
Requirements-Based Testing in Aircraft Control

Design

Jason Ghidella∗ and Pieter J. Mosterman†

The MathWorks, Inc., Natick, MA, 01760, USA

To be competitive, Model-Based Design can be applied to help bring down the cost of
system design and faster time to market. Model-based approaches are especially effective
in the design stages and are increasingly tied in with the requirements capture and code
generation and testing phases. The infrastructure for this allows linking requirements to
parts of the system model as well as automatically generating references to the original
requirements in the code. In addition, test vectors that are derived from the requirements
are part of the system model and can be linked to the requirements they represent. This
paper describes how this infrastructure can be combined with coverage analyses for model
verification and validation to aid in making requirements consistent and unambiguous, while
ensuring the set of test vectors is complete and the design minimal (i.e., no superfluous
elements exist).

I. Introduction

M
odern aerospace control systems have reached a level of complexity that requires systematic methods
for their design. Typically, system development begins with the gathering of high-level requirements,

which are stored in text format. These requirements form the basis for the system specification, which is
gradually refined into a detailed design that can be implemented. During implementation, engineers use
structured test scenarios to validate system behavior against the original requirements.

With Model-Based Design,1 designers use graphical models, often a block diagram, to capture require-
ments. They produce an executable specification that can be gradually extended into an increasingly detailed
design from which the implementation code can be automatically generated. The validation process can take
place much earlier in the overall system design effort, reducing costly iterations across many design steps.

To efficiently exploit the advantages of Model-Based Design, the control design tool infrastructure must
be able to relate the requirements to the system behavior. In this context, the system behavior is determined
by predefined excitation, called test vectors, and certain characteristic system dynamics. All of the system
scenarios require test vectors in order to establish the presence of the desired behavior as defined by the
requirements. It is also critical that the system does not exhibit additional or undesired behavior, which is
tested by exhaustively exciting the system design. To achieve these two verification goals, engineers employ
coverage analyses such as decision coverage, which establishes whether logical decisions have been evaluated
true and false during the course of testing.

This paper discusses the use of Commercial Off-the-Shelf (COTS) Software with Model-Based Design
to develop a fault detection, isolation, and recovery (FDIR) application for a redundant actuator control
system. This example will demonstrate how requirements can be associated with semantic elements of the
design as well as the input test vector set. The characteristic system dynamics (both desired and undesired)
are incorporated as model assertions. In turn, these model assertions are separately related to individual test
cases within the test vector set, and also related to the requirements. To ensure the absence of undesired
system behavior, full coverage analysis is performed on the design model. Similar coverage analyses are
typically conducted on the implementation code.

This scenario demonstrates the benefits of coverage analysis, particularly the ability to conduct test
and verification early in the design. For example, ambiguities in the written requirements are detected

∗Technical Marketing Manager, 3 Apple Hill Dr., Natick, MA 01760, AIAA member.
†Senior Research Scientist, 3 Apple Hill Dr., Natick, MA 01760, AIAA member.

1 of 11

American Institute of Aeronautics and Astronautics

and corrected as the design is developed. Left undetected until a design is complete, poorly interpreted
specifications can result in design errors that are costly and difficult to eradicate. In addition, coverage
analyses identify three types of undesired design characteristics: omissions in the test vector set (indicated
by parts of the design that do not execute), design elements that are not tied to the requirements and are
deemed superfluous, and inconsistent, ambiguous, or lacking requirements.

Section II gives an overview of the system under design, an actuator redundancy control system. In
Section III, it is discussed how the high-level requirements need to be translated into more detailed ones.
Section IV shows how requirements can be related to assertions and tests. In Section V, some model coverage
results for the actuator redundancy control system are given. Section VI shows how the coverage results
can be used to modify the test vector set and how they may lead to design changes. Section VII shows how
certain requirements may have to be modified or added. In Section VIII the coverage results after the test,
design, and requirements modifications are presented. Section IX presents the conclusions of this work.

II. The System

T
he design of the fault detection, isolation and recovery (FDIR) system for a redundant elevator control
system was described in detail in.2–5 In this work, the steps to verify and validate that design, specifically,

the mode logic component of that system are considered.

LDL

PFCU2

RDL

PFCU1

LIO RIO

Right ElevatorLeft Elevator

hydraulic
system 3

hydraulic
le

ft
 o

u
te

r
ac

tu
at

o
r

ri
g
h
t

o
u
te

r
ac

tu
at

o
r

ri
g
h
t

in
n
er

ac
tu

at
o
r

le
ft

 i
n
n
er

ac
tu

at
o
r

system 1

hydraulic

system 2

Figure 1. The elevator redundancy configuration.

Figure 1 shows a simplified configuration of
the redundancy typically found in an aircraft
elevator system for civil aviation. It consists of
two elevators, one on the left and one on the
right. Each elevator can be positioned by two
actuators, only one of which should be active
at any given time. The four actuators are con-
nected to three separate hydraulic circuits, as
shown in Fig. 1. The two primary flight control
units (PFCU) are used to control either the in-
ner or outer actuators. To this end, there are
two control laws available. In nominal oper-
ation, a sophisticated input-output (IO) con-
trol law is applied to the left (LIO) and the
right (RIO) outer actuators. In case of a fail-
ure, a direct link (DL) control law with reduced
functionality is available for the left (LDL) and
right (RDL) inner actuators.

The example in Fig. 1 relies on physical re-
dundancy: When one component fails, another
can be activated, and it is the mode logic that
determines when and how this should occur.

The mode logic consists of two components. The first tries to isolate the fault by looking at the symptoms
that have been detected. This is done in a truth table shown in Fig. 2(a). The truth table consists of two
parts, a condition table at the top and an action table at the bottom. The conditions in the “Condition”
field of each of the rows are evaluated for each of the decisions in the columns marked “D1” through “D7”
from left to right. The action taken is the one that corresponds to the first decision column with truth
values selected that match the logic values of the conditions. For example, assume the situation that in
Fig. 2(a) low press[1] is false, L pos fail[1] is true, low press[2] is true, and L pos fail[2] is false, which
corresponds to the logical combination [!c1&c2&c3&!c4]. First, D1 is evaluated against these logic values,
and because low press[1] is false, the corresponding action, 2 (indicated at the bottom of the column), is not
taken. Next, D2 is evaluated and its actions, 3 and 5, are not executed for the same reason. Then, D3 is
evaluated, but because low press[2] is true, its action, 3, is not selected. Finally, D4 has all its conditions
satisfied (the ‘-’ entry indicates either logic value is acceptable for that condition) and actions 3 and 5 are
executed in that order. In the “Action Table”, these actions are shown to be send(go isolated,Actuators.LIO)
and send(go isolated,Actuators.LDL), which sends the event go isolated to the left outer and inner actuator
switching logic modules. The truth table shown in Fig. 2(a), governs both left side actuators, a similar truth

2 of 11

American Institute of Aeronautics and Astronautics

table has been constructed to isolate the faults detected on the right side actuators.

(a) Truth table logic.

1

[fails>=5]
go_isolated/send(E,LDL);

[!LDL_act()|RIO_act()]

[LDL_act()] [!RIO_act()&&...
LDL_act()]

go_off[!in(off)]
[!low_press[1]&&...
!L_pos_fail[1]]

passive
LIO_mode=2;

active
LIO_mode=4;

standby
LIO_mode=3;

off
en:LIO_mode=1;
ex:fails++;

isolated
LIO_mode=0;

/send(E,LDL);

LIO

L1

(b) Switching logic.

Figure 2. The left IO module logic.

The second component of the mode logic is the switching logic that recovers from the isolated fault.
This is best handled in a state transition diagram, shown in Fig. 2(b). This diagram shows the five possible
actuator states, isolated, off, passive, standby, and active, for the left outer actuator. Upon initialization, the
diagram moves into the passive state and the system status is checked to determine whether the actuator
should become active or move to standby. When faults are observed, the actuator may go into the off or
isolated state, depending on the nature of the fault and whether it will be recoverable, or not, respectively.
From the truth table example, the event go isolated was sent to the left IO module (as well as the left DL
module). From Fig. 2(b), it can be seen that the state transition diagram transitions from the L1 state to
the isolated state. As such it is possible to isolate the actuator regardless of the particlar state within L1 it
was operating.

The switching logic shown in Fig. 2(b) is for the left outer actuator, similar state transition diagrams are
constructed for the left inner, and right outer and inner actuators. The switching logic for each actuator is
independent but is inherently tied together, as the actuator mode of one directly affects the actuator modes
of the others.

III. Towards Detailed Requirements

I
n general, there are a variety of requirements for the redundancy management.5 They typically are
formulated in natural language and may, indeed, contain inconsistencies. In this paper, a small set of high-

level requirements, listed in Table 1, is used to guide the design of the mode logic, the actual requirements
are far more extensive than those presented.2, 3, 5

Natural language requirements such as those in Table 1 can be incomplete, inconsistent, and difficult to
interpret. The combination of Requirement 2 and Requirement 3 is an example of the possible ambiguity:
If one actuator can be operated only in DL, should the other still be operated in IO? In other work,4

StateflowR©6 was used to formalize the desired behavior and uncover and resolve many of the issues through
normal modeling and simulation tasks.

To design an implementation, the high-level system requirements need first be translated into more
detailed, subsystem level, requirements. To illustrate, Requirements 2, 3 and 4, as specified in Table 1,
suggest the following behavior in the design:

3 of 11

American Institute of Aeronautics and Astronautics

If no failures have been detected, then the left and right outer actuators should be active,
while the left and right inner actuators should be in standby.

Part of the detailed requirements that can then be translated into (formal) specifications is shown in Table 2.
Based on these specifications, a controller model is designed that embodies the desired behavior. The design
then needs to be tested against those requirements to verify and validate its compliance. Producing the
detailed requirements and formal specifications tends to be a complex process, and typically errors in the
design and requirements are not found until late in development where they are difficult and expensive to
address.

Table 1. Elevator system requirements.

ID Description

1 Each actuator will have 5 modes; isolated, off, passive, standby, active.

2 If possible the same control law should be active for both the left and
right elevators.

3 If available, the IO control law should be active instead of the DL control
law.

4 The actuator that is not active should be in standby.

5 If the pressure of the hydraulic circuit is low and the position measurement
fails, the corresponding actuator should be switched to off.

6 If the pressure of the hydraulic circuit is nominal and the position mea-
surement fails, the corresponding actuator should be switched to isolated.

7 Controller state changes should be made only in response to failure events.

The approach demonstrated in
this paper revolves around being able
to independently establish test cases
that are derived from the high and
low-level requirements that can be ex-
ecuted on the design model, that has
been created based on the same re-
quirements, to verify that the require-
ments have been met. While those
tests are being executed, it is impor-
tant to collect coverage metrics on the
design model (giving measurable evi-
dence of the tests). Additionally, but
not covered in this paper, is the abil-
ity to have full traceability of the high
and low-level requirements to the de-
sign model, and through to software
implementation.

Establishing such a formalized approach to testing the design is important to demonstrate that it meets
the written requirements. It is also necessary to quantify how much of the design has been tested, to
document this information, and gain measurable confidence in the design.

IV. Requirements, Tests, and Assertions

T
o test the requirements, a test harness is established in SimulinkR©7 (see Fig. 3), where input is created in
the Signal Builder block, Test Cases, and system output is checked via assertions specified by verification

blocks in check modes. Using Simulink Verification and Validation,8 each test case in the Signal Builder block
can be associated with specific verification blocks, so as to check for the expected output for that specific
test. Additionally, each test case can be associated with a requirement that it is testing.

modes

check modes

Out1

Test Cases

<low_press>

<R_pos_fail>

<L_pos_fail>

Figure 3. Test harness to test mode logic design.

To illustrate, Requirement
2.2.1 from Table 2 describes
the “no failure” of the nominal
operating condition of the sys-
tem. To test that the design is
able to perform this task, the
Signal Builder is used to de-
sign the test case shown in Fig-
ure 4(a). The inputs for all
the failures are set to zero, rep-
resenting that no failures have
been detected.

The additional input signal labeled “do verification” at the bottom of the list of signals in Fig. 4(a) is
used to enable the verification blocks to start checking system output, once the system is in the correct
configuration. For example, for the third test case, labeled “H1 Failure Recover” (see Requirement 2.1.2 in
Table 2), the hydraulic line must first fail, and then come back online. It is only when the pressure returns
to normal that the actuator modes should be checked whether they are in the expected configuration.

On the right-hand side of the dialog for the Signal Builder block in Fig. 4(a), there are two panes, one

4 of 11

American Institute of Aeronautics and Astronautics

Table 2. Partial list of the detailed requirements for the mode logic design.

2.1.1 Hydraulic pressure 1 failure

If a failure is detected in the hydraulic pressure 1 system, while there are no other failures, isolate
the fault by switching the Left Outer actuator to the off mode.

2.1.2 Hydraulic pressure 1 fails and then recovers

If a failure is detected in the hydraulic pressure 1 system and the system then recovers, switch the
Left Outer actuator to the standby mode.

2.1.3 Hydraulic pressure 2 failure

If a failure is detected in the hydraulic pressure 2 system, while there are no other failures, isolate
the fault by switching the Left Inner actuator and the Right Inner actuator to the off mode.

2.1.4 Hydraulic pressure 2 fails and then recovers

If a failure is detected in the hydraulic pressure 2 system and the system then recovers, switch the
Left Inner actuator and the Right Inner actuator to the standby mode.

2.1.5 Hydraulic pressure 3 failure

If a failure is detected in the hydraulic pressure 3 system, while there are no other failures, isolate
the fault by switching the Right Outer actuator to the off mode.

2.1.6 Hydraulic pressure 3 fails and then recovers

If a failure is detected in the hydraulic pressure 3 system and the system then recovers, switch the
Right Outer actuator to the standby mode.

2.2.1 Default start-up condition

If there have been no failures detected, the Outer actuators have priority over the Inner actuators.
Therefore the elevator actuators should default to the following modes. The Left Outer and Right
Outer actuators should transition from the Passive mode to the active mode. The Left Inner and
Right Inner actuators should transition from the Passive mode to the Standby mode.

labeled “Verification block settings” and the other “Requirements”. It is through these two panes that each
test case can be associated with specific verification blocks and requirements that the test case has been
constructed for.

The “Verification block settings” pane shown in more detail in Fig. 4(b) presents a filtered view of the
Simulink model, showing the hierarchy of all the included verification blocks. For the selected test “no
failures”, assertions have been enabled to check the expected system output for the left inner and right inner
actuators to be in standby mode, while the left outer and right outer actuators are to be in the active mode.

Similarly, the “Requirements” pane shows the requirements that are associated with this test case. The
requirement description states that this is the “Default start-up condition”. Double-clicking on this text
navigates to the particular section in the requirements document that describes this requirement shown in
Table 2 in detail.

Requirement associations are created and edited through a graphical user interface (GUI), as shown in
Fig. 5. This GUI allows selecting the document type, the actual document, and the requirement location
identifier. The location in the document that refers to the default start-up condition requirement as defined in
Table 2 can be defined by selecting the desired requirement from a list of document headings and bookmarks
that are automatically generated in the “Document Index” tab.

A similar approach was taken to establish test cases for each of the detailed requirements. A list of some
of these requirements is shown in Table 2. In total, 23 test cases were created, and all were associated with
verification blocks that checked for expected outputs of the design and requirements for which the tests were
created.

The design can be tested by incorporating the mode logic subsystem into the test harness in Fig. 3 to
form a testing model.

Tests can then be executed one at a time, or in batch mode. If a test runs through to completion, without
any verification blocks asserting, then the design passes the test. If an assertion is detected, the simulation
is stopped and the verification block that issued the assertion is highlit, allowing quick diagnosis of why the
test did not pass.

5 of 11

American Institute of Aeronautics and Astronautics

(a) Test vectors for the no failures test case. (b) Verification block settings.

Figure 4. Associating requirements, assertions, and tests.

V. Coverage

Figure 5. The requirements UI.

C
reating tests based on the requirements and executing those tests to ensure the design behaves as
expected is not sufficiently rigorous to guarantee the design has been fully tested: (i) requirements could

be lacking tests, (ii) the requirements themselves could be ambiguous and incomplete, and (iii) the design
could contain superfluous elements.

Using Simulink Verification and Validation,8 coverage met-
rics are collected as the tests execute to quantify which elements
of the design have been excited and to focus attention on why
the remaining elements have not. These coverage metrics are
displayed directly on the model using color schemes and high-
lighting. Additionally, a detailed report of the coverage analysis
is created. Coverage is enabled through a GUI, allowing selection
of which coverage metrics will be reported for which subsystem
of the model.

In this work, a number of metrics consisting of (i) cyclo-
matic complexity and (ii) coverage will be collected on the Mode
Logic subsystem. The cyclomatic complexity is an approxima-
tion of the complexity of software (e.g., nested decision points)9

which is adapted to models.8 The Decision Coverage analysis
reports on which logical decisions in the model have been evalu-
ated to true and false. The Condition Coverage analysis reports
on which conditions have been evaluated to true and false. The
Modified Condition, Decision Coverage (MC/DC) is essential for
DO-178Ba certification and requires the execution of each separate input to a logical expression that can
independently affect the outcome of the decision, while the other conditions are held constant. Not used in

ahttp://www.rtca.org

6 of 11

American Institute of Aeronautics and Astronautics

this paper are Look-up Table Coverage which reports on what entries of a look-up table and which interpola-
tion intervals have been excited, and Signal Range Coverage which provides minimum and maximum values
for the signals in a model.

Executing each of the 23 tests yielded the coverage report shown in Fig. 6. The coverage report reveals
that even though tests were created for all the detailed requirements, the design has not been fully excited
indicated by the fact that full coverage has not been achieved.

As can be seen in Fig. 6, decision coverage (column D1) is the easiest metric to achieve, where no
subsystem of the design achieved less than 89% coverage. On the other hand, condition coverage (column
C1) and modified condition, decision coverage (column MCDC) are more restrictive, with some subsystems
of the design having coverage as low as 78% and 56% respectively.

Summary

Model Hierarchy/Complexity: Total

D1 C1 MCDC

1. Mode Logic SS 98 96% 84% 64%

2. . . . Mode Logic Chart 97 96% 84% 64%

3. SF: Mode Logic Chart 96 96% 84% 64%

4. SF: Actuators 72 95% 88% 69%

5. SF: LDL 18 92% 88% 63%

6. SF: L1 15 89% 88% 63%

7. SF: LIO 18 96% 88% 75%

8. SF: L1 15 94% 88% 75%

9. SF: RDL 18 96% 88% 63%

10. SF: L1 15 94% 88% 63%

11. SF: RIO 18 96% 88% 75%

12. SF: L1 15 94% 88% 75%

13. SF: L_switch 12 100% 78% 56%

14. SF: R_switch 12 100% 78% 56%

Figure 6. Model coverage summary.

The coverage results for the truth tables L switch
and R switch gained full decision coverage, but less than
100% condition coverage and MC/DC. The coverage re-
sults for the switching logic LIO, RIO, LDL, RDL, had
all coverage metrics less then 100%. Clicking on the sub-
system hyperlinks in the coverage report, Fig. 6, navi-
gates to the coverage details for that subsystem of the
model.

Figure 7 shows the coverage details for the L switch
truth table. Full coverage is not achieved because a num-
ber of scenarios were not tested, the coverage analysis
has identified that the following cases were not tested:

• For decision 1, [c1&!c3&c4].

• For decision 3, [!c1&c2&c3&!c4] and [c1&c2&c3&!c4].

• For decision 4, [c1&c2]

Similarly, the switching logic for the left IO module
could be viewed in the coverage report, but coverage in-
formation is also displayed directly on the model through
syntax coloring and highlighting. Elements with full coverage are colored green. Elements with no logical
content are grayed out.

13. Function "L_switch"

Parent: mode_logic/Mode Logic SS/Mode Logic Chart

Metric Coverage (this object) Coverage (inc. descendants)

Cyclomatic Complexity 0 12

Decision (D1) NA 100% (12/12) decision outcomes

Condition (C1) NA 78% (14/18) condition outcomes

MCDC (C1) NA 56% (5/9) conditions reversed the outcome

Predicate table analysis (missing values are in parentheses)

Hydraulic system 1 Low pressure (Left Outer line) low_press[1]
T

(ok)

T

(ok)

F

(T)

F

(T)
- - -

Left Outer actuator position failed L_pos_fail[1] - -
T

(ok)

T

(ok)
- - -

Hydraulic system 2 Low pressure (Inner line) low_press[2]
F

(ok)
-

F

(T)
-

T

(ok)
- -

Left Inner actuator position failed L_pos_fail[2]
F

(T)
-

F

(ok)
- -

T

(ok)
-

Actions
2

(ok)

3,5

(ok)

3

(ok)

3,5

(ok)

4

(ok)

5

(ok)
Default

Figure 7. Truth table coverage analysis.

Figure 8 shows that there are two
transitions that have not been fully
tested, those gated by [!LDL act()
| RIO act()] and [!low press[1] &&
!L pos fail[1]], they are both colored
red. Also, the L1 state is also colored
red, further inspection of the coverage
report shows that the substate off had
not been exited when the parent had
exited. That is, the left outer actuator
did not enter the isolated mode from the
off mode. Similar omissions were noted
for the R switch truth table, as well as
the switching logic for LDL, RIO, RDL.

Incomplete coverage means one of
three things: (i) there are missing
tests, (ii) the design has unreachable or
untestable code, or (iii) there are miss-
ing requirements (for which tests need
to be added). Each of these aspects is
considered in determining why full cov-
erage has not been achieved for this design. This paper will now focus on addressing the omissions for the
L switch truth table, and LIO switching logic, as they identify the changes that will be required for the
remainder of the design.

7 of 11

American Institute of Aeronautics and Astronautics

VI. Test and Design Changes

1

[fails>=5]
go_isolated/send(E,LDL);

[!LDL_act()|RIO_act()]

[LDL_act()] [!RIO_act()&&...
LDL_act()]

go_off[!in(off)]
[!low_press[1]&&...
!L_pos_fail[1]]

passive
LIO_mode=2;

active
LIO_mode=4;

standby
LIO_mode=3;

off
en:LIO_mode=1;
ex:fails++;

isolated
LIO_mode=0;

/send(E,LDL);

LIO

L1

Figure 8. IO module switching logic coverage analysis.

T
he coverage of the truth tables and switching logic can be utilized to validate the system and test vector
design.

A. Truth Table Logic

First the incomplete coverage
for the L switch truth table
(Fig. 7) is considered. There
were four cases that had not
been tested. The first case
identified was [c1&!c3&c4]. That
is, the case where there are fail-
ures in both the hydraulic sys-
tem 1, and left inner actuator.
The second case identified was
[!c1&c2&c3&!c4], where there
are failures in both the left
outer actuator and hydraulic
system 2. Both these cases are
multiple failure scenarios that
would be evaluated true by de-
cision 2 of the truth table. So
there are two tests missing.

The remaining two cases
identified as not being exe-
cuted are [c1&c2&c3&!c4] in
decision 3 and [c1&c2] by deci-
sion 4. Now both of these cases
can not be evaluated by these decisions as they would have already been evaluated true by decision 2. This
highlights the unnecessary specification of condition 1 in both decisions 3 and 4 as false, rather they should
be specified as “-” which means the condition is satisfied for either logical value (don’t care), as decision 2
captures all cases when condition 1 is true. That is, decision 3 can only evaluate to true if condition 1 is
false. So the truth table design decisions 3 and 4 can be simplified to be [c2&!c3&!c4] and [c2] respectively.

B. Switching Logic

Upon inspection of the LIO switching logic coverage, the transition to the active mode was not fully tested
as RIO act() was never true, meaning the left outer actuator had never transitioned into the active mode
because of the right outer actuator being in the active mode.

Also the incomplete coverage of the L1 state, because of the scenario of going into the isolated mode from
the off mode, had not been tested either. Therefore, two new tests need to be created to check these two
conditions. To test the transition into active mode due to the right outer actuator being active, the following
test sequence needs to occur:

1. Hydraulic system 3 fails and recovers.

2. The right inner actuator fails.

To test the condition on entering the isolated mode from the off mode, requires the following sequence to
happen:

1. Hydraulic system 1 fails.

2. Left outer actuator fails.

3. Hydraulic pressure 1 recovers, while the left outer actuator is still failed.

8 of 11

American Institute of Aeronautics and Astronautics

Finally, the transition out of the off mode, was not fully tested as L pos fail[1] was never true. Now after
further inspection, this is a redundant condition, because if L pos fail[1] were true, then decision 3 of truth
table L switch would evaluate true, and would isolate the left outer actuator. So this means the conditional
transition out of the off mode can be simplified to be [!low press[1]], again reducing the complexity of the
design.

Similar tests were added and design modifications made to the R switch truth tables and the LDL, RIO,
RDL switching logic modules.

VII. Requirements Changes

C
onsider why the additional tests were originally conceived to be necessary; was it because the require-
ments were incomplete and ambiguous? To study this further, consider the truth table test that were

described in Section VI, specifically the tests for the multiple failures. Looking at the original set of tests,
only two of the four multiple failure scenarios were tested:

1. Failures in hydraulic system 1, and hydraulic system 2

2. Failures in left outer actuator, and left inner actuator

The remaining scenarios were not tested:

3. Failures in hydraulic system 1, and left inner actuator.

4. Failures in hydraulic system 2, and left outer actuator.

Both items 1 and 2 were associated with Requirement 2.1.15 given in Table 3. In reading the details of
this requirement it becomes clear why items 3 and 4 were not included in the original tests.

Table 3. Multiple failure requirements.

2.1.11 Hydraulic pressure 1 and Left Outer actuator position failures

If a failure is detected in both the hydraulic pressure 1 system and the Left Outer actuator position sensor,
while there are no other failures, isolate the fault by switching the Left Outer actuator to the off mode.

2.1.12 Hydraulic pressure 2 and Left Inner actuator position failures

If a failure is detected in both the hydraulic pressure 2 system and the Left Inner actuator position sensor,
while there are no other failures, isolate the fault by switching the Left Inner actuator to the off mode.

2.1.15 Multiple failures on Left hydraulics and actuators

If multiple failures are detected in hydraulic pressure 1 or 2 systems and either the Left Outer actuator
position sensor or Left Inner actuator position sensor, isolate the fault by switching both the Left Outer
actuator and Left Inner Actuator to the isolated mode.

The requirement has been written in a very complicated manner, which is difficult to comprehend,
explaining why it was misinterpreted. Close inspection shows that it does not actually state the required
behavior correctly as it suggests the following failures:

i Failures in hydraulic system 1, and left outer actuator.

ii Failures in hydraulic system 1, and left inner actuator.

iii Failures in hydraulic system 2, and left outer actuator.

iv Failures in hydraulic system 2, and left inner actuator.

Now item i and item iv are not multiple failures as they relate to the same actuator (either the inner
or outer actuator) and have already been captured in Requirement 2.1.11 and Requirement 2.1.12 as shown
in Table 3. In addition, item ii and item iii were the missing items, suggesting that the designer read the
requirements as: “failure detected in hydraulic pressure system 1 and hydraulic pressure system 2 or failure
detected in the Left Outer actuator position sensor and the Left Inner actuator position sensor”.

So Requirement 2.1.15 in Table 3 needs to be rewritten to clearly capture all the conditions that it covers.
The revised Requirement 2.1.15 is given in Table 4.

Finally, in Table 5, the two requirements that needed to be added to describe the additional switching
logic tests are shown.

9 of 11

American Institute of Aeronautics and Astronautics

Table 4. Revised requirement for multiple failures.

2.1.15 Multiple failures on Left hydraulics and actuators

If multiple failures are detected in left hydraulic pressures and actuator positions, isolate the fault by
switching both the Left Outer actuator and Left Inner Actuator to the isolated mode. The following
combinations trigger this condition:

• Failures in hydraulic pressure 1, and hydraulic pressure 2
• Failures in Left Outer actuator position sensor, and Left Inner actuator position sensor
• Failures in hydraulic pressure 1, and Left Inner actuator position sensor
• Failures in hydraulic pressure 2, and Left Outer actuator position sensor

Table 5. Additional requirements for multiple failures.

2.1.20 Hydraulic Pressure 3 recovers from failure, then Right Inner actuator position fails

If a failure is detected in the hydraulic pressure 3 system and the system then recovers, switch the Right
Outer actuator to the standby mode. If a failure is then detected in the Right Inner actuator position
sensors, while there are no other failures, isolate the fault by switching the Right Inner actuator to the
isolated mode. The Right Outer actuator should move from the standby mode to the active mode.

2.1.21 Hydraulic Pressure 1 fails, Left Outer actuator position fails, Hydraulic Pressure 1

recovers

If a failure is detected in the hydraulic pressure 1 system, while there are no other failures, isolate the fault
by switching the Left Outer actuator to the off mode. If a failure is then detected in the Left Outer actuator
position sensor as well, while there are no other failures, isolate the fault by keeping the Left Outer actuator
in the off mode. If the hydraulic pressure 1 system recovers, and a failure in the Left Outer actuator position
sensors is still detected , isolate the fault by switching the Left Outer actuator to the isolated mode.

VIII. The Final Design

B
y modifying the requirements as discussed in Section VII, and including 11 additional tests and modifying
the truth tables and switching logic design as discussed in Section VI, 100% MC/DC coverage on the

mode logic model has been obtained. Furthermore, the cyclomatic complexity of the switching logic modules
decreased from 18 to 17.

The resulting coverage report of the fault isolation logic truth table of the left actuators is shown in
Fig. 9. The report indicates full MC/DC coverage is now obtained for the truth tables as well. Also, by
modifying the logic for decision 3 and 4 the cyclomatic complexity of each truth table was reduced from 12
to 10.

For the overall system, the cyclomatic complexity was reduced from 98 to 90. These reductions in
complexity indicate that the design has become less complex and easier to interpret.

IX. Conclusions

S
ystem design often starts off with a set of high-level requirements (e.g., ‘mission requirements’) that
are gradually refined into a set of detailed requirements from which the subsystem specifications can be

derived. Once the subsystem specifications are available, an implementation can be designed. Once the
implementation has been realized, extensive testing determines whether the original requirements are met.

In general, requirements are ambiguous, not very rigorous, and even inconsistent. It is desirable to find
the problems as early on in the design process as possible. Model-Based Design can be used to that goal by
facilitating executable specifications that allow the testing otherwise done after system realization.

Because the executable specification is a computational model of sorts, much information about the
internals of a system design is readily available. This is the foundation of verification and validation products
that show which parts of a model have been excited in response to one or more test vectors and within what
range.

This paper has shown how such coverage results can help in making the original requirements consistent
and unambiguous, ensuring the design is minimal, and determining the test vectors needed for the given
requirements. In the process, a lower complexity of the model design was established.

10 of 11

American Institute of Aeronautics and Astronautics

13. Function "L_switch"

Parent: mode_logic/Mode Logic SS/Mode Logic Chart

Metric Coverage (this object) Coverage (inc. descendants)

Cyclomatic Complexity 0 10

Decision (D1) NA 100% (12/12) decision outcomes

Condition (C1) NA 100% (12/12) condition outcomes

MCDC (C1) NA 100% (6/6) conditions reversed the outcome

Predicate table analysis (missing values are in parentheses)

Hydraulic system 1 Low pressure (Left Outer line) low_press[1]
T

(ok)

T

(ok)
- - - - -

Left Outer actuator position failed L_pos_fail[1] - -
T

(ok)

T

(ok)
- - -

Hydraulic system 2 Low pressure (Inner line) low_press[2]
F

(ok)
-

F

(ok)
-

T

(ok)
- -

Left Inner actuator position failed L_pos_fail[2]
F

(ok)
-

F

(ok)
- -

T

(ok)
-

Actions
2

(ok)

3,5

(ok)

3

(ok)

3,5

(ok)

4

(ok)

5

(ok)
Default

Figure 9. Modified truth table coverage analysis.

References

1Barnard, P., “Graphical Techniques for Aircraft Dynamic Model Development,” AIAA Modeling and Simulation Tech-

nologies Conference and Exhibit , Providence, Rhode Island, Aug. 2004, CD-ROM.
2Mai, G. and Schröder, M., “Simulation of a Flight Control Systems’ Redundancy Management System using Statemate

MAGNUM,” 7. User group meeting STATEMATE, April 1999.
3Mosterman, P. J., Remelhe, M. A. P., Engell, S., and Otter, M., “Simulation for Analysis of Aircraft Elevator Feedback and

Redundancy Control,” Modelling, Analysis, and Design of Hybrid Systems, edited by S. Engell, G. Frehse, and E. Schnieder,
Springer-Verlag, Berlin, 2002, pp. 369–390.

4Mosterman, P. J. and Ghidella, J., “Model Reuse for the Training of Fault Scenarios in Aerospace,” Proceedings of the

AIAA Modeling and Simulation Technologies Conference, Providence, RI, Aug. 2004, CD-ROM, ID: 2004-4931.
5Seebeck, J., Modellierung der Redundanzverwaltung von Flugzeugen am Beispiel des ATD durch Petrinetze und Umset-

zung der Schaltlogik in C-Code zur Simulationssteuerung , Diplomarbeit, Arbeitsbereich Flugzeugsystemtechnik, Technische
Universität Hamburg-Harburg, 1998.

6Stateflow, Stateflow User’s Guide, The MathWorks, Natick, MA, 2004.
7Simulink, Using Simulink , The MathWorks, Natick, MA, June 2004.
8Simulink Verification and Validation, Simulink Verification and Validation User’s Guide, The MathWorks, Inc., Natick,

MA, 2004.
9McCabe, T. J., “A Complexity Measure,” IEEE Transactions on Software Engineering , Vol. SE-2, No. 4, Dec. 1976,

pp. 308–320.

11 of 11

American Institute of Aeronautics and Astronautics

