

Lowering Barriers to Al Adoption with AutoML and Interpretability

Bernhard Suhm Product Marketing – Machine Learning

📣 MathWorks

Al adoption is hitting barriers

Not explainable like traditional models

Unexpected bias

Pushback against Automation

BlackRock shelves unexplainable Al liquidity models

Risk USA: Neural nets beat other models in tests, but results could not be explained

Card Investigated After Gender Discrimination Complaints

A prominent software developer said on Twitter that the credit card was "sexist" against women applying for credit.

January 10, 2020

4 Barriers to Adopting Artificial Intelligence in Healthcare

Outline

Introduction

Optimized models with AutoML

Overcoming Blackbox with Interpretability

Examples:

- Human Activity Recognition
- ECG Classification

AutoML and Interpretability in Deep Learning Addressing other Barriers

Al is used in many Industries

What is AI?

📣 MathWorks

Barriers to broader Adoption of AI

Top Challenges to adoption of AI and ML (Gartner Research)

Top barriers to successful adoption of Al 1. Lack of Al skills 2. Black-box nature 3. Data

n = 106

Gartner Research Circle members, excluding "unsure" Source: Gartner AI and ML Development Strategies Survey Q: What are the top three challenges or barriers to the adoption of AI and ML within your organization? *Rank up to three.*

ID: 390794 published 19 June 2019

Challenges in the Machine Learning Workflow

Build Models interactively

Chose among many popular models

CLASS	IFICATION LEARNER	VIEW						
New ession • FILE	Feature PCA Selection FEATURES	Misclassification Costs OPTIONS	DECISION TRE	ES Medium Tree	Coarse Tree	All Trees	Optimizable Tree	
 History 			DISCRIMINAND	AMAINCIC				
1 Tree Last change: Disabled PCA 2 Logistic Regression Last change: Logistic Regression			Linear	Quadratic Discriminant	All Discrimina	Optimizable Discriminant		
3 🏠 Si Last chan	VM ge: Linear SVM		LOGISTIC REGI	RESSION CLASS	IFIERS			
4 🚖 Er Last chan 5 🏫 Er	nsemble ge: Bagged Trees nsemble		Logistic Regression					
Last chan	ge: Optimizable Ens	semble	NAIVE BAYES C	LASSIFIERS				
6 S S	VM ge: Fine Gaussian (SVM	AA	m		88		
7 😭 Tr Last chan	ee ge: Medium Tree		Gaussian Naive Bayes	Kernel Naive Bayes	All Naive Bayes	Optimizable Naive Bayes		
8 🟠 Ei Last chan	nsemble ge: Removed featur	e 'rAmplitude2'	Linear SVM	Quadratic SVM Optimizable SVM	Cubic SVM	Fine Gaussian	Medium Gaussian	Coarse Gaussian
Current	Model		NEAREST NEIG	HBOR CLASSIFI	ERS			
Model 8: Results Accuracy Total mis Predictio Training	Trained sclassification cost in speed time	100.0% 5 ~56000 obs/sec 9.3802 sec	Fine KNN All KNNs	Medium KNN Optimizable KNN	Coarse KNN	Cosine KNN	Cubic KNN	Weighted KNN
Model Ty Preset B Ensembl Learner t	rpe lagged Trees le method: Bag ype: Decision tree	£245	ENSEMBLE CLA Boosted Trees	Bagged Trees	Subspace Discriminant	Subspace KNN	RUSBoosted Trees	All Ensembles

Evaluate Models using Confusion Matrix and ROC curve

MathWorks[®]

Example: Classify Heart Condition from ECG data

Dataset was curated for 2017 PhysioNet challenge: "normal" ECG data was obtained from the MIT-BIH Normal Sinus Rhythm database available at https://physionet.org/content/nsrdb/1.0.0/, and "abnormal" from MIT-BIH Arrythmia database at https://www.physionet.org/content/nsrdb/1.0.0/, and

What is AutoML?

Wavelet Scattering Framework [Bruna and Mallat 2013]

- Reduces data dimensionality and provides compact features
- For Signal and Image data
- Great starting point if you don't have a lot of data

Many Feature Selection methods are available.

Function	Predictors	Machine Learning	Training Speed	Types of Models	Accuracy	Caveats
NCA	Continuous	Classification Regression	Medium	KNN SVM (can use for others)	Strong	Needs manual tuning of regularization lambda (<u>doc page</u>)
MRMR R2019b	Continuous Categorical Mix of both	Classification	Fast	Model Independent	Strong	
ReliefF	Continuous Categorical	Classification Regression	Medium	KNN SVM (can still use for others)	Moderate	Unable to differentiate correlated predictors
Sequentialfs	Continuous Categorical	Classification Regression	Very Slow	Model Independent (define custom loss function)	Strong	Doesn't rank all features
F Test R2020a	Continuous Categorical Mix of both	Regression	Very Fast	Model Independent	Weak	Unable to differentiate correlated predictors
Chi Squared R2020a	Continuous Categorical Mix of both	Classification	Very Fast	Model Independent	Weak	Unable to differentiate correlated predictors

Simultaneous Optimization of Model and Hyperparameters

AutoML matches Manual Optimization in performance.

📣 MathWorks

Interpretability and Explainability

Use Cases

- 1. Overcome black-box model
- 2. Regulatory requirements
- 3. Debug models

Interpretability: causality of (mostly machine learning) model decisions **Explainable AI:** visualize activations in various layers (deep learning)

MathWorks[®]

Where is Interpretability most needed?

	Finance	Auto & Aero
Why Interpretability	Credit / Market risk models	Safety certification
	Traditional models explainable	
Popular complex models	Gradient-boosted trees Random forests	Deep neural networks
	Neural networks	Reinforcement learning
Popular Interpretability	Shapley values	Network visualizations

Which Interpretability method?

Which Interpretability methods are available?

LIME = Local Interpretable Model-Agnostic Explanations

Deep Learning Explainability: "why" behind deep net's decisions

Truth:	Coffee mug	
AI:	Buckle (15%)	×

Al classifies incorrectly as "buckle" due to the watch Three techniques: Occlusion Sensitivity GradCAM Image LIME

AutoML in Deep Learning

Neural Net Hyperparameters

training options for convol vork section depth, initial i tum, and L2 regularizatio	olutional neural network, learning rate, on strength.		
training options for convol vork section depth, initial itum, and L2 regularizatio	olutional neural network, learning rate, on strength.		
training options for convol vork section depth, initial i turn, and L2 regularizatio	olutional neural network, learning rate, on strength.		
training options for convol vork section depth, initial i ttum, and L2 regularizatio	blutional neural network. learning rate, on strength.		
training options for convo vork section depth, initial itum, and L2 regularizatio	blutional neural network. learning rate, on strength.		
· ·			
Range	Туре	Tra	ansform
[1 3]	integer	nor	ne
[1e-2 1]	real	log	
[0.8 0.98]	real	nor	ne
[1e-10 1e-2]	real	log	
3	æ	Add	Delet
Value			
Inf			
30			
	Range [1 3] [1e-2 1] [0.8 0.98] [1e-10 1e-2]	Range Type [1 3] integer [1e-2 1] real [0.8 0.98] real [1e-10 1e-2] real Value Inf 30 30	Range Type Transmission [13] integer nov [1e-2 1] real log [0.8 0.98] real nov [1e-10 1e-2] real log Inf 30 30 1

Neural Architecture Search

- Identify "optimal" neural net
- Computationally extremely challenging
- Currently: exploring variants of established networks

Addressing other Challenges

Preprocess with Live Tasks

Integrate in Complex Systems

Reduce Labeling Effort

Update deployed models

Learn more: Tools that facilitate Adoption of Machine Learning

Videos: Classification Learner

AutoML in MATLAB

0.11 J

0.1

0.09

0.08

0.07

0.06

0.05 0.04 0.03 0.02

45 50

Applying Model Interpretability

Demo: Machine Learning for ECG Classification (with Interpretability)

25

How MATLAB lowers barriers to adopting Machine Learning

Build models interactively & AutoML

- Empower Engineers & Domain experts with limited expertise
- Make experienced practitioners more productive

Code Generation for Embedded Deployment

- Fixed point for popular Classification and Regression models
- Quantization and C / CUDA code generation for deep learning

Integration with Simulink

- Native blocks for Machine Learning facilitate Model-Based Design
- Deep Learning blocks for prediction and image classification

Learn more: Deep Learning with MATLAB

Video: <u>Get Started with Deep Learning</u> in MATLAB

Example: <u>Tuning Hyperparameters</u> <u>in Experiment Manager</u>

Example: Understand Network Predictions using (image) LIME

Example: <u>Grad-CAM</u> and <u>Occlusion Sensitivity</u>

Grad-CAM

mathworks.com/solutions/deep-learning.html mathworks.com/solutions/machine-learning.html