charts

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

The transition from the super State A0 to
another super State B0.

The transition from the super State A0 to
another child State B1.

The transition from the child State A1 to
another super State B0.

The transition from the child State A1 to
another child State B1.

© Copyright 2013JMAAB. All rights reserved. 129

Prerequisites

Description

State names must be unique in charts.
Atomic sub-charts within charts should be treated as separate charts.
In other words, state names must be unique in the atomic sub-charts, but there would not
be a problem even if the same state name existed in a different atomic sub-chart.

(Atomic sub-charts can be used from R2010b)

Correct:

Incorrect:

Reference: Guidelines for creating an atomic sub-chart
Atomic sub-charts can be created from the right-click menu.

© Copyright 2013JMAAB. All rights reserved. 130

See also MISRA AC SLSF 052A

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 131

5.3.2. jc_0731: Slash (/) in the state name

ID: Title jc_0731: Slash (/) in the state name

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Slashes (/) should not be included in state names.
Start a new line after the state name without describing executable statements.
Correct:

Incorrect:

In case of describing executable statements in continuation after state names, a slash (/) is
required.

See also

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 132

5.3.3. jc_0732 ：Distinction between state name and data item name

ID: Title jc_0732: Distinction between state name and data item name

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

In a single chart, the same name as the data item should not be given to the state name.

Correct:

Incorrect:

See also MISRA AC SLSF 052B

Last Change V4.0

© Copyright 2013JMAAB. All rights reserved. 133

5.3.4. jc_0733: Order of state action types

ID: Title jc_0733: Order of state action types

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Action types should be stated in the order of entry (en), during (du) and exit (ex).

・ In the case of describing combination action types (en,du: , du,ex: , en,ex: , en,du,ex: , the

combination action types should only be described in the line at the top or the end.

Correct

Incorrect

The combination statement is at the center of the
whole.
The entry processing is described after the exit
processing.

See also MISRA AC SLSF 055A

Last Change V4.0

5.3.5. jc_0734: Number of state action types

ID: Title jc_0734: Number of state action types

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites jc_0733: Order of state action types

Description

The same action types (entry (en), during (du), exit (ex), en, du: , du, ex: , en, ex: , en, du,
ex:) should not be described two or more times.

In particular, when using both the single actions of en and du and the combination action of
"en, du: ", the execution order should differ depending on the order in which they are
described.

© Copyright 2013JMAAB. All rights reserved. 134

If the action type is described more than once, the actual execution order will be hard to
understand.

Correct

Incorrect

The entry is separated in two and described
twice.

See also MISRA AC SLSF 055D

Last Change V4.0

5.3.6. jc_0740: Usage restrictions of action type exit

ID: Title jc_0740: Usage restrictions of action type exit

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Exit should not be used when the design intent can be expressed by the transition
destination entry, condition action and transition action.

Because exit is executed when the state transitions to another state, the execution timing
will become ambiguous.

See also

Last Change V4.0

5.3.7. jc_0501: Format of entries in a State block

ID: Title jc_0501: Format of entries in a State block

Priority Recommended

Scope JMAAB

MATLAB
Version

All

© Copyright 2013JMAAB. All rights reserved. 135

Prerequisites

Description

A new line should:

 Start after state names.
 Start after the entry (en), during (du) and exit (ex) statements " : ".
 Start after the completion of an assignment statement ";".

Correct:

Incorrect:
Failed to start a new line after en, du and ex.

Incorrect:
Failed to start a new line after the completion of an assignment
statement ";".

Notes
This rule has intention of not indicating actions, such as en and du, behind the State
name. It does not become violation even if it attaches / behind the State name.
jc_0731 is prohibition of /.

Last Change V4.0

5.3.8. jc_0735: Semicolons in state label

ID: Title jc_0735: Semicolons in state label

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The end of each action in state label must be a semicolon ";" .
Note: Action types (entry(en), during(du) and exit(ex)) are not subject to this rule.

Correct:

© Copyright 2013JMAAB. All rights reserved. 136

Incorrect:

If the semicolon ";" is taken out, the value is outputted to the command window after
running the simulation.
It is convenient if it is used when checking operations, but the simulation speed will be
slower.

See also MISRA AC SLSF 043D

Last Change V4.0

5.3.9. jc_0736: Uniform indentations in Stateflow blocks

ID: Title jc_0736: Uniform indentations in Stateflow blocks

Priority Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites jc_0752: Parentheses of condition actions

Description

Indentations in Stateflow blocks should be described uniformly.
1. Example of state label rules

 No spaces in front of action types (entry (en), during (du) and exit (ex))
 Insert one space for other statements.

2. Example of transition-condition and action rules
 Do not insert spaces before [].

3. Example of transition-action rules
 Always insert one space.

© Copyright 2013JMAAB. All rights reserved. 137

Correct: Indentations are described uniformly.

Incorrect: Indentations are not uniform.

Note:
In versions after R2012b, it is possible to use MATLAB language-based charts called Chart
MATLAB, instead of the conventional C-based ones.
In these MATLAB language-based charts, an indentation is automatically added at the time
of describing the state labels. The rules of indentation are unified by the following:
 No spaces in front of entry (en), during (du) and exit (ex) statements

© Copyright 2013JMAAB. All rights reserved. 138

 Insert one space for other statements.
Transition lines do not have an automatic indentation function.

See also

Last Change V4.0

5.3.10. jc_0737: Uniform spaces before and after operators

ID: Title jc_0737: Uniform spaces before and after operators

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Spaces before and after operators should be described uniformly.
1. Example of arithmetic operator rules
 For unary operators, do not insert a space between the operators and operands.
 For binary operators, insert one or more space between the operators and operands.

Correct:

A = B□+□(-1);

Incorrect: Incorrect:

A = B□+□(-□1); A = B+(-1);

2. Example of increment/decrement operator rules
 Do not insert a space between the operators and operands.

Correct:
a++;
Incorrect:

a□++

3. Example of relational operator (comparative operator) rules
 Insert one or more space between the operators and operands.

Correct: Correct

[A □>□B] [A □>＝□B]

Incorrect: Incorrect:

[A >B] [A >＝B]

4. Example of logical operator and C-bit operator rules
 Insert one or more space between the operators and operands.

However, in the case of using negation operators [! , ~] and the complement of C-bit
operators [~], do not insert a space between the operators and operands.
Correct: Correct:

[A = B□&□C] [A = !B□&□C]

Incorrect: Incorrect:

[A = B&C] [A = !□B□&□C]

5. Example of assignment operator [=] and compound assignment operator [+=, -=, *=,

/=, %=, <<=, >>=, ^=, |=] rules
 Insert one or more space between the operators and operands.

Correct:

A□=□B□+□(-1); A□+=□1;

Incorrect: Incorrect:
A=B+(-1); A+=1;

6. Example of pointer operator [*, &] rules
 Do not insert a space between the operators and operands.

Correct:

© Copyright 2013JMAAB. All rights reserved. 139

A = fcn(x,y,&map);
Incorrect:

A = fcn(x,y,&□map);

7. Example of array index [[]] rules
 Do not insert a space between the operators and operands.

Correct:
A = B[1] + C[k + 1];
Incorrect:

A = B□[1] + C[k + 1];

8. Handling of new lines
 New lines may be started in the middle of an expression if there are many characters

in a line and it is unavoidable.
 For operators that require spaces, it is okay for new lines to be started immediately

before or after an operator, and the number of spaces before or after operators is
optional.

 However, for operators in which spaces must not be inserted, new lines should not
be started.

Correct:

Incorrect:
The expression is hard to read because there are no spaces.

Notes

Operand: It means operation target value and variables in computer programming.

For example, in the expression “A+10”, “A” and “10” are operands. “+” is operator.

Unary operator is used to express minus value like “-1”

Binary operator is used to express one operation like “+” in “K+3”

See also

Last Change V4.0

5.3.11. jc_0738: Guidelines for writing comments in state actions

ID: Title jc_0738: Guidelines for writing comments in state actions

Priority Recommended

Scope JMAAB

MATLAB
Version

All

© Copyright 2013JMAAB. All rights reserved. 140

Prerequisites

Description

When using /* */ in the comment, new lines must not be started in the middle.
This is in order to prevent duplicated comment symbols /* */

Correct:

Incorrect:

Notes

Note:
In versions after R2012b, it is possible to use MATLAB language-based charts called Chart
MATLAB, instead of the conventional C-based ones.
In these MATLAB language-based charts, only the % comments used in MATLAB language
can be used for comments.

See also

Last Change V4.0

5.3.12. jc_0739: Guidelines for describing texts inside states

ID: Title jc_0739: Guidelines for describing texts inside states

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
Texts inside states should not be described beyond the boundaries of that state.
Correct:

© Copyright 2013JMAAB. All rights reserved. 141

Incorrect:

The transition condition goes beyond the boundaries of the state

The state action goes beyond the boundaries of the state

© Copyright 2013JMAAB. All rights reserved. 142

The comment goes beyond the boundaries of the state

See also MISRA AC SLSF 050F

Last Change V4.0

5.3.13. jc_0741: Timing to update the variables used in the state's transition conditions

ID: Title jc_0741: Timing to update the variables used in the state's transition conditions

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Variables that will be used in the state's transition conditions should not perform an update
by "during".

Note
The processing of "during" will be executed if a transition does not occur after the state's
transition conditions are executed.
If a statement such as the "Incorrect" below is made, there is a possibility that the transition
timing will be delayed by one sampling
because the transition will use the results executed one time prior.

© Copyright 2013JMAAB. All rights reserved. 143

Correct: Incorrect:

See also

Last Change V4.0

5.4. Conditions and conditional actions
Describes the method of condition description that will be common in the description of both state
transition and Flow Chart.

5.4.1. jc_0742: Guidelines for writing Boolean operations in condition labels

ID: Title jc_0742: Guidelines for writing Boolean operations in condition labels

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites
jc_0751: Backtracking prevention in state transition
jc_0773: Guidelines for describing exception processing

Description

 If there are up to three conditions, they can be described on one line.
 If there are two or more types of Boolean operations, priorities should be described

using parentheses.
 If there are four or more conditions, they can be described in more than one line.
 If two or more types of Boolean operations are described in more than one line,

position of operations (before conditions or after conditions) should be unified in the
chart.

Correct:
Multiple conditions are described on one line

© Copyright 2013 JMAAB. All rights reserved. 144

Correct:
Multiple conditions are described on more than one line
(positions of operations are unified to after conditions)

Correct:
Multiple conditions are described on more than one line
(positions of operations are unified to before conditions)

Incorrect
Although different types of logical operator exist, priority by using parenthesis is not
shown.

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 145

Four conditions are described in one line.

Notes

In this rule, the writing method of Boolean operations within conditions as well as its
limitations are described.
Here, there is no description of how to separate a single condition or its limitations.
In the case of separating a condition, a description that adheres to jc_0751 for state
transitions and to jc_0773 for Flow Charts is necessary so that backtracking does not
occur.

See also

Last Change V4.0

5.4.2. jc_0770: Placement of conditional statements and action statements

ID: Title jc_0770: Placement of conditional statements and action statements

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites db_0129: Stateflow transition appearance

Description

For the placement of the conditional statement of the Flow Chart and the action
statement, select either of the following and unify it within the model (1 is
recommended)

１． Describe from near the transition origin of the transition (transition line).

２． Describe near the center of the transition (transition line).

It is important to know which transition's condition the conditional statement and action
statement belong to.
Also ensure that the conditional and action statements do not overlap with other
characters and lines.
(db_0129: Stateflow transition appearance)

Correct:

Incorrect:
It is difficult to know which transition (transition line) the condition belongs to.

© Copyright 2013 JMAAB. All rights reserved. 146

Notes

See also

Last Change V4.0

5.4.3. jc_0771: Placement of comments in transition lines

ID: Title jc_0771: Placement of comments in transition lines

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Placement of comment descriptions in transition lines

・ Unify to either the top or bottom of the conditional statement.

・ Unify to either the top or bottom of the action statement.
"Unifying the descriptions to the top side" is recommended.

It is important that which conditional statement the comment corresponds to is explicitly
stated.

Example

See also

Last Change V4.0

5.4.4. jc_0772: Execution order and transition conditions of transition lines

ID: Title jc_0772: Execution order and transition conditions of transition lines

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
Transitions other than the last one in the execution order must always set conditions.

Correct:

© Copyright 2013 JMAAB. All rights reserved. 147

Incorrect:

Execution order 1 is an unconditional transition and conditional expression [C1] is described
in execution condition 2.

Examples includes state transition
Correct:

Incorrect
Priority of unconditional transition is higher than conditional transition.

In state transition, uncontitional transition is not invariably necessary.

See also

Last Change V4.0

5.4.5. jc_0752: Parentheses of condition actions

ID: Title jc_0752: Parentheses of condition actions

Priority Recommended

© Copyright 2013 JMAAB. All rights reserved. 148

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The parentheses of condition actions should make one line just by the parentheses.
(Start a new line before and after parentheses.)

Correct

Incorrect

The example was described in the Flow Chart but the same applies to state transitions.

See also MISRA AC SLSF 054E

Last Change V4.0

5.4.6. jc_0743: Guidelines for writing condition actions

ID: Title jc_0743: Guidelines for writing condition actions

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The writing method of state condition actions and Flow Chart actions are shown below..

Describe a semicolon (;) at the end of an action.

If there is one action

Example of a state condition action:

Example of a Flow Chart condition action:

If there are two or more actions, describe them in more than one line. (Multiple actions
should not be described in 1 line.)

© Copyright 2013 JMAAB. All rights reserved. 149

Example of a state condition action:

Example of a Flow Chart condition action:

See also

Last Change V4.0

5.5. State transition

5.5.1. jc_0750: Guidelines for drawing transition lines in Stateflow

ID: Title jc_0750: Guidelines for drawing transition lines in Stateflow

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

The transition lines inside the state chart are drawn by horizontal and vertical straight lines.

Correct Vertical:

Correct Horizontal:

© Copyright 2013 JMAAB. All rights reserved. 150

Incorrect:
The transition lines from state to state are connected by curved lines.

See also MISRA AC SLSF 053E

Last Change V4.0

5.5.2. jc_0751 : Backtracking prevention in state transition

© Copyright 2013 JMAAB. All rights reserved. 151

ID: Title jc_0751: Backtracking prevention in state transition

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Complex conditions must not be separated by connective junctions.
(In order to prevent backtracking)

Correct: Complex conditions are described all together.

Incorrect: Complex conditions are separated by a connective junction.

Detailed patterns are descrived below.

Correct: Complex conditions are described all together.

Correct: All connective junctions have branches.

Correct: Two conditions are described together.

© Copyright 2013 JMAAB. All rights reserved. 152

Correct: Connective junction between conditions has branches.

Incorrect: Connective junction between conditions has only one path.

In case of C1==ON and C2==OFF, transition seems to be terminated on the connective
junction after [(C1==ON)]. However, in case of C2==OFF, backtracking occurs and {out=1}
is executed.

Incorrect: Connective junction between conditions has only one path.

Equivalent

Equivalent

© Copyright 2013 JMAAB. All rights reserved. 153

In case of C1==ON and C2==OFF, transition seems to be terminated on the connective
junction after [(C1==ON)]. However, in case of C2==OFF, backtracking occurs and
[Condition3] is evaluated. In that case, even If C1==ON is true, if [Condition3] is true,
transition to a3 occurs.

Notes

jc_0773 intends to prevent backtracking on flowchart. Complying to that rule, unconditional
transition is designed to ensure transition reaches terminal junction.
However, on state transition, chart is intentionally designed so that transition doesn't reach
to terminal junction. This means if condition is not met, transition does not occur.
First connective junction is not branched. This can be understood as intended transition
inhibition.
However, in case not branched connective junction is placed between two conditions,
unintended backtracking may occur. This rule is in order to prevent it.

Description：

 Example ：Diagnosis

- Two continuous conditions connect with one junction.
- conditions exist further behind that.
This is detected as an unexpected back truck king.

© Copyright 2013 JMAAB. All rights reserved. 154

This problem is detectable by diagnosis.
This rule is summarizing the beforehand continuous conditions to one, and aims at
preventing this problem beforehand.
The upper model is designed as follows.

See also MISRA AC SLSF 043C

Last Change V4.0

5.5.3. jc_0754: Transition actions in Stateflow

ID: Title jc_0754: Transition actions in Stateflow

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description
Transition actions must not be used.

Correct: Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 155

See also MISRA AC SLSF 043B

Last Change V4.0

5.5.4. jc_0753: Condition actions and transition actions in Stateflow

ID: Title jc_0753: Condition actions and transition actions in Stateflow

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Condition actions and transition actions should not be mixed within the same chart.
They should be integrated into one.

Correct:

Incorrect:

See also MISRA AC SLSF 043 A

Last Change V4.0

© Copyright 2013 JMAAB. All rights reserved. 156

5.5.5. db_0151: State machine patterns for transition actions

ID: Title db_0151: State machine patterns for transition actions

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The following patterns are used for transition actions within state machine patterns:

Equivalent Functionality State Machine Pattern

ONE TRANSITION
ACTION:
action;

TWO OR MORE
TRANSITION ACTIONS,
MULTILINE FORM:
(Two or more transition
actions in one line are not
allowed)
action1;
action2;
action3;

Last Change V2.2

5.5.6. na_0013: Comparison operation in Stateflow

ID: Title na_0013: Comparison operation in Stateflow

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Comparisons should be made only between variables of the same data type.
 If comparisons are made between variables of different data types, the variables need

to be explicitly type cast to matching data types.

Correct:
Same data type in "i" and "n"

Incorrect:
Different data type in "i" and "n"

Correct:
Although “i” and “n” have different
datatype, explicit type cast is applied.

© Copyright 2013 JMAAB. All rights reserved. 157

Incorrect:
Do not make comparisons between
unsigned integers and "negative
numbers."

Last Change V2.1

5.5.7. jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

ID: Title jc_0481: Use of hard equality comparisons for floating point numbers in Stateflow

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

 Do not use hard equality comparisons (Var1 == Var2) or (Var1 != Var2) or (Var1 ~=
Var2) with two floating point numbers.

 If a hard comparison is required, a margin of error should be defined and used in the
comparison (LIMIT in the example).

 Hard equality comparisons may be done between integer data types.

Correct:

Incorrect:

Last Change V2.0

© Copyright 2013 JMAAB. All rights reserved. 158

5.5.8. na_0001: Bitwise Stateflow operators

ID: Title na_0001: Bitwise Stateflow operators

Priority Strongly Recommended

Scope MAAB

Prerequisites

Description

Bitwise operators (*&”,”|”,”^”,”~”) should not be used other than bit operations.

To enable bitwise operations, follow the steps below:
1. Select File > Chart Properties.
2. Select "Enable C-bit operations".

Correct:
Use && and "||" for Boolean operation.

Use & and | for bit operation.

Incorrect:
Use & and "|" for Boolean operation.

© Copyright 2013 JMAAB. All rights reserved. 159

Notes

 List of operational effect of each operator

Operator C-bit operations are enabled

OFF ON

a|b Boolean OR of a,b Bitwise OR of a,b

a||b Boolean OR of a,b Boolean OR of a,b

a&b Boolean AND of a,b Bitwise AND of a,b

a&&b Boolean AND of a,b Boolean AND of a,b

a^b bth power of a Bitwise XOR of a,b

! a Boolean negation of a Boolean negation of a

~a Boolean negation of a Complement of a

Last Change V4.0

5.5.9. jc_0655: Prohibited comparison operation of logical type signal in Stateflow

ID: Title jc_0655: Prohibited comparison operation of logical type signal in Stateflow

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites
jc_0757: Condition expressions should set a comparison operator
na_0002: Appropriate implementation of fundamental logical and numerical operations

Description

 Logical operations must not be applied to boolean values.
Boolean type signals must not be compared with numbers (0, 1) or logical values (true,
false).

 Use Boolean operation (NOT) when inverting logical type signals.
 Usage of either ~ or ! for negation should at least be uniform in the chart.
Preferably, specified rules should be made for each project pertaining to the writing method
of negative statements, and they should be unified in the model.

Correct:

Incorrect:

[! ONflg]
It is better to use
"!" for negation

© Copyright 2013 JMAAB. All rights reserved. 160

When using logical type signals as condition flags, it is not necessary to write the match
with true or false. If performing code generation, an optimized code will be outputted
regardless of whether it is described. This rule emphasizes readability by uniformity of
appearance.

See also

Notes

na_0001: If rules of bitwise Stateflow operators are adopted and bitwise operations are
made valid, "~" will be a complement of 2. If it is used in conjunction with na_0001, only "!"
can be used for negation.

Operator C-bit operations are enabled

OFF ON

a|b Logical OR of a,b Bitwise OR of a,b

a||b Logical OR of a,b Logical OR of a,b

a&b Logical AND of a,b Bitwise AND of a,b

a&&b Logical AND of a,b Logical AND of a,b

a^b bth power of a Bitwise XOR of a,b

! a Logical negation of a Logical negation of a

~a Logical negation of a Complement of 2

Last Change V4.0

5.5.10. jc_0451: Use of unary minus on unsigned integers in Stateflow

ID: Title jc_0451: Use of unary minus on unsigned integers in Stateflow

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Do not perform unary minus on unsigned integers.

Correct:

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 161

Last Change V2.0

5.5.11. jc_0755: Guidelines for use of increments/decrements

ID: Title jc_0755: Guidelines for use of increments/decrements

Priority Mandatory

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Increment/decrement operators should be used as one action.

Correct:

Incorrect:

See also

Last Change V4.0

5.5.12. jc_0756: Prohibited use of operation expressions in array indexes

ID: Title jc_0756: Prohibited use of operation expressions in array indexes

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Sequence numbers should not be calculated in the array indexes.

Correct:

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 162

See also

Last Change V4.0

5.5.13. jc_0757: Guidelines for describing condition expressions

ID: Title jc_0757: Guidelines for describing condition expressions

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites jc_0655: Prohibited comparison operation of logical type signal in Stateflow

Description

Expressions which return boolean value should be used for condition expressions.

Correct:

Correct:

Incorrect:

See also

Last Change V4.0

5.5.14. jc_0491: Reuse of variables within a single Stateflow scope

ID: Title jc_0491: Reuse of variables within a single Stateflow scope

Priority Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

The same variable should not have multiple meanings (usages) within a single Stateflow
state.

Correct:
Variable of loop counter must not be
used other than loop counter.

Incorrect:
The meaning of variable "i" changes
from the index of the loop counter to
the sum of a+b.

© Copyright 2013 JMAAB. All rights reserved. 163

Examples in state transition
Definitions of temporary calculation result variables a,b which are used
only in each state.

Correct:
Variables a,b are declared as local variable in each state.

© Copyright 2013 JMAAB. All rights reserved. 164

Incorrect:
Local variables a,b are defined on upper layer.

Last Change V2.2

5.5.15. jc_0521: Use of the return value from graphical functions

ID: Title jc_0521: Use of the return value from graphical functions

Priority Recommended

Scope JMAAB

© Copyright 2013 JMAAB. All rights reserved. 165

MATLAB
Version

All

Prerequisites

Description

The return value from a graphical function should not be used directly in a comparison
operation.

Correct:
An intermediate variable is used in the conditional expression after the
assignment of the return value from the function "temp_test" to the
intermediate variable "a".

比較する変数の型などが明確になる。

比較する変数の型が明確になる。

Incorrect:
Return value of the function "temp_test" is used in the conditional expression.

Last Change V2.0

5.6. Internal transition of the state transition

5.6.1. jc_0760: Starting point of internal transition in Stateflow

ID: Title jc_0760: Starting point of internal transition in Stateflow

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

In all state charts and Flow Charts, internal transitions from state boundaries should start
from the left edge of the state.

Correct:

The data type of the variable in
the comparison operation is
clear

© Copyright 2013 JMAAB. All rights reserved. 166

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 167

Notes

If the super state State1 used in the example above is a virtual state that does not exist in
reality and was created in order to use the internal transition or unify transition lines, it is
classified in the state referred to as virtual state or "pseudo state" expressed in UML.
This state only unifies the transition lines, so it does not have a state action inside.

See also MISRA AC SLSF 053F

Last Change V4.0

5.6.2. jc_0762: Prohibited combination of state action and Flow Chart

ID: Title jc_0762: Prohibited combination of state action and Flow Chart

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

State actions within states (starts with entry, during) and flow Chart statements should not
be used in combination.

Note
The execution order is hard to understand in writing methods that use the two combined,
and the behavior will not be understood intuitively. It should be unified to either a state
action or Flow Chart statement.

Correct: Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 168

See also

Last Change V4.0

5.6.3. jc_0763: Usage restrictions of multiple internal transitions

ID: Title jc_0763: Usage restrictions of multiple internal transitions

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

Multiple internal transitions should not be used within a single state.

Correct:

© Copyright 2013 JMAAB. All rights reserved. 169

Incorrect:

See also MISRA AC SLSF 043F

Last Change V4.0

5.6.4. jc_0761: Statement method when using multiple internal transitions

ID: Title jc_0761: Statement method when using multiple internal transitions

Priority Strongly Recommended

Scope JMAAB

MATLAB All

© Copyright 2013 JMAAB. All rights reserved. 170

Version

Prerequisites

Description

If multiple internal transitions are described out of necessity regarding an internal transition
within a single state, they should be listed from top to bottom according to the order of
execution of the internal transitions.

Correct:

Incorrect:

See also

Notes

jc_0763: In the usage restrictions of multiple internal transitions, it is recommended that
multiple internal transitions are not used. However, in some cases, using multiple internal
transitions can prevent transition lines from crossing and simply represent state transitions.
If multiple internal transitions will be used in such cases, use them in compliance with this
rule.

Last Change V4.0

5.7. Flow Chart foundation

5.7.1. db_0132: Transitions in Flow Charts

ID: Title db_0132: Transitions in Flow Charts

Priority Strongly Recommended

Scope MAAB

© Copyright 2013 JMAAB. All rights reserved. 171

MATLAB
Version

All

Prerequisites

Description

1. The following rules apply to transitions in Flow Charts:
 Conditions are drawn on the horizontal.
 Actions are drawn on the vertical.

2. Transitions labels of Flow Charts use a condition, condition action,
or an empty transition. (Transition action must not be used in flow charts)

Example
Transition with condition:

Transition with condition action:

Empty transition:

Exception
5.7.4 db_0135: Flow Chart patterns for loop constructs

Notes

Last Change V4.0

5.7.2. db_0134: Flow Chart patterns for If constructs

ID: Title db_0134: Flow Chart patterns for If constructs

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

Description

The following patterns are used for If constructs within Flow Charts:

Functionality Flow Chart Pattern

© Copyright 2013 JMAAB. All rights reserved. 172

IF-THEN construct

if (condition){
 action;
}

IF-THEN-ELSE
construct

if (condition) {
 action1;
}
else {
 action2;
}

IF-THEN-ELSE-IF
construct

if (condition1) {
 action1;
}
else if (condition2) {
 action2;
}
else if (condition3) {
 action3;
}
else {
 action4;
}

Cascade of IF-THEN
construct

if (condition1) {
 action1;
 if (condition2) {
 action2;
 if (condition3) {
 action3;
 }
 }
}

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved. 173

5.7.3. db_0159: Flowchart patterns for case constructs

ID: Title db_0159: Flowchart patterns for case constructs

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
jc_0742: Guidelines for writing Boolean operations to condition labels
jc_0743: Guidelines for writing condition actions

Description

The following patterns must be used for case constructs within Flow Charts:

Functionality Flow Chart Pattern

CASE construct with exclusive
selection

selection = ...;
switch (selection) {
 case 1:
 action1;
 break;
 case 2:
 action2;
 break;
 case 3:
 action3;
 break;
 default:
 action4;
}

CASE construct with exclusive
conditions

c1 = condition1;
c2 = condition2;
c3 = condition3;
if (c1 && ! c2 && ! c3) {
 action1;
}
elseif (! c1 && c2 && ! c3) {
 action2;
}
elseif (! c1 && ! c2 && c3) {
 action3;
}
else {
 action4;
}

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved. 174

5.7.4. db_0135: Flow Chart patterns for loop constructs

ID: Title db_0135: Flow Chart patterns for loop constructs

Priority Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites
jc_0742: Guidelines for writing Boolean operations in condition labels
jc_0743: Guidelines for writing condition actions

Description

The following patterns must be used to create Loops within Flow Charts.

Functionality Flow Chart Pattern

FOR LOOP construct

for (index=0;index<number_of_loops;index++) {
 action;
}

WHILE LOOP construct

while (condition) {
 action;
}

DO WHILE LOOP construct

do {
 action;
}
while (condition);

Last Change V1.0

© Copyright 2013 JMAAB. All rights reserved. 175

5.7.5. jc_0773: Unconditional transition of a flow chart

ID: Title jc_0773: Unconditional transition of a flow chart

Priority Strongly Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites

Description

 All the flow charts, a graphical function, "Unconditional transition " when not fulfilling
conditions is required for it. It is for preventing backtracking.

 The priority of unconditional transition is set as the last.

In order to prevent backtrack, all flowchart and graphycal function provide unconditional
taransition which will not meet all conditions. (Use complex conditions in one place)

 Priority of unconditional transition will be set at the very end.

Correct:

Incorrect:
It does not have transition line of "Unconditional transition".

Correct:
When a complex condition is summarized to one.

© Copyright 2013 JMAAB. All rights reserved. 176

Incorrect:
There are no unconditional transition in a central junction.

When the flow chart which outputs one by C1 == ON && C2 == ON is drawn as mentioned
above.
The high skill engineer, C1 performs out=0, when C2 is OFF in ON, and he understands
that processing is performed to a termination.
However, it is not easy to understand the course to a termination at a glance.
In this case, in order to avoid misunderstanding, following either is coped with and it leads
to a termination.
 "A complex condition is bundled to one."
 "Unconditional changes are certainly prepared."

If you can understand Stateflow semantics,
When you drarw above chart which output 1 with C1 == ON && C2 == ON, you will know
that the process is ran to the end when execute out=0. However, it is difficult to understand
the path to the end at a glance.
In order to avoid misunderstanding, connecting to the end by using the methods below.

 Bundle complex conditions.
 Provide unconditional transition

Notes

This is a backtracking prevention rule of a flow chart.
Expression a flow chart "suspends processing in the middle of a junction in the case of
condition disagreement" unlike condition changes is not used.
Wire connection is carried out using unconditional transition array so that the last of
processing may become clear, so that it may certainly flow to a termination.

This is the rule to prevent backtrack of flowchart. This is different from conditional transition,
which will not use the expression like “Stop the process in the middle of the junction in the
case of mismatch conditions.” Wired it so that the end of the process becomes clear by
using undonsitional transition line to flow to the end.

See also

Last Change V4.00

© Copyright 2013 JMAAB. All rights reserved. 177

5.8. Flow Chart details

5.8.1. jc_0774: Comments on unconditional transition which has no process

ID: Title jc_0774: Comments on unconditional transition which has no process

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites jc_0773: Unconditional transition of a flow chart

Description

When unconditional transition which has no action is used as exceptional processing in
case no condition is met, comments must be described to show intentionally no process
is described

Correct:
If there is unconditional transition which has no process, comment must be described.

Incorrect:
Although there is unconditional transition, no comment is described.
It is difficult to understand whether unconditional transition was intentionally described or
description of conditions and actions was forgotten.

Notes

See also

Last Change V4.0

© Copyright 2013 JMAAB. All rights reserved. 178

5.8.2. jc_0511: Setting the return value from a graphical function

ID: Title jc_0511: Setting the return value from a graphical function

Priority Recommended

Scope JMAAB

MATLAB
Version

R2008a and later

Prerequisites db_0134: Flow Chart patterns for If constructs

Description

The return value from a graphical function must be set in only one place.

Correct:
Return value A is set in one place.

Incorrect:
Return value A is set in multiple places.

Notes

Regarding R2007b and earlier, this rule has influence to code generation.
If incorrect pattern is used, multiple return sentences are generated.
This is violation to MISCA-C 1998 rule 82 and MISRA-C2004 rule 14.7.
If earlier versions are adopted, please operate this rule as Mandatory as same as Ver2.0.
In R2008a and later, C codes which has no violation to MISRA rules are generated.
However, for the purpose of getting efficient code, in some cases, it is necessary that
function setting of graphical functions are set not to "auto","inline" but to "function".
In current versions of MATLAB, please operate this rule in order to unify appearances of
graphical functions.

© Copyright 2013 JMAAB. All rights reserved. 179

Last Change V4.0

5.8.3. jc_0775: Number of terminal junctions in Flow Charts

ID: Title jc_0775: Number of terminal junctions in Flow Charts

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites db_0134: Flow Chart patterns for If constructs

Description

A unique terminal junction must exist in all graphical functions and Flow Charts described in
states.

Correct:

Incorrect:

See also MISRA AC SLSF 053J

Last Change V4.0

© Copyright 2013 JMAAB. All rights reserved. 180

5.8.4. jc_0776: Number of inputs to the terminal junction of Flow Charts

ID: Title jc_0776: Number of inputs to the terminal junction of Flow Charts

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites jc_0775: Number of terminal junctions in Flow Charts

Description

In all graphical functions and Flow Charts described in states, the number of transition lines
inputted in terminal junctions within all Flow Charts and graphical functions should be one.

Correct:

Incorrect:

The purpose of this rule is to explicitly indicate the point of completion.

See also MISRA AC SLSF 053K

Last Change V4.0

5.9. Event

5.9.1. db_0126: Scope of events

ID: Title db_0126: Scope of events

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisites

Description

The following rules apply to events in Stateflow:
 All events of a Chart must be defined on the chart level or lower.
 There is no event on the machine level (that is, there is no interaction with local events

between different charts).

Notes It becomes the compilation error after R2009b.

Last Change V4.0

© Copyright 2013 JMAAB. All rights reserved. 181

5.9.2. jc_0780: Usage restrictions of events

ID: Title jc_0780: Usage restrictions of events

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites db_0126: Guidelines for defining events

Description

Events should not be used for anything other than calls in the Function Call Subsystem.
(State transitions by events should not be used.)

Correct:

Notes
If state transitions by events are used without fully understanding their operation, there are
cases in which processing is unintentionally performed by recursive function and
processing is performed twice in one cycle.

See also MISRA AC SLSF 047A

Last Change V4.0

5.9.3. jc_0781: Function Call from Stateflow

ID: Title jc_0781: Function Call from Stateflow

Priority Recommended

Scope JMAAB

MATLAB
Version

All

Prerequisites
db_0126: Guidelines for defining events
jc_0780: Usage restrictions of events
na_0006: Guidelines for mixed use of Simulink and Stateflow

Description

If the "state exists" within the Function Call Subsystem of the call target and a "reset" of the
state is required when the state of the caller becomes inactive, a bind action should be
described by the caller.

© Copyright 2013 JMAAB. All rights reserved. 182

See also

Last Change V4.0

5.9.4. jm_0012: Event broadcasts

ID: Title jm_0012: Event broadcasts

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

All

Prerequisites db_0126: Guidelines for defining events

Description

The following rules apply to event broadcasts in Stateflow:
 Directed event broadcasts are the only type of event broadcasts allowed.
 The send syntax or qualified event names are used to direct the event to a particular

state.
 Multiple send statements should be used to direct an event to more than one state.

Correct: Example using the send syntax:

Correct: Example using qualified event names:

© Copyright 2013 JMAAB. All rights reserved. 183

Incorrect: Use of a non-directed event

Last Change V2.2

5.10. Functions within Stateflow

5.10.1. na_0041: Selection of function type

ID: Title na_0041: Selection of function type

Priority Recommended

Scope MAAB

MATLAB
Version

2010b and later

Prerequisites

Description

The type of functions to be used should be selected depending on the required
processing.

 Graphical functions
 If / then / else logic

© Copyright 2013 JMAAB. All rights reserved. 184

 Simulink functions
 Transfer functions
 Integrators
 Table look-ups

 MATLAB functions
 Complex equations
 If / then / else logic

Notes

Stateflow supports the following three types of functions:
 Graphical functions
 Simulink functions
 MATLAB functions

Last Change V3.0

5.10.2. na_0042: Location of functions

ID: Title na_0042: Location of functions

Priority Recommended

Scope MAAB

MATLAB
Version

2010b and later

Prerequisites

Description

When deciding whether to embed Simulink functions inside a Stateflow chart, the
following conditions make embedding the preferred option. If the Simulink functions:

 Use only local Chart data
or

 Use a mixture of local Chart data and inputs from Simulink
or

 Are called from multiple locations within the chart
or

 Are not called every time step

Incorrect

correct

© Copyright 2013 JMAAB. All rights reserved. 185

Last Change V3.0

5.10.3. na_0039: Use of Simulink in Stateflow charts

ID: Title na_0039: Use of Simulink in Stateflow charts

Priority Recommended

Scope MAAB

MATLAB
Version

2010b and later

Prerequisites

Description

The use of Stateflow charts is prohibited in Simulink functions that are included in
Stateflow charts.

Incorrect:

Last Change V3.0

5.10.4. db_0127: MATLAB commands in Stateflow

ID: Title db_0127: MATLAB commands in Stateflow

Priority Mandatory

Scope MAAB

MATLAB
Version

All

Prerequisites

Description

Do not use the .ml syntax in Stateflow charts.
Individual companies should decide on the use of MATLAB functions.
If they are permitted, then MATLAB command should only be accessed through the
MATLAB function .

Correct:

© Copyright 2013 JMAAB. All rights reserved. 186

Incorrect:

Notes

Code generation supports a limited subset of the MATLAB functions.
For a complete list of the support function, see the "MathWorks®" documentation.
Corresponding functions are described in the following two places.

・Functions Supported for Code Generation — Alphabetical List

(Functions Supported for Code Generation — Alphabetical List)

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-

generation-alphabetical-list.html

・Functions Supported for Code Generation — Categorical List

(Functions Supported for Code Generation — Categorical List)

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-

generation--categorical-list.html

Last Change V2.2

http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--alphabetical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--categorical-list.html
http://www.mathworks.com/help/simulink/ug/functions-supported-for-code-generation--categorical-list.html

© Copyright 2013 JMAAB. All rights reserved. 187

6. Miscellaneous: Variants, enumerated type, MATLAB functions

6.1. Variant Subsystem

6.1.1. na_0037: Use of single variable variant conditionals

ID: Title na_0037: Use of single variable variant conditionals

Priority Recommended

Scope MAAB

MATLAB
Versions

ALL

Prerequisite

Description

Variant condition equations must be composed from a compound condition formed from a
single variable or a single condition formed from multiple variables.
The provided variant is the exception to the second regulation.

Correct: Various variables (INLINE/FCNCTION that has one more condition per line)

Correct: A compound condition formed from a single variable

Incorrect: Compound condition formed from various variables

Notes
The usage of enumerated type variables is recommended in a condition equation. This
example used numerical values in the screenshot to increase the readability.

Related

Last Change V3.0

6.1.2. na_0020: Number of inputs to variant subsystems

ID: Title na_0020: Number of inputs to variant subsystems

Priority Mandatory

Scope MAAB

MATLAB
Version

R2013b and earlier

Prerequisite db_0081: Unconnected signals, block inputs and block outputs

Description

In Simulink, the same number needs to be inputted into Model Variants and Variant
Subsystem that will be used in the variant system. However, this does not necessary mean
that the variant subsytem will use all the input. Please connect the unused input with
Terminator blocks to conduct termination processing.

© Copyright 2013 JMAAB. All rights reserved. 188

Notes

Model Variants: Includes a model into another model as a block.
Variant Subsytem: Represents subsytem that has several subsystems.

A new function was added by R2014a.
Even if the number of the ports is different, it is available.

See Also

Last Change V4.0

6.1.3. na_0036: Default variant

ID: Title na_0036: Default variant

Priority Recommended

Scope NAMAAB

MATLAB
Version

ALL

Prerequisite na_0037: Use of single variable variant conditionals

Description

Model Variants and Variant Subsytem are all constructed so that one subsytem will
always be selected. This can be achieved with one of the following methods.
 A default variant is used.
 The condition will be set so that all values that conditional variables may take will be

covered. For example, a condition will be set for a situation in which the boolean-type
variable's value is true and when it is false.

Correct:

Correct: Let's assume that FUNC and INLINE are boolean types.

Incorrect: If FUNC is neither 1 nor 2, an active subsystem will not exist.

Notes

Last Change V3.0

6.2. Enumerated type data

6.2.1. na_0033: Enumerated Types Usage

ID: Title na_0033: Enumerated Types Usage

Priority Recommended

© Copyright 2013 JMAAB. All rights reserved. 189

Scope MAAB

MATLAB
Version

R2010b and later

Prerequisite
na_0002: Basic logical operation and the appropriate implementation of arithmetic
operations

Description

Signals and parameters serve as a finite set of integer values. If the values of these
sequences correspond to a group formed from items with names, use the data of an
enumerate type.

Example: Usage example of red, yellow, and blue in a traffic light.
Correct:

Incorrect:

Red is used as a regular unit 8 value.

Notes 4 byte will be used for the enumerate type in the C-code in the standard regulation.

See Also

Last Change V3.0

6.2.2. na_0031: Definition of default enumerated value

ID: Title na_0031: Definition of default enumerated value

Priority Recommended

Scope MAAB

MATLAB
Version

R2010b and later

Prerequisite

Description

Default value of an enumerated type (getDefaultValue) always needs to be stipulated
explicitly.

Correct:

classdef(Enumeration) BasicColors < Simulink.IntEnumType

© Copyright 2013 JMAAB. All rights reserved. 190

 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 end
 methods (Static = true)
 function retVal = getDefaultValue()
 retVal = BasicColors.Red;
 end
 end
end

Incorrect:

classdef(Enumeration) BasicColors_Violation < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)
 end
end

Notes

When the default value is not stipulated when using getDefaultValu, the text listed in the
enumeration will be used as the initial value.
For example, if "Yellow" is written first like in the below example, "Yellow" will be used as
the initial value.

 enumeration
 Yellow(1)
 Red(0)
 Blue(2)
 end

Last Change V3.0

© Copyright 2013 JMAAB. All rights reserved. 191

6.3. MATLAB functions

6.3.1. na_0018: Number of nested if/else and case statement

ID: Title na_0018: Number of nested if/else and case statement

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description
The number of nests in if/else and case statements need to be restricted.
Example: Say, the number hierarchies was up to 3 hierarchy.

See Also Orion_jr_0002: The number of if/else and case statements block nests

Last Change V3.0

6.3.2. na_0025: MATLAB function header

ID: Title na_0025: MATLAB function header

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

MATLAB functions need to have a header that explains such functions.
For example, the following types of information will be entered in a header.
Item example:

・Function name

・Explanation of the function

・Prerequisite and restriction

・Modified points from the previous version

・List of input and output

Implementation example:

© Copyright 2013 JMAAB. All rights reserved. 192

See Also Orion_jh_0073: eML header version

Last Change V3.0

6.3.3. na_0034: MATLAB Function block input/output settings

ID: Title na_0034: MATLAB Function block input/output settings

Priority Strongly Recommended

Scope NAMAAB

MATLAB
Version

ALL

Prerequisite

Description
It is required to explicitly stipulate the data type at the top of the model explorer or the
function for all input and output toward MATLAB function block

Notes

See Also Orion_jh_0063: Input and output setting of eML block

Last Change V4.0

6.3.4. na_0024: Global variable

ID: Title na_0024: Global variable

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

It is recommended to access the signal wire with common data between MATLAB
functions.
For example, if one side only merely consult the signal value, the connection is made by
using the signal line without using the data store memory.
In the following cases, it is possible to share the signal using a data store memory without
connecting via signal line.
 It is required to share a specific signal, such as conducting writing updates toward the

same signals within various MATLAB functions.

Example:
In this example, the same data store memory (ErrorFlag_DataStore) is shared between
two different MATLAB functions.

© Copyright 2013 JMAAB. All rights reserved. 193

See Also Orion_ek_0003: Global variable

Last Change V4.0

6.3.5. na_0022: Recommended patterns for Switch / Case statements

ID: Title na_0022: Recommended patterns for Switch / Case statements

Priority Mandatory

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

Switch / Case statements must use constant values for the “Case” arguments. Input
variables cannot be used in the “Case” arguments

Correct:

Incorrect:

© Copyright 2013 JMAAB. All rights reserved. 194

See Also Orion_jh_0026: Switch/Case statement

Last Change V3.0

6.3.6. na_0016: Source lines of MATLAB Functions

ID: Title na_0016: Source lines of MATLAB Functions

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

The length of MATLAB functions should be limited, with a recommended limit of 60 lines
of code. This restriction applies to MATLAB Functions that reside in the Simulink block
diagram and external MATLAB files with a .m extension.

If sub-functions are used, they may use additional lines of code. Also limit the length of
sub-functions to 60 lines of code.

See Also Orion_im_0008: Source line of eML

Last Change V3.0

6.3.7. na_0017: Number of called function levels

ID: Title na_0017: Number of called function levels

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

The number of levels of sub-functions should be limited, typically to 3 levels. MATLAB
function blocks that resides at the Simulink block diagram level counts as the first level,
unless it is simply a wrapper for an external MATLAB file with a .m extension.

This includes functions that are defined within the MATLAB block and those in separate
.m files.

Notes
Standard utility functions, such as built in functions like sqrt or log, are not included in the
number of levels. Likewise, commonly used custom utility functions can be excluded from
the number of levels.

© Copyright 2013 JMAAB. All rights reserved. 195

See Also Orion_im_0009: Hierarchy number of function to be called out

Last Change V3.0

6.3.8. na_0021: Strings

ID: Title na_0021: Strings

Priority Strongly Recommended

Scope MAAB

MATLAB
Version

ALL

Prerequisite

Description

The use of strings is not recommended. MATLAB Functions store strings as character
arrays. The arrays cannot be resized to accommodate a string value of different length,
due to lack of dynamic memory allocation. Stings are not a supported data type in
Simulink, so MATLAB Function blocks cannot pass the string data outside the block.

For example, the following code will produce an error:

name = ‘rate_error’; %this creates a 1 x 10 character array
name = ‘x_rate_error’; %this causes an error because the array size is now 1 x 12, not 1
x 10

Notes
If the string is being used for switch / case behavior, consider using enumerated data
types.

See Also Orion_jh_0024: Character string

Last Change V3.0

© Copyright 2013 JMAAB. All rights reserved. 196

7. Basis, list of rule parameters

7.1. Basis

7.1.1. Basis category

For the basis, one or more reasons from the following reasons that the guideline recommends will be
selected.

1. Readability

 Improvement of graphical understandability

 Improvement of readability of functional analysis.

 Prevention of connection mistake

 Comments and so on
2. Simulation and verification

 System to enable simulation

 Easy testing
3. Code generation

 Improvement of efficiency of generation code.(ROM,RAM efficiency)

 Securement of robustness of a generation code
4. Others

 Maintainability and operatability

 Template

 Not correspond to basis described above (Basis is unclear)

7.1.2. List of rule basis

Rule ID Readability
Simulation and
verification are
effective

Effective/efficient
to built-in code
generation

Others

ar_0001 ○

ar_0002 △：In the past

jc_0241 ○ ○

jc_0242 ○

jc_0201 ○

jc_0211 ○

jc_0222 ○

jc_0232 ○

jc_0231 ○

jc_0243 ○ ○

jc_0244 ○ ○

jc_0245 ○ ○

jc_0246 ○ ○

jc_0247 ○

na_0035 ○

jc_0251 ○

na_0014 △：In the past

na_0006 ○ ○

na_0007 ○

db_0143 ○

db_0144 ○

na_0004 ○

db_0043 ○

© Copyright 2013 JMAAB. All rights reserved. 197

db_0042 ○

jm_0002 ○

db_0142 ○

jc_0061 ○

db_0140 ○

db_0032 ○

db_0141 ○

jc_0110 ○

jc_0111 ○

jc_0653 ○ ○

jc_0171 ○

jc_0602 ○

db_0146 ○

jc_0281 ○

jc_0603 ○

jc_0604 ○

na_0010 ○

na_0008

na_0009

na_0005

jc_0082

jc_0083

db_0097 ○

db_0081 ○

na_0003 ○

na_0002 ○

jm_0001 ○

hd_0001 ○

na_0011 ○

jc_0141 ○

jc_0121 ○

jc_0610 ○

jc_0611 ○

jc_0131 ○

jc_0161 ○ ○

jc_0621 ○

jc_0011 ○

jc_0629 ○

jc_0622 ○

jc_0626 ○

jc_0627 ○ ○

jc_0628 ○

jc_0650 ○

jc_0630 ○ ○

jc_0631 ○

jc_0632 ○ ○

jc_0625 ○

jc_0640 ○ ○

db_0112 ○

© Copyright 2013 JMAAB. All rights reserved. 198

db_0110 ○

jc_0645 ○

jc_0641
Improvement of
maintainability and
operatability

jc_0642 ○

jc_0643 ○

jc_0644
Improvement of
maintainability and
operatability

db_0114 Template

db_0115 Template

db_0116 Template

db_0117 Template

na_0012
Not correspond to
basis described
above

na_0028
Not correspond to
basis described
above

jc_0658 ○ ○ ○

jc_0623 ○

jc_0624 ○ ○

jc_0651 ○ ○

jc_0652 ○

jc_0659 ○ ○

jc_0656 ○

jc_0657 ○ ○

db_0123 ○

jc_0700
Improvement of
maintainability and
operatability

db_0122 ○

db_0125
Improvement of
maintainability and
operatability

jc_0701
Improvement of
maintainability and
operatability

jc_0702 ○

jm_0011 ○

db_0129 ○

db_0137 ○ ○

jc_0711 ○ ○

jc_0531 ○ ○ ○

jc_0712 ○ ○ ○

na_0038 ○

na_0040 ○

jc_0720 ○

jc_0721 ○ ○

© Copyright 2013 JMAAB. All rights reserved. 199

jc_0722
Improvement of
maintainability and
operatability

jc_0723 ○ ○

jc_0730 ○ ○

jc_0731 ○

jc_0732 ○

jc_0733 ○ ○

jc_0734 ○ ○

jc_0740 ○ ○

jc_0501 ○

jc_0735 ○

jc_0736 ○

jc_0737 ○

jc_0738 ○

jc_0739 ○

jc_0741 ○ ○

jc_0742 ○

jc_0770 ○

jc_0771 ○ ○

jc_0772 ○

jc_0752 ○

jc_0743 ○

jc_0750 ○

jc_0751 ○ ○

jc_0754 ○

jc_0753 ○

db_0151 ○

na_0013 ○

jc_0481 ○ ○

na_0001 ○ ○

jc_0655 ○

jc_0451 ○ ○

jc_0755 ○

jc_0756 ○

jc_0757 ○

jc_0491 ○

jc_0521 ○

jc_0760 ○

jc_0762 ○

jc_0763 ○

jc_0761 ○

db_0132 ○

db_0134 Template

db_0159 Template

db_0135 Template

jc_0773 ○

jc_0774 ○

jc_0511 ○ △

© Copyright 2013 JMAAB. All rights reserved. 200

jc_0775 ○

jc_0776 ○

db_0126 △ △

jc_0780 ○ ○

jc_0781 ○

jm_0012 ○

na_0041 ○

na_0042 ○

na_0039 ○ ○

db_0127 ○

na_0037 ○

na_0020 ○

na_0036 ○

na_0033 ○

na_0031 ○ ○

na_0018 ○

na_0025 ○

na_0034
Not correspond to
basis described
above

na_0024 ○

na_0022 ○

na_0016 ○

na_0017 ○

na_0021 ○ ○ ○

7.2. Selectable parameters of each rule

7.2.1. Interpretation

In several rules, it is clearly described that is is selectable. However not all rules include that description.
Regarding the others, there is no need to accord completely to description. This guideline provides
templates for practical use of rules in projects. Numeric values and block types described in guidelines are
not absolute. They need adaptation to characteristics of each project. In this section, least choices which
must be decided based on characteristics of each project are described. As other elements, development
processes of each project, conditions of controlling object, average of skill levels of relating engineers
should be taken into comprehensive consideration. Appropriate operation based on understanding of what
guidelines really mean is expected.

7.2.2. List of rule parameters

This list does not completely include all selectable parameters.

Rule ID Parameters

ar_0001

Extensions which are subject to this rule is decided.
In case limite to MATLAB related files, following extensions are
subject to this rule. {m,p,mdl,slx,fig,c,h,mexw64,mexw32}
Current version does not use dll.
In case all files are subject to this rule, kinds of extensions should not
be limited.

ar_0002

jc_0241 Total number of characters

© Copyright 2013 JMAAB. All rights reserved. 201

jc_0242 Total number of characters

jc_0201

jc_0211

jc_0222

jc_0232

jc_0231
Kinds of subsystems
Expansion to function declaration.

jc_0243 Total number of characters

jc_0244 Total number of characters

jc_0245 Total number of characters

jc_0246 Total number of characters

jc_0247 Total number of characters

na_0035 All of naming conventions

jc_0251

na_0014
Places in which using local language is inhibited.
Processes adoption.

na_0006

na_0007

db_0143
 The list of blocks which are allowed to use on all layers.
 The list of blocks which is used depends on layers.
 Definitions of layers

db_0144

na_0004 The type of options and setting values which should be selected.

db_0043

Kind of the font, size and style.
Simulink: Standard setting should be decided for each of block, line
and annotation.
Stateflow: Standard setting should be decided for each of state label
and transition label.

db_0042

jm_0002
Blocks which are subject to this rule. And their sizes. Regarding block
sizes, tolerances should be decided.

db_0142

jc_0061

For each process subject to this rule, following lists should be
decided.
 The list of block types whose names are always displayed
 The list of block types whose names are always undisplayed.
 The list of block types whose names are selectable to be

displayed or undisplayed

db_0140

For each process subject to this rule, following lists should be
decided.
 Block types subject to this rule, options to be displayed and

conditions to display options.
 How to display and displaying characters.

db_0032

db_0141

jc_0110 Block types which are allowed to be rotated.

jc_0111

jc_0653

jc_0171

jc_0602

db_0146 Regarding detailed position of blocks, it is selected from the following

© Copyright 2013 JMAAB. All rights reserved. 202

patterns.
 Anywhere of top portion
 Rightside of top portion
 Center of top portion
 Leftside of top portion
In case model information is described according to jc_0603, relative
position of conditional input blocks and them should be clarified.

Positions of following blocks also should be decided.
 For Each
 For Iterator

jc_0281 Which of block name or subsystem name inherit names of blocks

jc_0603

Decide the kind of the block which is used for model description.
 Annotation
 ModelInfo
 Both can be used

Detail of position should be decided.
Examples:
 The most upper left
 Anywhere of top portion
 Right-side of the whole
 Center of the whole
 Left-side of the whole

In case db_0146 is also applied, relative position of conditional input blocks
and model informations should be decided.
Examples:

 Horizontally same position
 The upper position than conditional input blocks

The keyword string should be decided.

例：

 Prerequisite
 Outline
 Function

jc_0604 Blocks which are allowed to set block shading.

na_0010

na_0008

na_0009

na_0005 Which of jc_0082 or jc_0083 is adopted.

jc_0082

jc_0083

db_0097

db_0081
How to enable distinguishment of automatically added blocks and
intentionally added ones should be decided

na_0003

na_0002
Block types are registered to following lists..
 List of block types that are awaiting logical values.
 List of block types that are awaiting numerical values.

jm_0001 Prohibited block types

hd_0001 Prohibited block types

© Copyright 2013 JMAAB. All rights reserved. 203

na_0011

jc_0141

jc_0121

jc_0610

jc_0611

jc_0131

jc_0161

jc_0621
Which of the Logical Operator block icon shape "square" or "characteristics"
is adopted.

jc_0011

jc_0629

jc_0622

jc_0626

jc_0627

jc_0628

jc_0650

jc_0630

jc_0631

jc_0632

jc_0625 Unified rule for initial value is decided.

jc_0640

db_0112 Which of 0 based indexing or 1 based indexing is adopted.

db_0110

jc_0645

jc_0641

jc_0642

jc_0643

jc_0644

db_0114

db_0115

db_0116

db_0117

na_0012

na_0028
The nest level of switch blocks.
Total nest level?

jc_0658

jc_0623

jc_0624

jc_0651
Kinds of blocks that are used for Cast.
How to describe Cast.

jc_0652

jc_0659

jc_0656

jc_0657
Whether comments are described or not.
In case comments are described, contents and positions should be
decided.

db_0123

jc_0700

db_0122

© Copyright 2013 JMAAB. All rights reserved. 204

db_0125

jc_0701

jc_0702

jm_0011

db_0129

db_0137

jc_0711

jc_0531

jc_0712

na_0038 The maximum number of layers within a single viewer.

na_0040 The maximum number of layers within a single viewer.

jc_0720

jc_0721

jc_0722

jc_0723

jc_0730

jc_0731

jc_0732

jc_0733

jc_0734

jc_0740

jc_0501

jc_0735

jc_0736

jc_0737

jc_0738

jc_0739

jc_0741

jc_0742
The number of conditions written in a line.(An example number is 3)
In case of multiple lines, the position of operators. (They are written on start
of lines or end of lines.)

jc_0770

Positions of conditions and actions in flow chart.
 Near the starting point of transitions
 Near the center of transitions

jc_0771
It should be decided that comments are written above lines or written
below lines.

jc_0772

jc_0752

jc_0743

jc_0750

jc_0751

jc_0754

jc_0753

db_0151

na_0013

jc_0481

na_0001

jc_0655
Which of "~" or "!" is used as negation.
"!" is recommended.

© Copyright 2013 JMAAB. All rights reserved. 205

jc_0451

jc_0755

jc_0756

jc_0757

jc_0491

jc_0521

jc_0760

jc_0762

jc_0763

jc_0761

db_0132

db_0134

db_0159

db_0135

jc_0773

jc_0774

jc_0511

jc_0775

jc_0776

db_0126

jc_0780

jc_0781

jm_0012

na_0041

na_0042

na_0039

db_0127

na_0037

na_0020

na_0036

na_0033

na_0031

na_0018

na_0025

na_0034

na_0024

na_0022

na_0016
Number of lines in MATLAB function is 60.
It should be decided whether comments are also counted or only execution
lines are counted.

na_0017 Number of maximum layers.

na_0021

Common
 Let the masked inside be targeted search?
 Is the kind of function setup by which atomic was carried out limited?
 Please determine the subsystem classified into annotation, and the kind of S-function.

For example, is the following kind classified into annotation?
 Do an input and the block without an output port correspond?
 What kind of block type name corresponds?

© Copyright 2013 JMAAB. All rights reserved. 206

 What kind of mask type name is applicable striped soot?

© Copyright 2013 JMAAB. All rights reserved. 207

8. Terminology/supplementary explanation
JMAAB's own supplementary information not published in MAAB guideline (English) will be published
here. This resource material includes content that requires supplement particular to Japan. Although the
Help section in MATLAB has everything in the English translation, the Japanese Help section does not
have all. Therefore, there are various sections that need to be explained just for Japan. This chapter
added its own supplementary explanation on items that should be originally be read minutely on Help
Definitions of terminologies used in the guideline and the commentary on the functions

8.1. Commentary on Simulink terminologies

8.1.1. Definition of basic blocks

In this guideline, the built-in blocks of standard Simulink library are defined as “basic blocks”
Below are the examples of basic blocks.

Related ID：db_0110、db_0143,jc_0641,db_0146,jc_0281

8.1.2. Definition of port blocks.

When the term "port block" is used in this guideline, it is referring to the input and output port of the
subsystem.
Ports used for the conditional system are referred to as "condition input blocks". The block groups that
include port block and condition input blocks are referred to as a "port block group".

 Block type

Port block group Port block Inport,Outport

Condition input block Enable
For Iterator
Action Port
Switch Case Action
Trigger
While Iterator

Related ID：na_0005,jc_0082,jc_0083,

8.1.3. Conditional control flow

Flow listed using conditional subsystem that includes condition input block is referred to as “conditional
control flow”

An example of a conditional subsystem

© Copyright 2013 JMAAB. All rights reserved. 208

An example of conditional control flow

Conditional control flow indicates flow listed using a conditional subsystem. However, it does not indicate
a function in which only one subsystem operates. A system that conducts calculation for several times for
for iterator and while iterator also exist. The flow of original block in which the signal is input into a
conditional subsystem and the conditional subsystem and how it’s used form a pair, known as a
“conditional control flow”.
Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657

8.1.4. Blocks with State Variables

Block with state variables is a block that keeps values of the past in memory.
The blocks are stored under <Simulink><Discrete>.
Blocks with state variables have initial value(s). Blocks with state variables are blocks in which initial
values setting is enabled. Also, most of blocks with state variables have the State Attributes property
within the block properties.

Example of Block with State Attributes Property

© Copyright 2013 JMAAB. All rights reserved. 209

There are some blocks without state attributes, for example, Tapped Delay.

Note that a conditional control flow may have state variables depending on the flow’s structure pattern.

Related ID：jc_0658,jc_0625,jc_0640

8.1.5. Branch Syntax with State Variables

Switch and Conditional Control Flow behave differently when they have a state variable.
Depending on the configuration setting, when any state variable exists, the Switch block generally
executes subsystem A if the condition of control port is satisfied, and if not, it executes only subsystem B
without calculating subsystem A.

© Copyright 2013 JMAAB. All rights reserved. 210

However, when the subsystem A contains a state variable, calculation for the state variable within the

subsystem A is processed even if the conditions of control port do not hold.
On the other hand, in the Conditional control flow, the subsystem A is calculated if the condition holds,

and if not, the subsystem B is calculated instead of subsystem A, regardless of existence of state
variables in subsystem A.

Reset action in recalculation can be specified by Action Port setting.
The behaviors of subsystem A using Switch and Conditional control flow are listed in the following tables:

Behavior of subsystem A

Control port
condition

State variables (in
subsystem A)

Switch Conditional
control flow

Hold No

Executed

Executed

Yes

Not hold No

Not executed

Not executed

Yes

Minimally-processed
*Executed calculations related to the
state variables

Initialization timing of subsystem A

 ActionPort Initialize

Switch － First time only

Conditional control flow

Hold

First time only

Reset

At returned by condition

© Copyright 2013 JMAAB. All rights reserved. 211

Understand the behaviors above to determine the more suitable structure to use, Switch block or
conditional control flow, according on the intended use.

Related ID:na_0012,na_0028,jc_0658,jc_0656,jc_0657,db_0114,db_0115

8.1.6. The definition of subsystem

Subsystem is used for compiling various blocks and subsystems. However, they can also be used for
other purposes. Below, usage methods that are not functional subsystems will be listed.
 Open function of the subsystem will be used.

 This is used with the purpose of running several tools or displaying an explanatory text
separate to the model.

 Mask display of the subsystem will be used.
 This describe the outline or display fixed form documents, such as "classified"

 Turning block composition into groups using a subsystem bracket
 From R2012b onward, subsystems can be place in the back of the block. Using this, the

foreground of subsystem can be set to a slightly lighter color, such as grey. A subsystem can
be used for compiling several blocks that do not require to be turned into a subsystem into a
group.

When taking usage methods other than the above usage of compiling functions, generally such
subsystem is set to exclude code generation as targets with blocks that do not have any input or output.
Furthermore, if possible, these subsystems should not display the block name or use a determined block
name if it is displayed, making it clear that it is not a general subsystem. When the expression
"subsystem" is used in this guideline, it covers subsystems that "use functions separately", which always
cover code generation. Categorically speaking, other subsystems have rules on the annotation side
applied.
Furthermore, there are also subsystems that have had its setting changed to a mask subsystem (a
subsystem that was simply set to NoReadOrWrite), in which a general user cannot see the content. This
change could be made by the upper level user certified by the organization mask the subsystem after
designing or reviewing it. This subsystem is excluded from the guideline's inspection target. A list should
be created on exclusion targets and should be managed within the project.
Related ID:jc_0201,jc_0231,jc_0243,db_0144,jc_0111,jc_0653

8.1.7. The definition of a dictionary

The actual state of the title data dictionary differs for each project. MathWorks provide various methods,
such as data management method that uses m-file and data management method that uses a model
explorer. For example, MWJ proposes a tool that can manage data with a description method that follows
data dictionary format stipulated by JMAAB (provided at MATLAB CENTRAL "SDOxlsIF: Excel Interface
API for Simulink Data Object) Other than this, there are also companies that use DCM file based on
ASAM as a data dictionary. Of course, it is possible to make a company's own format. As such, even the
term "data dictionary" can be perceived differently depending on the project.

When the term “data dictionary” is used in this document, it refers to the list of signals and parameters
managed by the various methods mentioned above.

Related ID：jc_0644,na_0035,jc_0251

8.1.8. Signal

The RAM value that appears in the data dictionary is referred to as a signal.
This refers to the variable used in the code generation that uses Simulink or mpt object. It is also referred
to as signal object at times.
When the label name is added to the signal line before and after the block, and this is used for code
generation, it is then referred as a signal.
In cases where only the label name is stipulated without having any Simulink or mpt object, it is a name
that has an annotative nuance or was given to differentiate signals to use bus. Therefore, strictly-speaking,
signals that do not appear in the data dictionary are not covered by he guideline.
Related ID:jc_0222,jc_0245,na_0035,jc_0251

© Copyright 2013 JMAAB. All rights reserved. 212

8.1.9. Parameter

It refers to a RAM or ROM value that appears in a data dictionary with a fixed number.
Parameters that have values that are used for code generation that use Simulink or mpt object are either
variables or constants. It is also referred to as a parameter object.
Parameters do not become altered during a single simulation. However, a variable-type parameter that
has been stipulated as an adaptable RAM can have its values altered while Simulink is executed or after
being implemented by using an external tool. This is called a relevant constant and can be altered during
operation.
Parameters that do not appear in data dictionary are usually not treated as the target in this guideline. The
parameters that become targets are few in number, such as the switching constant.
Related ID:jc_0232,jc_0246,na_0035,jc_0251

8.1.10. Signal label and signal name

Signal label is used to make the functions of the Simulink block diagram model easier to understand.
Furthermore, it can also be used to manage the variable names used in simulation and code generation.
Signal name is inputted only once (at the time the signal is emitted). When displaying the inputted signal
name at a different location of the model, it will be displayed as a propagation signal if the signal has not
been converted functionally (Signals can be functionally converted by having it go through an integrator.
Signals will not be converted functionally even if they go through a subsystem import that had become a
nest). If the signal with a name given was functionally converted, have a new name be related to it.
Unless not specified clearly elsewhere, the “signal” guidelines can be applied to various types of signals.
For details of the representation of Simulink model signal, please refer to "How to Handle Signals", a
Simulink Documentation
Related ID:jc_0222,jc_0245,na_0035,jc_0251

8.1.11. Control Characters

Control Characters are special characters used to control display and printer, including carriage return
(CR), escape (ESC), tab (TAB) and so on. They are not be displayed on the screen.

See Also
http://e-words.jp/w/E588B6E5BEA1E69687E5AD97.html
http://www.c-tipsref.com/words/control_character.html
Related ID: jc_0222,jc_0232

8.1.12. Commentary vector signals/path signal

Vector

・ Individual scholar signals that compose a vector need to have common functions, data type, and
units.

・ The most typical examples of a vector signal include sensor data grouped to a sequence with a location
index and actuator data.

Bus
As mentioned previously, signals that do not fulfill the conditions as a vector can only be grouped as a bus
signal.
Bus Selector block is only used with bus signal input. Do not use it to extract scholar signal from a vector
signal.

Example
The following is an example of a vector signal:

Types of vector Size

Row vector [1 n]

Column vector [n 1]

http://e-words.jp/w/E588B6E5BEA1E69687E5AD97.html
http://www.c-tipsref.com/words/control_character.html

© Copyright 2013 JMAAB. All rights reserved. 213

Types of vector Size

Wheel speed subsystem [1 wheel number]

Cylinder vector [1 cylinder number]

Location vector based on a 2-dimensional coordination

points

[1 2]

Location vector based on a 3-dimensional coordination

points

[1 3]

The following is an example of a bus signal:

Bus type Factor

Sensor bus Force vectors

Location

Wheel speed vector [Θlf, Θrf, Θlr, Θrr]

Acceleration

Pressure

Controller bus Sensor bus

Actuator bus

Serial data bus Circulating water temperature

Engine speed, front passenger seat door open

Related ID：na_0010,db_0117,jc_0222,jc_0245,db_0097,jc_0630,jc_0659

8.1.13. Boolean type and boolean value

Boolean type refers to a Boolean type variable, which is characteristic to MATLAB.
This document uses the term Boolean type to mean that it is a signal that cn be perceived as either true or
false. Within Simulink or in C programming language, there are times where these take a form of double,
uint8, or boolean, depending on the configuration or the setting of the block. However, Boolean type, per
semantics, refer to the calculation result of blocks that "deal with authenticity".
Boolean value displays true or false values.
Related ID:na_0002,jc_0141,jc_0655,jc_0757,na_0037

8.1.14. On enumerated types

"Enumerated type data" refers to data that is restricted to a determined numerical value.
The type of blocks that can be used in an enumerated type in Simulink is limited.
Description per types of blocks that can be appointed is in “Simulink composition that supports the
enumerated type”, under Help Simulink – Model – model composition – data type.
In order to use an enumerated type, it is necessary to define enumerate type using m file on MATLAB as
seen in the example below.

Example: BasicColors.m
In this example, the characters of Red, Yellow, and Blue (Green) can be used.
classdef(Enumeration) BasicColors < Simulink.IntEnumType
 enumeration
 Red(0)
 Yellow(1)
 Blue(2)

Green(2)
 end

© Copyright 2013 JMAAB. All rights reserved. 214

 methods (Static = true)
 function retVal = getDefaultValue()
 retVal = BasicColors. Blue;
 end

 function retVal = getDescription()
 retVal = 'This defines an enumerated type for colors';
 end

% function retVal = getHeaderFile()
 % retVal = 'imported_enum_type.h';
 % end
 function retVal = addClassNameToEnumNames()
 retVal = true;
If it is set as % true, it will be shown as BasicColors_Red on C-code.
If % is not appointed or false is selected, it will be written as Red on C-code.
 end
 end
end

A method to customize the data types below will be provided here.

getDefaultValue Except for the first value on the allowed value list, default
enumerated value will be appointed.

getDescription An explanation on the data type of Simulink® Coder™
generation code will be provided here.

getHeaderFile It enables import of custom header file including the
enumerated type definition of Simulink Coder generation
code.

addClassNameToEnumNames

It avoids the competition of name with the identifier of
Simulink Coder, making it easier to read.

For example, if a Display block is used, the display of 0,1, 2 is usually used for constant. However, a
character can be displayed if an enumerated type is used.
 Description method that stipulates the constant for enumerated type in a Constant block.

Simlink Coder can generate code by also using enumerated type.
In the default setting, the enumerated type data within generated code is stipulated within a header file
model_types.h generated for a model.
For example, the default code for BasicColors will be as follows:
#ifndef _DEFINED_TYPEDEF_FOR_BasicColors_
#define _DEFINED_TYPEDEF_FOR_BasicColors_

 typedef enum {
 BasicColors_Red = 0,
 BasicColors_Yellow = 1,
 BasicColors_Blue = 2, /* Default value */
 BasicColors_Green = 2
 } BasicColors; /* This defines an enumerated type for colors */
#endif

You can choose either blue or green as the color for the signal. As shown in the example, the letters Blue
or Green can be set to the same value 2 for enumerated type.
If the example case is used in SImulink, a Green setting is interpreted as Blue.
If two letters are set for 1 constant in this way, the letters written in the m file takes precedence as with
setting the initial value.

© Copyright 2013 JMAAB. All rights reserved. 215

8.2. Stateflow terminology commentary

8.2.1. Operators available for Stateflow

Operators available for use with Stateflow

Operator

Description

a * b Multiplication

a / b Division (Conditional use is available)

a %% b Reminder

a + b Addition

a - b Subtraction

a >> b Shift operand a right by b bits

a << b Shift operand a left by b bits

a > b
Compare whether the 1st operand is greater than
the 2nd operand

a < b
Compare whether the 1st operand is smaller than
the 2nd operand

a >= b
Compare whether the 1st operand is equal to or
more than the 2nd operand

a <= b
Compare whether the 1st operand is less than or
equal to the 2nd operand

a == b Compare whether the two operands are equal

a ~= b Compare whether the two operands are not equal

a != b Compare whether the two operands are not equal

a <> b Compare whether the two operands are not equal

Operator

演算子

C language bit operation is available

OFF ON

a|b Logical OR of a, b Bitwise OR of a, b

a||b Logical OR of a, b Logical OR of a, b

a&b Logical AND of a, b Bitwise AND of a, b

a&&b Logical AND of a, b Logical AND of a, b

a^b b power of a Bitwise XOR of a, b

!a Logical NOT of a Logical NOT of a

~a Logical NOT of a Two’s complement

© Copyright 2013 JMAAB. All rights reserved. 216

C chart supports the following unary actions

Operator Description

a++ Increment a

a-- Decrement a

You can perform element-wise assignment operations on assignment operation vector and matrix
operands.

Assignment
operation

Equivalent expression

a = expression

a += expression a= a + expression

a -= expression a= a - expression

a *= expression a= a * expression

a /= expression a= a / expression

Related ID:jc_0737,jc_0742,na_0001,jc_0655,jc_0755,

8.2.2. Transition line condition, condition action, transition action

The entire descriptions on the transition line is referred to as the "transition label".
The following four descriptions are possible for the transition label.
1. Event
2. Condition
3. Condition action
4. Transition action

Related ID：jc_0754,jc_0753,db_0151

8.2.3. State Actions and Action Types

entry, during, exit, bind and on actions are called as action type.

List of Action Types

Action Type Short
name

Description

entry en Executes when the state becomes active

exit ex Executes when the state is active and a transition out of the state occurs

during du Executes when the state is active and a specific event occurs

bind - Binds an event or data object so that only that state and its children can
broadcast the event or change the data value

Event Condition

© Copyright 2013 JMAAB. All rights reserved. 217

Action Type Short
name

Description

on event_name - Executes when the state is active and it receives a broadcast of
event_name

on after(n,
event_name)

- Executes when the state is active and after it receives n broadcasts of
event_name

on before(n,
event_name)

- Executes when the state is active and before it receives n broadcasts of
event_name

on at(n,
event_name)

- Executes when the state is active and it receives exactly n broadcasts of
event_name

on every(n,
event_name)

- Executes when the state is active and upon receipt of every n broadcasts
of event_name

The actions for states are assigned to an action type using label notation with this general format:

name
entry:
 entry actions
during:
 during actions
exit:
 exit actions
bind:
 data_name, event_name
on event_name:
 on event_name actions

Related ID：jc_0760,jc_0762

8.2.4. State Transition and Flow Chart

Stateflow can represent two features of state transition diagram and flowchart.
State transition diagram is a flow where states exist and state transition is made when conditions hold.
Flowchart is a flow where an action is executed at the change of condition regardless of changes of state.
Stateflow software allows a flowchart to be designed within a state transition diagram.
An entry action can be represented as flowchart in a state, which starts from default transition and moves
to junctions through transition lines, as in the following example. Starting from an inner transition anebles

during action by flowchart.

Additional information:
A flowchart cannot maintain its active state between updates. As a result, a flow chart always ends at a
“terminating junction” (a junction that has no valid outgoing transitions).
By contrast, a state transition diagram stores its current state in memory to preserve local data and active
state between updates. AS a result, state transition diagrams can begin executing where they left off in
the previous time step, making them suitable for modeling reactive or supervisory systems that depend on
history.

Flowchart and state transition diagram

 Start point End point

Flowchart Default transition
or
State

All endpoint are connected to
the junctions

State transition
diagram

Default transition
or

Any of end points is
connected to a state

© Copyright 2013 JMAAB. All rights reserved. 218

State

Difference from common flowchart and state transition diagram

 Flowchart outside state Flowchart within state

Flowchart

 State transition outside state State transition within state

State transition
diagram

Mixture of flowcharts and state transition diagrams with self-transition is subjected of more strict
constraints from both.

Example of flowchart with self-transition

 Self-transition outside state
- Form self-transition outside state,
reset after execution

Self-transition within state
- Form self-transition in state,

reset with during action

State transition

Related ID:db_0132jc_0752

8.2.5. Backtrack

This example shows the behavior of transitions with junctions that force backtracking behavior in flow
charts. The chart uses implicit ordering of outgoing transitions (see “Implicit Ordering of Outgoing
Transitions").

© Copyright 2013 JMAAB. All rights reserved. 219

Initially, state A is active and conditions c1, c2, and c3 are true, c4 is false:
1. The chart root checks to see if there is a valid transition from state A.

There is a valid transition segment marked with the condition c1 from state A to a connective
junction.

2. Condition c1 is true and action a1 executes.
3. Condition c3 is true and action a3 executes.
4. Condition c4 is not true and control flow backtracks to state A.
5. The chart root checks to see if there is another valid transition from state A.

There is a valid transition segment marked with the condition c2 from state A to a connective
junction.

6. Condition c2 is true and action a2 executes.
7. Condition c3 is true and action a3 executes.
8. Condition c4 is not true and control flow backtracks to state A.

１． The chart goes to sleep.

To resolve this problem, consider adding unconditional transitions to terminating junctions.
The terminating junctions allow flow to end if either c3 or c4 is not true. This design leaves state A active
without executing unnecessary actions.

Related ID:jc_0751,jc_0773

8.2.6. Note on flowchart outside state

Writing a flowchart associated with a state is available either inside or outside of the state, however writing
the execution order and backtracking require attention.

The following flowchart, which evaluates transition from a to b after executing flowchart outside state,

appears to execute transition with the period same as that of nowger calculation.

However, transition line to b is not evaluated if the terminating point is reached via calculating transition

outside state; this is a state transition diagram which stays on a.

© Copyright 2013 JMAAB. All rights reserved. 220

The flowchart should be written as follows: adding a condition that does not stand at the end of flowchart

outside state by design to make the transition line from a to b evaluated after executing flowchart outside

state.
This enables the flowchart outside state to be executed before transition and to be evaluated with the
latest value at the instant of transition. Note that this chart contains a dead path where condition never
hold, which may cause a bug when the specification is changed in the future.

In contrast, the following flowchart where the internal flowchart is always calculated with execution of the

state a, is written as easily comprehensible structure without dead paths.

Note, however, that it has such performance characteristic as evaluates transition from a to b in the next

period of internal flowchart calculation period.
Due to this characteristic, calculation execution and transition may not be processed timely for the
external flowchart. Use with sufficient attention.

Related ID:jc_0751,jc_0773

© Copyright 2013 JMAAB. All rights reserved. 221

8.2.7. How to use custom C code

Describe using the example model sf_custom.

gMyStructVar is not defined in Stateflow.
Loading of C source code is set on the Code Generation pane of Configuration Parameter.
Normally, functions of my_function are called from C source for use in Stateflow.
However, direct reference to global variables exposed by the C source is also available from Stateflow.

---------my_header.h--------------
#include "tmwtypes.h"

extern real_T my_function(real_T x);

/* Definition of custom type */
typedef struct {
 real_T a;
 int8_T b[10];
}MyStruct;

/* External declaration of a global struct variable */
extern MyStruct gMyStructVar;
extern MyStruct *gMyStructPointerVar;

---------------my_function.c--------------
#include "my_header.h"
#include <stdio.h>

/* Definition of global struct var */

MyStruct gMyStructVar;
MyStruct *gMyStructPointerVar=NULL;

real_T my_function(real_T x)
{
 real_T y;

 y=2*x;

 return(y);
}

------------------------Inside of Stateflow -----------------------------

© Copyright 2013 JMAAB. All rights reserved. 222

Related ID：jm_0011

8.3. Initialization

8.3.1. Initial value setting in initialization

When a signal needs to be initialized, the initial values should be set correctly.
Cases that require initial values are the following.
1. When state variables are defined.

① When blocks that have state variables are used.
A) Use the internal block settings.
B) Use the external input values.

② When initial values are enabled for a block when a specific configuration is performed.
A) Set initial values in Merge blocks.
B) Use signals registered in the the data dictionary.

2. When signal settings (with RAM) have been defined that can be referenced from the outside.
A) Use signals registered in the the data dictionary.

© Copyright 2013 JMAAB. All rights reserved. 223

8.3.2. List of blocks that have internal initialization values

 When initial values have been set inside a block, an initial value list using annotations is useful to

allow you to visually confirm the input initial values.
(db_0140: Display of basic block parameters)

8.3.3. Initial values of signals registered in the the data dictionary

Set initial values for signals registered in the the data dictionary.
 Discrete block groups, such as UnitDelay, and Data Store Memory have state variables.
In the case of automatic code generation, the signal name, type and initial value can be set for state
variables by matching it to the signal in the data dictionary. When using a signal defined in the data
dictionary for a state variable, the respective initial values should be conformed to the same value.
 When using a signal defined in the data dictionary for a state variable.
For Discrete blocks, such as a UnitDelay, and Data Store Memory, settings are performed not when using
signals defined in the data dictionary for the block output line, but for the state variables inside the block.
Even if the signal name of the data dictionary is assigned to the signal line, RAM will be reserved in
duplicate, which would be a waste of RAM. Please use the label name in the sense of an annotation.

© Copyright 2013 JMAAB. All rights reserved. 224

Correct: When the signal is defined for the state
variables inside the block.

Incorrect: When the signal is defined for
the output signal of the block that has state
variables.

Signal line properties setting

Unit Delay properties setting

Signal line properties setting

Unit Delay properties setting

Data dictionary registration: Example of signal definition using Model Explorer

Signal objects which have been defined in Workspace can be automatically associated with signal objects and
signal names of the same name, by using the disableimplicitsignalresolution (model name) command.
However, for the above mentioned state variables inside the block, they get associated with the state
variables inside the block and the signal name of the same name. If a globally set signal is associated with
2 variables at the same time, it is better to perform settings so that the state variables inside a block and
the signal label on the signal line have different names, because the model becomes unexecutable.

© Copyright 2013 JMAAB. All rights reserved. 225

8.3.4. Example of a block where the external input value is the initial value

 Initialization behavior
If the initial value is input from the outside, the initial value of the signal in the data dictionary and the initial
value of the model will differ.
In setting the initial value in initialization, the init function is called to set to the signal either the value set
inside the block or the initial value defined in the data dictionary.
Next, the step function which is the data flow executive function is executed. When the external input
value is set as the initial value, the initial value setting is executed only for the first time.
Please be aware in your modeling that in C code the executive function and the execution timing both
differ.

8.3.5. Initial value settings in a system configuration that would enable initialization
parameters

There are system configurations where, depending on their settings, initialization parameters are enabled for
combinations of conditional subsystems and Merge blocks. If initial values are required in theses
combinations of conditional subsystems and Merge blocks, either of the following modeling is performed.

Initialization explanation

init function
Set the specified
initial value to
the signal

step function

Set the external
input value only
for the first time

step
function

1 sampling

Difference in behavior in C code

step
function

Required computation
to compute external
input value

Do not execute
after the
second time function

function function

If the initial condition is set as
the input port, the port name
will not be displayed unless
the block size is made slightly
bigger than standard.

© Copyright 2013 JMAAB. All rights reserved. 226

For instance, either of the following methods can be used for conditional subsystem Outport + Merge
● set in Outport
● set in Merge
● if an mpt signal is defined behind Merge, set in mpt signal

Exception:
When there are successive blocks with initial values and settings for each block are unnecessary for
clearly showing the signal’s initial value.

Correct: Initial value set in Merge

Correct: Initial value set in mpt object

Incorrect: Despite the requirement for an initial value setting, it is not shown anywhere.

© Copyright 2013 JMAAB. All rights reserved. 227

8.4. Supplement: Commentary on functions

8.4.1. About Atomic Subsystem

Subsystem has a two types of settings: a setting referred to as "Atomic Subsystem" and another as
"virtual". The difference between the virtual subsystem (a subsystem block in a default setting) and Atomic
Subsystem is whether a subsystem is treated as a block or not.
It does not have a practical meaning in a mathematical or physical sense, but a block that simply provides
visual expression is called a "virtual block".
For example, Mux block that compiles several signal line, From block that hands out the signal, and Goto
block all correspond to a virtual block. Since the subsystem block in the default setting only constitutes a
merely visual hierarchical structure, it also falls under virtual blocks. This subsystem is referred to as a
virtual subsystem.
The line of the virtual system external bracket is displayed thinly while the one for Atomic Subsystem is
displayed thickly.

The major difference between Atomic Subsystem and virtual system is that the Atomic Subsystem is
detached from the external system, being not subjected to cross-border optimization.
For example, let's suppose a subsytem that consuls the external calculation result within a subsytem like
in the example below. This system is calculated from the four equations below.
temp1= in1 + in2
temp2= in3 + in4
out1=in1 + in2 + temp2
out2= temp1 + in3 + in4

Example of a virtual subsystem definition

© Copyright 2013 JMAAB. All rights reserved. 228

However, Atomic System does not use internal calculation results for each subsystems. Therefore,
interium output value will use a calcualtion result that is delayed by a session.
temp1= in1 + in2
temp2=in4 + in5
out1=in1+ in2 + in3
out3=in4+ in5 + in6
in3=temp2
in6=temp1
Atomic Subsystem is prohibited from directly referincing the interium calculation result to other
subsystems.

Atomic Subsystem can select factor settings of C-source.
With Atomic Subsystem, as explained above, the inside of subsystem will become encapsulated
(objectified). Depending on the relationship between before and after, one should acknowledge that a
static RAM field can be secured for the output signal. Atomic Subsystem (including the addition of factor
setting) should not be used carelessly for reasons such as to merely make the test easier to do. Setting
that conducts factor setting will not simply have a factor name inserted within a C code. It is necessary to
acknowledge that it is described as a mathematically independent system and to review under which
cases Atomic Subsystem should be used.
Including the relation with the structure layer that will be mentioned later on, it is necessary to determine
an operation rule per project and to determine its relationship with the guideline rules.

With virtual subsystem, it
is possible to consult the
values within other
subsystems.

Atomic Subsystem

Virtual subsystem

Since mutual consultation is
possible, no delay occurs
even when it is turned into
a subsystem

Since a mutual consultation is
impossible, an unnecessary
delay will occur within the
connection between
subsystems.

© Copyright 2013 JMAAB. All rights reserved. 229

The difference between Atomic Subsystem and virtual subsystem (Japanese)
http: //www.mathworks.co.jp/support/solutions/ja/data/1-CYPFSL/index.html? product=SL&solution=1-
CYPFSL
Atomic Subsystem (Japanese)

http： //www.mathworks.co.jp/jp/help/simulink/slref/Subsystem.html

Explanation of algebra loops (Japanese)
http: //www.mathworks.co.jp/jp/help/simulink/ug/simulating-dynamic-systems.html#f7-19688

© Copyright 2013 JMAAB. All rights reserved. 230

9. Determining guideline operation rules
Describe the deployment rules and processes for the guideline implementation.

9.1. Necessity of process definition
Automobiles need to be safe. In order to develop a safe product, various initiatives will become necessary.
The model base development that utilizes simulation is suitable for developing a safer system. However,
this doesn't mean that a safe system will be made just because simulations were used. Although the
development of good control and good functions are necessary, process definition and the development
environment that will be used will be equally important. A safe system planning will be conducted after
implementing various agreements when starting the development.

9.2. A version of MATLAB/Simulink
When starting a project, the version of MATLAB/Simulink to be used will be determined.
This includes mixing various MATLAB versions for each process.
For example, if a version that conducts automatic code generation was “R2011b”, it is possible to
generate code and conduct verification with R2011b by downgrading test cases by generating test cases
by having Simulink Design Verifier (SLDV), a verification tool box that uses a formal method, use R2013a.
For each project, one should decide upon which software version to be used at which stage. At that
specific process, the version that was decided upon should be used by everyone.
Furthermore, it is necessary to check the latest bug report on a regular basis. Depending on the bug, one
may need to change to the latest version. It doesn't 't mean that one cannot change once after making a
choice. One needs to appropriately evaluate the risks of malfunctioning occurring due to a bug and risks
from upgrading the version. It is necessary to always have a structure in place that allows to be changed
to the latest version and to appropriately evaluate and judge what is the safest option.

9.3. MATLAB/Simulink setting
The setting of MATLAB/Simulink specifically set for each MATLAB should be operated in a unified

manner with the project. In particular, Simulink setting that affects the appearance setting requires
unification. The option name to be unified will be listed below.
 Displayed standard value of a new model

 The display of a mask subsystem
 The display of a library link
 Displaying non-scholar line with a wide-width lines
 The display of a data-type terminal

 Font setting of a new model
 Block/line/annotation

 Standard value of an editor
 Using the traditional block diagram theme

9.4. Usable blocks
jm_0001 and hd_0001 display the blocks that are prohibited to use. These rules are rules determined

by whether the code generation is enable/disable. However, usable blocks are not only able/disable to
generate codes, they also change depending on the education level.

There are many blocks in Simulink. Depending on the block, an efficient code can be generated or a
combination of several basic blocks can be represented using one function. However, when there's a
difference within the SImulink skill level within an organization, one should limit the blocks and design
within a designated range. However, decreasing the block number too much can deteriorate the
readability. Adverse effects include increasing the user library and variation within the descriptions for the
same function.

An engineer that possesses a skill level that the organization sees as the standard should be set. A list
of usable Simulink block should be made and operated.

When an advanced practitioner uses an unsupported block, it should be stored within a mask
subsystem, concealing it so that it cannot be seen by a general user.

© Copyright 2013 JMAAB. All rights reserved. 231

In conjunction to the eduction structure, the operation rules will be determined when starting a project.

9.5. Setting of the configuration to be used

9.5.1. Optimization parameters

Optimization options highly affect codes generated through automatic code generation. With a good
understanding of your own product characteristics, these options should be configured so that the setting
match to the security level suitable for the product. Optimization should not be applied easily for the
products that require utmost consideration to security.
In general, for automotive built-in products, computing speed is critical, and also less RAM/ROM is
thought to be ideal. For example, for auto-industry products, optimization settings are enabled on the
“Conditional Input Branch Execution” pane. This improves computation rate by executing only the side
where the condition holds during execution of the conditional branch using Switch.
In contrast, for aviation industry, the pane is disabled since stabilization of execution speed is critical, and
calculating in both sides is preferred in order to keep stable calculation period even if calculation is
needed only on the side where the condition holds.
These optimization settings are also deeply related with the SIL level of function safety, as described
above vary in adoption criterion depending on industries, need to be determined with understanding of
your own product characteristics.

9.5.2. Other configurations

 Hardware implementation parameter settings
Describes model system hardware characteristics, including products and test hardware configuration
setup for simulation and code generation.
Configure appropriately to be compatible with the microcomputer the project uses. Especially mind
unintended utility function might be inserted unless signed integer division rounding is defined.

 Model reference parameter settings
Specified when using model references.
Options to include other models in this model, options to include this model in another model, and build
options of simulation and code generation targets.

 Simulation target parameter settings
Configures a simulation target of a model including a MATLAB Function block, Stateflow chart, or Truth
Table block.

9.5.3. Configuration settings

For configuration settings, see the hisl and cgsl guidelines developed by MathWorks. The guideline
describes recommended patterns for each version. Determine to accept or reject according to the needs
of individual projects.

hisl_0040: Configuration Parameter > Solver > Simulation Time
hisl_0041: Configuration Parameter > Solver > Solver options
hisl_0042: Configuration Parameter > Solver > Tasking and sample time options

診断

hisl_0043: Configuration Parameter > Diagnostics > Solver
hisl_0044: Configuration Parameter > Diagnostics > Sample Time
hisl_0301: Configuration Parameter > Diagnostics > Compatibility
hisl_0302: Configuration Parameter > Diagnostics > Data Validity > Parameters
hisl_0303: Configuration Parameter > Diagnostics > Data Validity > Merge Block
hisl_0304: Configuration Parameter > Diagnostics > Data Validity > Model Initialization
hisl_0305: Configuration Parameter > Diagnostics > Data Validity > Debug
hisl_0306: Configuration Parameter > Diagnostics > Connectivity > Signal
hisl_0307: Configuration Parameter > Diagnostics > Connectivity > Bus
hisl_0308: Configuration Parameter > Diagnostics > Connectivity > Function calls
hisl_0309: Configuration Parameter > Diagnostics > Type Conversion
hisl_0310: Configuration Parameter > Diagnostics > Model Referencing

© Copyright 2013 JMAAB. All rights reserved. 232

hisl_0311: Configuration Parameter > Diagnostics > Stateflow

最適化

hisl_0045: Configuration Parameter > Optimization > Implement logic signals as Boolean data (vs.
double)
hisl_0046: Configuration Parameter > Optimization > Block reduction
hisl_0048: Configuration Parameter > Optimization > Application lifespan (days)
hisl_0051: Configuration Parameter > Optimization > Signals and Parameters > Loop unrolling
threshold
hisl_0052: Configuration Parameter > Optimization > Data initialization
hisl_0053: Configuration Parameter > Optimization > Remove code from floating-point to integer
conversions that wraps out-of-range values]
hisl_0054: Configuration Parameter > Optimization > Remove code that protects against division
arithmetic exceptions
hisl_0055: Prioritization of code generation objectives for high-integrity systems

Modeling Guideline
cgsl_0301: Prioritization of code generation objectives for code efficiency
cgsl_0302: Diagnostic settings for mutilate and multitasking models

9.6. Guideline rules that are used
The numerical values and the list in the rules are recommended standard values. They are not

numerical values that must be adhered to. For example, the hierarchizing of the na_0038 state is written
to be up to 3 hierarchy level. However, there is no need to necessary operate by limiting it to 3 hierarchy.
It can be altered to 5 hierarchy level.

Within the guideline, there are types of blocks to become the subject and parameters that can be
changed within rules, and not just numerical values. These parameters will be listed in the "Rule
Parameter List" as an attached resource material.

Furthermore, with a state in which all rules can be checked by an automatic checker as a precondition,
a list has summarized which rule should be effective in which situation.

9.6.1. The adoption of the guideline rule and the setting of the process

It is necessary to determine which rule to be adopted in what sort of composition. It should be
determined at the start of the project as to which adopted rule will be used at what sort of process. The
guideline requires an appropriate operation rule that matches with the development process, such as: will
the evaluation only be done at the final stage where the automatic code generation conducted or whether
the adopted rules be switched according to the stages starting from the initial development phase?

9.6.2. The setting of the guideline rule application field and the clarification of the
exclusion condition

It is necessary to determine the field to adopt the rule. For example, many rules should limit to the
adoption of the model that represented the Autostar application field. With models that achieved
interruption used in the basic software field or models that add process that prohibits interruption during
calculation execution, there are many processes that cannot be achieved without using several special
custom S-function or Data Store Memory blocks. Furthermore, with fields that only professional who
specialize in said field writes down, such as the designing of a custom library block that many users use,
is not a restricted area that this guideline is aiming for to begin with.

Many rules in this guideline are made by having the field in which several engineers with a moderate
level edit as the target. The rules were made with the intention that a model with a high intelligibility will be
made within that field. A field that can be achieved by a selected few professionals using specialized
techniques should be excluded from the restriction target of the guideline by limiting said field and
establishing a unique system in which only the professionals touch the field.

Furthermore, when having a control model for the entire model that is operated with RCP as a guideline
rule subject, the entire model should not be set as a target easily; instead, the field needs to be limited. It it
necessary to conduct a code generation and pay attention to the areas that will be implemented to the
built-in microcomputer and areas that will not. Scheduler model that won’t be implemented and made only
for RCP, PWM signal that is only for operating the real machine, and the interface section that includes

© Copyright 2013 JMAAB. All rights reserved. 233

blocks that correspond to the drivers such as CAN signal, are not the control models that this guideline
applies to.

As mentioned above, when changing the application field of the guideline within the same model, a
model structure that separates code generation target from fields that are not is required. Furthermore,
their unique rules also need to be added.

9.6.3. The decision on the parameter that is stipulated in the guideline

This guideline or ones that the users set should not simply be adopted as they are. Instead, various
parameters need to be reviewed in accordance to the characteristics of the product and the development
environment tools that are being used.
For example, "in the jc_0061: display", there are parts where the organization's education state
determines the block type in which the block name should be displayed, block type that should not be
displayed, and the block type that could be either. There are also times where different setting values are
set due to the difference in the group process of the users.

9.6.4. Guideline checker adoption process determination

Whether to adopt an automatic checker or to check by eyes during the review session for the checking
process should be determined first.
It is possible to used a checker created in one's own company.
Having many automatic check items will reduce the time for review. However, even if everything can be
automatically checked, a review should always be conducted by a highly skilled member. Checks should
not only done by an automatic checker but it is effective when combined with a review.
The rule adoption is determined by the organization’s education level (i.e., which process is being
adopted) and is not only determined by the functions that the project should achieve or their size.

9.6.5. Addition of the model analysis process

The designed model preferably should be set when reviewing the list of rules to be adopted by
analyzing the usage tendency of the block and the school of the description style. If possible, the rule
review period should be set in advance during the initial stage of the project. For example, the frequency
of used block of an analysis of a simple model can be investigated by using sldiagnostics. Adjust the
operation rules list by identifying blocks that are frequently used and those that aren’t. Furthermore,
measure such tendencies such as at which coordination plane the block that has status variables such as
UnitDelay are located at, whether to have UnitDelay outside or inside of the subsystem, whether to set
abs block to the output side of the subsystem, and whether to process it at the input side after receiving a
signal. The addition of rule to unify the schools and anticipating in advance the modification labor hour will
lead to the improvement of re-usability later on.

9.6.6. Rule alteration procedure

Rules that have been decided upon once do not require to be strictly adhered to for eternity.
When changing the rule, a correct procedure and process are required. Listen to the needs of the

designer and review what needs to be changed. After that, if the root issue for the alteration is caused by
misunderstanding of the usage, the addition and execution of training is necessary, rather than revising
the rule. However, if there is a restriction arising from the control specifications and objectives of the
company or hardware (i.e., implemented microcomputer), a procedure to relax the rule according to the
needs should be set.

9.6.7. Arrangement of development environment

Using CMM and SPICE as reference, adopt a process in accordance to the level of each project and
make stipulations in accordance to the level.

Levels may refer to the maturation level of MBD infiltration, training level, skill level, and the size of the
model. Otherwise, if the target product is subjected to function safety (ISO26262), SIL level will also
become involved. When conducting a system design with a high SIL level, traceability should be secured
for various parts within the process.

For example, if there is a project with difference in various data sets, there should be a management
chart that dictates which data dictionary should be used for that project. When conducting automatic code
generation, it is necessary to prove whether the operation was conduct according to the management
chart.

© Copyright 2013 JMAAB. All rights reserved. 234

Immediately before an automatic code generation, read the management chart into it, automatically
read that data in according to the chart, and read in the correct appointed configuration set before
conducting the code generation. Within this process, the following will become necessary: the appointed
data dictionary, data within the work space, used configuration, and lastly, the storage of all the logs on
people who packaged the models and codes and stored, people and the files that were read into the PC,
and the types of codes, and the report output.

Instead of creating this system manually, an automatic generation using a tool is effective. This is
because concerning the numerical value selection mistake of the data, a third-party other than the person
who set the value cannot easily identify which value should be used by which project. However, if there's a
document link that displays the basis, it can be determined by a third party or automatically. Combining it
with the data, using the original chart with the intention of the designer written on it will decrease the
possibility of generating mistakes. Such automatic system is needed to begin with even if the SIL level is
not high.

Of course, a system that automatically checks the guideline rules should aslo be utilized. A system that
checks the rule according to the unique decisions of the company will also become necessary. Write down
an account for checker to modify an area with issues or exclude areas with no issues after checking the
areas detected as errors when checking with a checker, Naturally, unique rules for the checker to
determine exclusion will be required. There is a necessity to develop tools that customized these areas.

© Copyright 2013 JMAAB. All rights reserved. 235

10. Model Architecture Explanation
This chapter describes only the outline on model architecture suitable for model-based development to
share the concept, since it is difficult to establish standards for model architecture which includes
combination of the existing software of individual companies with the model architecture explained in the
JMAAB Guideline Ver. 1.0, and Simulink also provides a variety of features appropriate for the unique
circumstances of each company.

10.1. The roles of Simulink and Stateflow
It is possible to describe all systems to be compatible with either Simulink or Stateflow.
When Stateflow alone is used, Simulink is required for in/outputs and structuring only, but within
Stateflow a variety of formula processing is possible. When using Simulink, it is possible to realize
complex state variables through methods such as the use of Switch-Case blocks.
Accordingly, whether Simulink or Stateflow is used in modeling specific parts of control algorithms comes
down to subjective views on which one is easier to understand. The technique to realize this should be
selected depending on the training level within organizations.
In most cases RAM efficiency is worse for Stateflow than it is for Simulink. Therefore, Simulink has an
advantage in computations that use simple formulas. Apart from that, Simulink is also more advantageous
in instances such as state variables that can be operated with simple flip-flops and Relay blocks. When
describing things with Stateflow that can be described with Simulink, the most suitable technique should
be investigated in consideration of the following risks.

 Static RAM must be ensured to allow visualization of Stateflow inputs, outputs and internal
variables.

 When general computational formulas are used internally, the user designs the overflow
prevention.

 When the computations are done externally, the whole gets segmentalized, reducing the level of
understanding of the whole.

There are cases when Stateflow obtains more efficient sources than Simulink for optimum expressions
that are close to C source, but these kinds of models do not have a good appearance nor are they very
easy to understand. In these kinds of cases, it is more beneficial to use S-functions instead of using
Stateflow modeling.
Stateflow can note computations where specific arrangements are specified, or computations using for-
loops, more efficiently than Simulink, but in recent years the use of MATLAB language for descriptions in
the latest MATLAB has also become very convenient.

When modeling using Stateflow, if dealing with states as described below, readability improves by
describing them as state transitions.

1. Different output values are output for identical inputs.
2. Multiple states exist. (if possible, from 3 or more)
3. Where a meaning of a state is defined, that is not an infinite number but a discrete value.
4. Inside a state, initialization (first time) and differentiation during execution (after the second time)

is required.
5. Apart from state variables, input and output variables are signals that can be visualized.

For instance, in flip-flop circuits, different output values are outputted for inputs. Moreover, state variables
are limited to 0, 1. However, in the sense that for the input/output variables 0, 1, both minimum and
maximum state variable values 0, 1 are used, there is the possibility of classification in infinite numbers.
Also, there is no differentiation between initialization and during execution inside a state. In other words,
only 1 flip-flop applies out of the 4 above, so Simulink can be said to be more advantageous.
The question as to whether Simulink or Stateflow must be used for the design should be answered in
consultation with several people, depending on the problems that must be implemented. Whether
implementation in Stateflow is with state transitions or with flow charts should also be determined in
consultation.
Things that should be handled as states are state transitions and conditional branches that are not states
are flow charts. Truth tables are also classified as a conditional branch implementation method.
Moreover, when designing the above mentioned states as state transitions using Stateflow, Classic mode
should be used in order to implement it as software into the control system’s embedded micro controller.

© Copyright 2013 JMAAB. All rights reserved. 236

Stateflow is HDL coder supported. Mealy and Moore modes should be used when implementing as HDL
coder. Moreover, when protection is required against internal electric leaks, the Moore mode is more
appropriate.
These guidelines do not describe cases of use as HDL coder. Please note that these are guidelines for
Simulink and Stateflow that are implemented as software in control systems.

© Copyright 2013 JMAAB. All rights reserved. 237

10.2. Hierarchical structure of a controller model
Shows the separation concept, or the layout concept, for the hierarchical structure of a controller model,
as reference examples. This is not a clear standard as a rule, but it is a basic approach to modeling.

10.2.1. Types of hierarchies

 Building method of hierarchies

・ Division into subsystems with the main purpose of space adjustments within the layer should
be avoided.

・ The following layer concepts should be allocated to the layers, and subsystems should be
divided based on that.

・ Unnecessary layer concepts do not need to be allocated to a layer.

・ Multiple layer concepts may be allocated to one layer.

 Layer concept

 Layer concept Layer purpose

Top
Layer

Function layer Broad functional division

Schedule layer Expression of execution timing (sampling, order)

Bottom
Layer

Sub function layer Detailed function division

Control flow layer Division according to processing order (input →
judgment → output, etc.)

Selection layer Divide (select output with Merge block) into
format that switches the active subsystem and
execute

Data flow layer Layer for non-separable computations

10.2.2. Layout method for top layer

There are principally 3 types of layout methods for the top layer.

 Simple control model
Represents function layer and schedule layer in the same layer. Here, function = execution unit.
Example: When the control model only has one sampling cycle, and all functions are arranged in
execution order

 Complex control model Type α
Schedule layer is placed at the top.
Makes integration with the hand-written code easy, but functions are divided and the readability
as a model is reduced.

 Complex control model Type β
The function layers are arranged at the top, and schedule layers are built below the individual
function layers.

© Copyright 2013 JMAAB. All rights reserved. 238

10.2.3. : Modeling method for function layers and sub-function layers.

 Division into subsystems by function. The respective subsystems represent ‟1 functionˮ.

 ‟1 functionˮ is not necessarily an execution unit. For that reason, the respective subsystems
cannot necessarily be made into Atomic Subsystems.
(For type β in the example above, it is appropriate to make the function layer subsystems into
virtual subsystems. If they are changed into an Atomic Subsystem, algebraic loops are created.)

 Using annotation, the function overview must be either described on the layer or included in the
subsystem overview and displayed as an annotation.

 If there are several big functions, partitioning of the model, using model references for each
function, should also be considered.

10.2.4. Modeling method for schedule layers

Sampling intervals and priority order should be set.
The previous guideline corresponds to the approach that uses ‟jc_0321: Trigger layerˮ.

・ Point for attention when setting multiple sampling intervals
In connected systems with varying sampling intervals, a signal is required for the fast cycle for times

even when the signal for the slow cycle has not been computed. When connecting using different
sampling intervals, a pinned RAM area is always required. For that reason, always split systems for each
different sampling times in the top layer, without connecting different sampling times in the bottom layer.

・ Setting priority ranking
This is important when designing multiple different independent functions. It is advisable that

computation sequences are freely determined as much as possible depending on all subsystem
connections.

For the priority order, the following two need to be set: priority ranking for different rates and priority
ranking within an identical sampling rate.

・ Implementation method for sampling interval and priority ranking

Schedule layer

Function layer

Schedule layer

Schedule layer

Function layer Function layer

S1
C1

S2

C2

S1

S2

C1

C2

Example
Type α

Example
Type β

Subsystem for low speed
operation

Subsystem for high speed
operation

Sensing function subsystem Control function subsystem

The subsystem indicated in bold is set to be an atomic subsystem.

© Copyright 2013 JMAAB. All rights reserved. 239

The described methods can broadly be divided into 2 types.
1. Perform setting of sampling times and priority rankings for subsystems or blocks.
2. Using conditional subsystems, the user sets independent rankings to match the scheduler.
Patterns exist here with various conditions, such as configuration multi-rate and single rate, Atomic
Subsystem setting, use/non-use of model references. Which among these are employed is closely linked
to the C code implementation method, and substantially varies depending on the project status.
The typical factors that are substantially affected are listed below.
 On the model side

 Do several sampling times exist in the model?
 Is it a model that realizes several independent functions?
 Use of model references
 Number of models (whether there are multiple sources with code generated in Simulink)

 On the source side
 Use/non-use of real-time OS
 Consistency of usable sampling intervals and computation cycles to be implemented
 Applicable area (application domain or basic software)
 Source code type: AUTOSAR conform - not conform - not supported.
 RAM, ROM specifically RAM margin

In consideration of the above, the corresponding patterns will vary depending on the use case, so we will
introduce the patterns in the appendix material.

10.2.5. Modeling method for control flow layers

The arrangement of the control layer is a layer used to express all input processing, intermediate
processing and output processing in one function. Significance is attached to the arrangement of blocks
and subsystems. Multiple mixed small functions are grouped by dividing them between the 3 biggest
stages of input processing, intermediate processing and output processing, which form the conceptual
basis of control. The general configuration image is close to the data flow layer, and it is represented in a
horizontal line. The difference with a data flow layer is its construction from multiple subsystems and
blocks.
In control flow layers, the horizontal direction indicates processing with different significance, and blocks with
the same significance are lined up vertically.

Block groups are arranged horizontally and as a whole are arranged by being given a provisional
meaning.
The red borders signify the delimiter for the processing that is not visible, and the red borders correspond
to objects called virtual objects. Using annotations to mark the delimiters makes it easier to understand.

Input
processing

Intermediate
processing

Output
processing

© Copyright 2013 JMAAB. All rights reserved. 240

Control flow layers can co-exist with blocks that have a function.
They are positioned in the middle area between the sub-function layer and the data flow layer.
Control flow layers are used when the number of blocks becomes too large when all is described in the
data flow layer and when units that can be given the minimum partial meaning are made into subsystems.
Attaching significance to the placement organizes the internal layer configuration and makes it easier to
understand. It is also effective in improving maintainability by avoiding the creation of unnecessary layers.
Even if it consists of only blocks, and not a mix of subsystems and blocks, if the horizontal layout can be
split into input/intermediate/output, it is a control flow layer.

10.2.6. Modeling method for selection layers

Selection layers can be written vertically or horizontally. (There is no significance to which orientation is
chosen)
Selection layers are mixed with control flow layers.
Because there are switch functions for subsystems where only either one runs depending on the
conditional control flow inside the red border, this is termed a selection layer. It is also described as a control
flow layer because the whole lines up initial processing/intermediate processing (conditional control
flow)/output processing. In the control flow layer, the horizontal direction indicates processing with
different significance, and parallel processing with the same significance is lined up vertically. In selection
layers, no significance is attached to the direction they are arranged in, but they show layers where
subsystem groups are described where only either one runs.
Example:

・ Switching of coupled functions between running upwards or downwards, changing in chronological
order.

・ Switching to setting where the computation switches after the first time (immediately after reset) and
second time.

・ Switching between destination A and destination B.

Input
processing

Intermediate
processing

Output
processing

© Copyright 2013 JMAAB. All rights reserved. 241

10.2.7. Modeling method for data flow layers

A data flow layer is the layer below the control flow layer and selection layer.
When it represents one function as a whole, and the roles of input processing, intermediate processing
and output processing cannot be divided, it is a data flow layer. For instance, systems performing one
continuous computation that cannot be split. Data flow layers do not permit co-existence with subsystems
apart from those where exclusion conditions apply.
Exclusion conditions: Co-existence with the following subsystems is allowed.
 Subsystems where reusable functions have been set.
 Masked subsystems that are registered in the Simulink standard.
 Masked subsystems registered in a library by the user.

Example of a simple data flow layer

Example of a complex data flow layer

When input processing and intermediate processing cannot be clearly divided in a layout as the one
above, they are represented as a data flow layer.

The horizontal
sequence is the
control flow layer

Layer with a conditional
control flow layer description
is represented as a selection
layer.

© Copyright 2013 JMAAB. All rights reserved. 242

A data flow layer becomes complicated when both the feed forward reply and the the feedback reply from
the same signal are computed at the same time. Even when the number of blocks in this type of cases is
a bit large, the creation of a subsystem in between should not be included in the design when the
functions cannot be clearly divided. When meaning is attached through division, please design as a
control flow layer.

10.2.8. Relation between embedded implementation and Simulink models

Running with the actual embedded micro controller requires embedding the C code generated from the
Simulink model into the micro controller. This will substantially affect the Simulink model configuration,
depending on to what extent the Simulink model will model the functions concerned, on how it is
embedded, and on how the schedule on the embedded side is set.
There will be a significant effect if the tasks of the embedded micro controller to be implemented and the
tasks used by the Simulink model are different.

10.3. AUTOSAR Concept
Here, we will not explain the AUTOSAR standard, but rather we will explain the concept of AUTOSAR.
Users do not have to conform fully to AUTOSAR, but they must have an understanding of it and use it as
a reference in modeling.

10.3.1. What is the AUTOSAR software platform concept?

When designing a control model, you must use the AUTOSAR software platform concept and examine
whether the model you are designing classifies as an application or as basic software.
A model that mixes application and basic software must be split at the design stage.
The AUTOSAR software platform concept

 High capacity, low speed, regular processing is dealt with in the application layer.
 High speed or irregular driver types are dealt with in the basic software layer

The AUTOSAR software platform is represented as the configuration in Fig. 10.1.

Fig. 10.1 System configuration example (see Architecture – Overview of Software Layers Top and view
Coarse view
AUTOSAR Release 4.0 Document Title: Layered Software Architecture.)

For instance, in designing an engine control model, no model is built where all computations are executed
with the interrupt as a base point, but computations that are shared for all cylinders are performed through
regular computations in the application area. For instance, computations of the current emissions status or
the target torque. And computation results, which have been computed with the application through the
RTE when an irregular interrupt occurs from the basic software area, are received, and the actuator is
actualy activated. It is the concept of AUTOSTAR for computations of the basic software area to be as
simple as possible and for shared computation functions to be placed in the application.
When all the modeling is done in Simulink, it is advisable to have as many single computations in the
interrupt area as possible. A design is required that places controls that are as simple as possible on the
interrupt side, reduces the computation volume for that instant, and acquires results that, when possible,
are computed at regular intervals. If possible, PID standard computations should not be included.
Functions that only execute the designated actions are ideal. However, necessary computations should

Complex
Drivers

Application layer

Runtime Environment (RTE)

Basic software layer

Services Layer

ECU Abstraction Layer

Microcontroller
Abstraction Layer

© Copyright 2013 JMAAB. All rights reserved. 243

not be excluded. For instance, for fault diagnosis, computations where a conclusion must be drawn at that
instant should be performed even if they are complex computations.
For those parts that run in a slower layer than the interrupt processing and receive commands to an
actuator which is faster than the application execution speed, the direct execution code should not be
given, but a way should be devised so that the target value or gradient until the the next command is
delivered is obtained during sampling through linear interpolation.

10.3.2. RCP and AUTOSAR software platform

Modeling using devices such as RCP is pretty similar to the AUTOSAR software update in concept. Of
course, generated codes do not conform to the AUTOSAR specifications. For example, I/O software of
RCP allows vender-provided S-functions to be linked, and a user designs the application domain. Custom
functions in the application domain and S-functions are wired in the Simulink block diagram, which does
not require consciousness of interaction with RAM and so on.
The output C code runs on the real-time OS, and I/O software and applications created by Simulink are
output into different source files, the real-time operation part and the part handled as interrupt are
separated naturally. Users do not have to be conscious of those platforms; I/O S-function created by
vender is executed when needed, and application model is modeled without consciousness of content and
timing of I/O processes and behaves.

The actual control model/software which has such software structure has more advantages. Since RCP is
capable of concentrate on developing application without so much regard to software structure, those use
AUTOSAR software platform naturally. In other words, if your own product does not conform the
AUTOSAR platform in the development using the AUTOSAR platform on RCP, you must customize the
generated code and held back from sharing in the fruits of model-based development.

10.4. Single-task and multi-task
The realization method for the scheduler in embedded software has single-task and multi-task settings.

10.4.1. Single-task

For single-task, basic sampling is 2 msec, and when sampling rates of 2 msec, 8 msec and 10 msec exist
within the model, pseudo sampling rates of 8, 10 msec are created in the basic 2 msec sampling rate. The
execution frequency per 2 msec is counted as follows: 8 msec is executed once for every four 2 msec
cycles, and 10 msec is executed once for every five. The sampling interval function specified by this
frequency is executed. Attention needs to be paid to the fact that there is generally as much complex
processing as functions of a lower frequency, and the 2 msec, 8 msec and 10 msec cycles are all
computed with the same 2 msec. Because all computations need to be completed within 2 msec for
embedded software running in real-time, the 8 msec and 10 msec functions are in this kind of cases split
into several so that all 2 msec computations are of an almost equal volume. In this way the computation
volume per cycle is reduced through partitioning, and the CPU load is equally divided. For that reason the
10 msec sampling function is divided into the following 5.

Fundamental
frequency

Offset

10msec 0msec

10msec 2msec

10msec 4msec

10msec 6msec

10msec 8msec

In the same way, the 8 msec sampling function is divided into 4.
However, as equal division is not always possible, functions cannot be allocated to all cycles, but it is
important to keep a uniform CPU load.

© Copyright 2013 JMAAB. All rights reserved. 244

 How to set frequency-divided setting of task
Set Tasking mode for periodic sample times to Single Tasking for Simulink task setting.

Then enter values of “sampling period, offset” in the subsystem’s “Sample Time” setting field. A
subsystem to which a sampling period can be specified is an atomic subsystem.

All computations must
be contained within the
2 msec cycle.

2msec

8msec

10msec

Function 1

Function 2 -1
 -2

 -3

Function 3 -1
 -2

 -3
 -4
 -5

© Copyright 2013 JMAAB. All rights reserved. 245

10.4.2. Multi-task

Multi-task sampling is executed using a real-time OS that supports multi-task sampling. In single-task
sampling, described above, equalizing the CPU load is not done automatically, but a person divides the
functions and allocates them to the appointed task. In multi-task sampling, the CPU performs the
computations automatically in line with the current status, and there is no need for a person to set detailed
settings. Computations are performed and results are output starting from the task with the highest
priority, but task priorities are specified by a person. In most cases fast tasks are assigned highest priority.

It is considered important that computations are completed within the cycle, including slow tasks, and
when a high priority computation has been processed and the CPU is freed up, the computation for the
system with the next priority ranking is performed. If a high priority computation process comes in during a
computation, the low priority computation is aborted and the high priority computation process is executed
first.

10.4.3. Effect of connecting subsystems with sampling differences

If subsystem B with a 20 msec sampling interval uses the output of subsystem A with a 10 msec sampling
interval, the output result of subsystem could change while subsystem B is computing. If values change
during the process, computation results in subsystem B can result in unexpected values. For instance, a
comparison is made in system B’s first computation with the system A output, the result is computed with
the conditional judgment based on this output, and then it is compared again at the last computation in
system B. If the subsystem A output at this point is a different value, it may happen that the logic created
with true, true has become true, false, and an unexpected computation result is generated. To avoid this
type of malfunction, if tasks generally change, output results from subsystem A are fixed immediately
before they are used by subsystem B. In other words, even if subsystem A values change during the
process, the values that subsystem B are looking at is in a different RAM, so no effect is apparent.
When a model is created in Simulink and a subsystem is connected that has a different sampling interval
in Simulink, Simulink automatically reserves the required RAM.
However, if input values are obtained with a different sampling interval through integration with hand-
coded code, the engineer who does the embedding work should design these settings. In the RTW
concept using AUTOSAR, different RAMs are all defined at the receiving and exporting side.

Function 3

2msec

8msec

10msec

Function 1

Function 2

© Copyright 2013 JMAAB. All rights reserved. 246

Single-task
Signal values are the same within the same 2 msec cycle, but please note that for different 2 msec cycles
the computation value is different to the preceding one. If Function 2-1 and 2-2 used signal A of Function
1, then 2-1 and 2-2 will be using results from different times, so please be aware.

Multi-task
For multi-task you cannot specify at what point to use the computation result to use. With multi-task,
always store signals for different tasks in a new RAM.
Before new computations are performed within the task, values are all copied in one go.

Function 3

If Function 2 uses
computation results of
Function 1, there is the
possibility that computation
results from Function 1 will
replace them while
Function 2 is computing.
For that reason,
computation results that
vary at the point when
computation starts for
each rate are generally
stored in a different RAM.

Maintain value at the start of the task.

Do not immediately
use values that are
being updated.

When Function 2 uses computation results
from Function 1, computation results for
Function 1 do not change during computation
for Functions 2-1, 2-2, 2-3, but there is
a possibility that Functions 2-1, 2-2, 2-3 use
different values that have been computed on
the respective different time axes.

It is advisable to allot a different RAM for signal
values with a different rate.

2msec

8msec

10msec

Function 1

Function 2 -1
 -2
 -3

Function 3 -1
 -2

 -3
 -4
 -5

2msec

8msec

10msec

Function 1

Function 2

© Copyright 2013 JMAAB. All rights reserved. 247

11. Simple checking sample program for guidelines
Some guideline rules allows check by setting automatic check with conditions as well as check using
Model Adviser. Here show some sample programs for the method to set automatic check setting.
Model-based development enables reduction of man-hour and product quality improvement using such
automatic correction. It is necessary not only requiring users to keep to established rules but also
improving usability by correcting bugs automatically.

11.1. Check by automatic setting

11.1.1. na_0004: Simulink model appearance settings
SettingItems= {...
 ...% Display option
 'ModelBrowserVisibility', 'off' 'browser display', ...
 'ScreenColor', 'white' 'screen color',...
 'StatusBar', 'on' 'status bar',...
 'ToolBar', 'on', 'toolbar',..
 'ZoomFactor', '100' 'zoombar', ...
 ...% port display option
 'ShowPortDataTypes', 'off', 'port data types';...
 'ShowLineDimensions', 'off', 'signal dimensions';...
 'ShowStorageClass', 'off', 'storage class';...
 'ShowTestPointIcons', 'on', 'testpoint indicator';...
 'ShowSignalResolutionIcons', 'on', 'testpoint indicator';...
 'ShowViewerIcons', 'on', 'viewer indicator';....
 'WideLines', 'on', 'display wide lines for non-scalars';...
 };
for k=1: size(SettingItems,1)
 set_param(0,SettingItems{k,1},SettingItems{k,2})
 set_param(bdroot,SettingItems{k,1},SettingItems{k,2})

end

set_param(0 is setting for Simulink. If it is applied, the setting above is inherited to the newly created
model files. The setting is enabled only after it is rerun during Simulink restart. The setting is executed
during Simulink restart by describing it to the startupsl.m file on the path.
To change the settings of existing file, use set_param(bdroot, SettingItems{k,1},SettingItems{k,2}).

Reference: Simulink/modeling/model configuration/block/model parameters

11.1.2. db_0043: Model font and font size
SettingItems= {...
 ...%% font setting
 ...% block default setting
 'DefaultBlockFontName', 'MS UI Gothic', 'default block font name'; ...
 'DefaultBlockFontSize', 12, 'default block font size', ...
 'DefaultBlockFontWeight', 'normal' 'default block font thickness'; ...
 'DefaultBlockFontAngle', 'normal', 'default block font tilt', ...
 ...% default line font settings
 'DefaultLineFontName', 'MS UI Gothic', 'default line font name' ; ...
 'DefaultLineFontSize', 12, 'default line font size'; ...
 'DefaultLineFontWeight', 'normal', 'default line font weight'; ...
 'DefaultLineFontAngle', 'normal', 'default line font tilt; ...
 ...% default annotation font settings
 'DefaultAnnotationFontName', 'MS UI Gothic', 'default annotation font name; ...
 'DefaultAnnotationFontSize', 14, 'default annotation font size'; ...
 'DefaultAnnotationFontWeight', 'normal', 'default annotation font weight'; ...
 'DefaultAnnotationFontAngle', 'normal', 'default annotation font orientation'; ...
 };

for k=1: size(SettingItems,1)
 set_param(0,SettingItems{k,1},SettingItems{k,2})
 set_param(bdroot,SettingItems{k,1},SettingItems{k,2})
end

© Copyright 2013 JMAAB. All rights reserved. 248

Executing set_param(bdroot, SettingItems{k,1},SettingItems{k,2}) does not change entirely. To change file
content entirely including content manually modified, using find_system is required to search all
information within the model file to change, however, it may change the intendedly modified description.
To avoid this, it is recommended to complete settings in the stage of new creation.

11.1.3. na_0001: Bitwise Stateflow operators

The following is an example of changing the settings of a Stateflow Chart contained in the existing model.

 rt = sfroot;
 modelH = get_param(bdroot, 'Handle');
 rt = rt.find('-isa', 'Simulink.BlockDiagram', '-and', 'handle', modelH);
 result = rt.find('-isa', 'Stateflow.Chart');
 if ~isempty(result)
 for n1=1:length(result)
 result(n1).EnableBitOps=true;
 end
 end

© Copyright 2013 JMAAB. All rights reserved. 249

12. Update history

■ Update time and date

Date Change

02.04.2001 NAMAAB Initial document Release, Version 1.0(Eng)

xx.04-2003 JMAAB Initial document Release,Version 1.0(Jp)

04.27.2007
MAAB Version 2.0 Update release(Jp&Eng)
This document is a collaboration of JMAAB and NAMAAB.

07.30.2011 Version 2.2 Update release(Eng)

08.31.2012 Version 3.0 Update release(Eng)

05.30.2013 Version 3.0 Japanese localization(Jp)

31.03.2015 Version 4.0 Update release(Jp&Eng)

19.06.2015 Version 4.01 correct (Jp&Eng)

12.1. Termination rule

12.1.1. Removed in version 2.2

JM_0013: Annotations: The rule was original written due to a printing bug in R13. The bug was fixed
in R14 SP1.

12.1.2. Removed in version 3.0

No guidelines were removed in version 3.0

12.1.3. Removed in version 3.1

No guidelines were removed in version 3.1

12.1.4. Removed in version 4.0

 Removed after being integrated to another rule or altered

Integration source ID Supporting ID

jc_0221: Sentences that can be used for the name of the signal line jc_0222

na_0030: Sentence that can be used for a Simulink path name

jm_0010: Names of Import block/Outport block na_0005, jc_0082,
jc_0083 jc_0081: *Icon display* of Inport block/Outport lbock

db_0148: Transition condition pattern of the flow chart jc_0742

db_0150: Transition condition pattern of the state

db_0149: Condition action pattern of the flow chart jc_0743

na_0019: Restricted Variable Names jc_0251

 Deleted because it became unnecessary with the recent year's MATLAB version

jc_0541: Usage of adjustable parameter at Stateflow

 Deleted because contents are not rule.
db_0133: Usage of a flow chart pattern
(It is covered by db_0132,jc_0770,jc_0771,db_0134,db_0159 and db_0135)

© Copyright 2013 JMAAB. All rights reserved. 250

12.1.5. Moved to attachment in version 4.0

They were moved to appendix. And their IDs were deleted.

 Since they are not guideline rules but how to think, they were moved to appendix.
db_0040: Hierarchy structure of the model
jc_0301: Controller model
jc_0311: Top layer/root level
jc_0321: Trigger layer
jc_0331: Structure layer
jc_0341: Data flow layer

 Rules which explain functions of Simulink were moved to appendix.
na_0032: Use of merge blocks
jc_0021: Model diagnostic settings
jc_0351: Methods of initialization

 Since rules about development process are not treated in this guidelines, they were moved to

appendix
na_0026: Consistent software environment
na_0027: Use of only standard library blocks

12.2. The flow of the style guideline revision

2001

April 2003

April 2007

2003
2007 2010

NAMAAB

V1.0 V2.0

JMAAB

V1.0
(JMAAB)

V2.2

July 2011

May 2013

V2.0

 Free
translatio
n

 English
translation

 Rule addition
 and integration

V3.0

August 2012

V4.0

2013

April 2001

V3.0

 Progression of
the free
translation

V1 was formed from the 4 companies of Toyota,
Ford, Daimler, and GM.
There are no JMAAB and NAMAAB organizations.

MAAB

JMAAB started its
activities in April
2001

V4.0

