
1 
 

Model-Based Design for Large High-Integrity Systems: 
A Discussion on Verification and Validation 

 

Mike Anthony *, Matt Behr †, Matt Jardin ‡, and Richard Ruff §

MathWorks  
 

www.mathworks.com 
 

The increasing prevalence of safety standards, including DO-178B, DO-278, and DO-
254, for unmanned systems is forcing organizations to re-evaluate strategies for system 
verification and validation.  One result of these re-evaluations is that more and more 
organizations are adopting a Model-Based Design approach for system design.  
However, although simulation is well-accepted for requirements validation, models are 
often not fully leveraged throughout verification and validation processes.  This paper 
discusses how models can be used throughout requirements validation, system design, 
implementation, and testing.  While the discussion references the safety standards 
mentioned above, the principles can be applied to any high-integrity project employing 
Model-Based Design.  Specifically, techniques for establishing traceability, ensuring 
conformance to design standards, and verifying the output of each design stage are 
highlighted.  The discussion is centered on fundamental concepts that can be applied to 
both embedded software and hardware.  It builds upon two previous discussions on 
Model Architecture and Data Management.   

 

INTRODUCTION 

"Ninety percent of all innovation in cars today is driven by software," said Ingolf Krueger, an 
associate professor of computer science and engineering at the University of California in San Diego.1

To help meet the challenges inherent in developing large, complex embedded systems for commercial 
and defense related aerospace projects, many organizations have adopted Model-Based Design in DO-

 As 
modern systems become more dependent on software to deliver new functionality, the scope and 
complexity of that software continues to grow. This is true not just in the automotive industry, but also in 
the aerospace industry, particularly in the realm of unmanned systems. Furthermore, aerospace-related 
projects are also using more software in safety-critical and mission-critical applications. This creates a 
unique set of challenges, as the software standards for such applications on aircraft are particularly 
rigorous.  
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178B, DO-254, and other certification processes. Whereas coding standards such MISRA C or JSF++ 
provide guidance on coding,  DO-178B and DO-254 provide guidance on the development  process itself. 
Creating and deploying the embedded system is one step in a much larger process that must also include 
methods for verification and validation (V&V).  

NOTES ON WORKFLOWS AND THE AFFECT OF CERTIFICATION  

Most modern avionics systems comprise software and hardware components. One of the strengths of 
Model-Based Design is that it can be applied on both software and hardware projects. The Society of 
Automotive Engineers (SAE) developed the ARP 4754 standard (see Figure 1) in 1996 to provide 
guidance on how system level requirements are decomposed into software (governed by DO-178B) and 
hardware (governed by DO-254). 

 

 

Figure 1: Documents governing aerospace development processes 

 

In November 1981, the commercial segment of the aerospace industry established the DO-178 
standard, which governs the development of software. The standard was revised to DO-178A in March 
1985 to describe in more detail the process required for software development and verification. DO-178A 
also introduced the concept of software certification levels corresponding to different levels of criticality. 
The current versions of software certification standards are DO-178B and DO-278 for airborne and 
ground-based software respectively. More recently, these standards have been adapted to the development 
of complex electronics like Field-Programmable Gate Arrays (FPGAs) and Application-Specific 
Integrated Circuits (ASICs), as these are also starting to be used more frequently for aerospace 
applications. The governing document for complex electronics is DO-254. 

Details on using Model-Based Design on a project requiring DO-178B can be found in Model-Based 
Design for DO-178B2 and Model-Based Design for DO-178B with Qualifiable Tools.3 Details on using 
Model-Based Design on a project requiring DO-254 certification can be found in Enabling Model-Based 
Design for DO-254 Compliance with MathWorks and Mentor Graphics Tools.4 This paper will 
concentrate on the process and will not repeat the specific details outlined in the sources above. Refer to 
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the above sources for specifics on tool recommendations, artifacts that can be automatically generated, 
and the DO objectives that these tools and artifacts satisfy.  

Establishing a more consistent development process allows an organization to be more consistent in 
hardware and software design activities. This paper will first outline tools and workflows used at the 
model level for both software and hardware. It will then discuss software- and hardware-specific 
considerations. The steps in the workflows described below are outlined in a linear fashion. In practice, it 
is highly unlikely that each of these steps would be performed only once. It is almost certain that 
requirements will change, or that a lack of clarity in requirements will be identified, causing the entire 
process to be repeated. This is especially true for low-level requirements that are derived from high-level 
requirements. Even within the workflow, there are many cases where parts of the process will be 
repeated. 

Wherever possible, opportunities for automation will be highlighted. The rigor of certification 
requires that the design be verified at each stage in the development process. Reusing designs and tests is 
therefore an essential aspect of an efficient process. Opportunities for reuse are emphasized in the 
workflows outlined below. Certification also requires that many design artifacts be generated throughout 
the process. These artifacts are needed to document that the appropriate process was followed, but writing 
them manually for each step is time consuming. Automating artifact generation when possible can help 
achieve further efficiency.  

The demands imposed by certification (exhaustive design iterations, precise recreation of design and 
tests, and artifact generation) all lead to increased costs on certified projects. Although these activities are 
required for both traditional and Model-Based Design approaches, the costs associated with them depend 
on the approach used. Presuming basic (SEI CMM and CMMI Level 2 or 3) software principles are 
employed from the outset, increased costs is estimated to be 25 to 40 percent.5

The following workflow assumes the use of Model-Based Design. This workflow is intended to 
include all of the steps necessary to help achieve compliance to standards such as DO-178B or DO-254.  
It can be adapted to help address the verification and compliance needs of particular organizations.  The 
discussion of the workflow is broken into three sections. The first section discusses elements of the 
workflow performed at a model level. These elements are common to both software and hardware 
development. The second discusses software development and verification processes. The third discusses 
hardware development and verification processes.  

 These activities are also 
among the least enjoyable for engineers. Particular attention will be given to automation of design steps, 
design and test case reuse, and automatic artifact generation in the discussion below.  

TERMINOLOGY 

Though verification and validation are commonly used terms, their definitions are surprisingly varied 
in engineering. For the purposes of this discussion, the following definitions will be used. Verification 
answers the question, “Is the design right?” In other words, verification is the activity of showing that the 
design was done correctly and behaves as expected. Validation answers the question, “Is this the right 
design?” In other words, validation is the activity of showing that the expected behavior of the design 
solves the correct problem. 

There are several other common terms that are related to V&V. These include traceability, 
conformance to standards (hereafter referred to as conformance), testing, and proving. For clarity these 
terms are defined as follows: 
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Traceability. Traceability is a documentation activity. At each phase of software or hardware 
development, when a new expression of the algorithm is created (for example, when creating a model 
from textual requirements, or when creating code from a model), it must be documented that the new 
expression does everything that its predecessor  did, and nothing that its predecessor did not do. For 
example, when the design is created based on the textual requirements, it must be shown that all of 
the textual requirements are addressed by the design, and that there is nothing in the design that does 
not explicitly address one or more requirements. Likewise, when the code is created based on the 
design, it must be shown that all of the features of the design are implemented in the code, and that 
nothing is implemented in the code that does not explicitly implement one or more of the design 
features. 

Conformance: Conformance is the activity of checking an expression of the algorithm against a 
set of rules. This is a common task in traditional development, particularly in coding. For software, 
there are many forms of coding standards ranging from industry-wide standards such as MISRA C or 
JSF++ to company- or program-specific coding standards. For hardware, there are similar standards, 
including European Space Agency (ESA) VHDL modeling guidelines6

Testing: Because testing is a very broad term with many interpretations, there is often confusion 
about what it means. Types of testing include functional testing, structural testing, white-box testing, 
black-box testing, robustness testing, acceptance testing, unstructured testing, and coverage testing. 
The workflow described in this paper focuses on functional testing, which is requirements-based. In 
functional testing, there exists at least one test case for each requirement. Test cases comprise a set of 
inputs and expected behavior. Functional testing is the activity of executing these test cases against an 
expression of the algorithm (for example, the design or code) and comparing the results produced by 
the algorithm with the expected behavior as defined by the requirements. Functional testing is not 
limited to test cases based on textual requirements. In Model-Based Design, the model is often 
considered to be an expression of low-level requirements. Test cases generated from the model can be 
considered low-level requirements-based tests. Functional testing helps to ensure the design is right, 
and thus is one way to perform verification. 

 and vendor-specific standards. 
In traditional approaches, conformance is checked via a static analysis tool, a manual code review, or 
both. The goal of this activity is to reduce errors. Conformance standards are not restricted to code or 
hardware design. For example, textual requirements documents are typically written in a standard 
format within a given project to promote readability and consistency. This is essentially a 
conformance activity in the requirements domain. Likewise, the design can be expressed in many 
different ways. The least dynamic of these would be some form of Algorithm Design Document 
(ADD). As with requirements, these types of documents are typically written from a predefined 
template, again to promote readability and consistency. In a Model-Based Design workflow, 
conformance to standards in the modeling environment becomes especially important because 
conformance facilitates reuse. Establishing and adhering to a coding standard makes it easier for the 
next person or project to reuse existing code. The same can be said of a model that adheres to a 
modeling standard. 

Proving: Simply stated, proving is the activity of using formal analysis to help ensure, from a 
mathematical perspective, a certain behavior for all possible scenarios. For example, consider a 
design based on a set of requirements. For a specific requirement, a functional test is included as part 
of the verification activities for the design. Assume for this case that the functional test included an 
input stimulus to the design, and via simulation it was shown that the output of the design as a 
function of that stimulus met the requirements-based expectation. In this situation, all that has been 
shown is that for that one specific stimulus, the design behaved as expected. There is, however, still 
an unanswered question: Will the design behave as expected for all possible input stimuli?  There are 
a few possible methods to address this question. The first is a brute-force approach. This entails 
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simulating every possible stimulus driving the design and comparing the output of the design against 
the expected behavior, a process which quickly becomes computationally unfeasible for even a small 
number of inputs. Another approach uses stochastic methods, usually in the form of Monte Carlo 
simulations. This approach relies on running enough simulations to statistically cover the entire range 
of stimuli. However, because this approach does not run every possible combination, there is a risk of 
missing crucial edge cases that cause unexpected behavior. This risk can be mitigated by applying 
worst-case test cases. Since worst-case analysis is incomplete, it is frequently supplemented with 
boundary-value testing, in which test cases are executed with values below, equal to, and above 
thresholds related to a given requirement or data type. Even with techniques such as boundary-value 
testing, significant effort is required to develop all of these test cases.  And once developed it can be 
difficult to assess whether they are truly exhaustive.   

 Formal analysis is an alternative to exhaustive testing used to help ensure, from an algorithmic or 
mathematical perspective, a certain behavior for all possible stimuli. Formal analysis entails capturing 
the expected behavior as a mathematical expression. A formal mathematical proof is then used to 
show that the algorithm in question will always exhibit the expected behavior. In other words, formal 
analysis proves that it is mathematically impossible for the algorithm to provide an output other than 
the expected behavior. The math required to accomplish this can be challenging. As a result, formal 
analysis is not suitable for all classes of problems. Some nonlinear algorithms, for example, are 
difficult to prove using formal methods because the mathematics become complex enough that 
finding a closed-form solution to the problem is impossible. Other classes of problems are well suited 
to formal analysis. For example, logic-intensive algorithms and linear math can be proved relatively 
easily with this approach. Formal analysis can be an excellent complement to functional and 
stochastic testing.  

ARCHITECTURAL AND CONFIGURATION MANAGEMENT CONSIDERATIONS 

Developing a componentized design with  a modular architecture helps facilitate verification and 
validation. This paper does not cover methods for defining architectures in the requirements, design, code, 
or hardware environments, because the definition of these architectures is discussed in detail in Large-
Scale Modeling for Large High Integrity Systems: A Discussion on Model Architecture7 and Model-Based 
Design for Large High Integrity Systems: Data Management8

Regardless of what tools and processes are used on a large project, the basic concept of verifying 
small pieces and integrating verified small pieces together in a hierarchy is very common. Indeed, for 
projects of any appreciable size, this is not only advisable, but essential. It is practically impossible to 
achieve rigorous traceability, conformance, and verification when these activities are left until the end of 
a large project and attempted only at the system level. This does not mean that system-level testing is 
unnecessary. Instead, the system-level efforts should only be attempted after completing a well-organized 
set of unit-level or component-level tests, which correspond to a modular architecture.  This notion of 
componentization holds for both Model-Based Design and traditional development approaches.   

.  

This paper takes a component-level view of a development, verification, and validation process, in 
which the process defined for a single component is essentially the same as the process for the overall 
system. The primary difference is that the system comprises components that have already completed the 
development, verification, and validation process. 

A rigorous process will necessarily generate many artifacts showing completion of each step. These 
artifacts must be managed along with the project files for each version that is verified. Configuration 
management provides a means of maintaining the results of development and verification efforts for each 
component. In fact, the DO safety standards require that a configuration management plan be put in place 
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for certified projects.  A detailed discussion of configuration management can be found in Configuration 
Management in Model-Based Design.9

DEVELOPMENT, VERIFICATION, AND VALIDATION OF THE MODEL 

  

Figure 2 illustrates the steps performed at the model level in both hardware and software 
development. These include validation of requirements, model development, tracing of the model to 
requirements, conformance of the model to standards, and verification of the model.  

 

 

Figure 2: Model verification and validation 

 

Validating Requirements 

The first step in the process is validation of the requirements. Recall from the terminology defined 
above that validation answers the question, “Is this the right design?” Fundamentally, this is a check on 
whether the textual requirements are complete and accurate. For a component, the textual requirements 
are usually derived from higher-level requirements. In this case, the validation step is to check that the 
component-level requirements accurately capture the intent of the higher-level requirements. 

Regardless of the tools being used, validation is almost exclusively accomplished via a manual review 
of the textual requirements. Questions about intent and the “right” design are almost always subjective in 
nature, and thus difficult to answer solely with a tool. There are techniques related to requirements 
management that assist in traceability of derived requirements to higher-level requirements. These 
techniques can assist with requirements validation, but they are not typically sufficient. 

Developing the Model 

The second step in the process is the development of the model. In a rigorous process, this is the 
exercise of developing the algorithm to meet the requirements. This implies that the algorithm must be 
developed to address each and every textual requirement. If the validation of the requirements was done 
correctly, then building the model that fulfills those requirements will result in the “right design.”  

The ability to quickly build and simulate the model is an advantage in the iterative validation process, 
because the process of model building and simulation often yields further insight into the requirements 
and design. Whenever possible the model should be traced to the requirements as it is being developed. If 
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the model is developed to completion without regard to the requirements, it is likely that the model will 
fail to satisfy one or more requirements or that it will contain extra or unintended functionality. 

Tracing the Model to the Requirements 

Tracing the model to the requirements helps ensure that the model does indeed address all of the 
requirements it should, and that it includes no extraneous functionality. This two-way traceability (or top-
to-bottom and bottom-to-top traceability) does not preclude a requirement from being addressed by many 
sections of the model. Nor does it prohibit a section of the model from satisfying more than one 
requirement. The key is that the relationship between the model and the requirements must be 
documented and maintained throughout the design process.  

Conforming to Modeling Standards 

Conformance to standards is a widely accepted practice in the world of software engineering. Coding 
standards are used to ensure readability, ease integration, and improve understanding. These same 
benefits are realized by applying modeling standards. In fact, when automatically generating code from 
the model, the best way to ensure that the generated code meets a coding standard is by enforcing a set of 
modeling rules and code generation options in the modeling environment. The modeling standard must 
not only enforce the coding standard on the generated code, but also enforce a common simulation 
environment including solver options, data management options, and so on to facilitate integration of 
models in a large project. Measuring conformance is typically done through manual review and static 
analysis, although other methods exist. Again, tools that perform static rules checking are common in 
software engineering. The same capabilities should be applied in the modeling environment. In 
Simulink®, a commonly used modeling and simulation tool, the Model Advisor feature can be used to 
check and enforce modeling standards. 

Verifying the Model against Requirements 

Some of the more common verification techniques include visual inspection, simulation, and formal 
analysis. Although each of these can be valid in certain cases, visual inspection is, in general, the most 
difficult to perform and document. Visual inspection is usually completed via a review by several people, 
and it is not always easy to create and track data artifacts that adequately show completion of the review. 
Like any manual process, visual inspection is also inherently time consuming and prone to errors.  

In a Model-Based Design process, verification is typically performed by simulating the model. The 
formality with which these simulations are run can vary widely depending on the project. In the most 
rigorous case, each textual requirement maps to at least one test case. Each test case contains inputs and 
expected outputs. To execute a test case, the inputs are fed to the model and the model is simulated. The 
outputs of the model are then compared to the expected outputs. If the output of the model matches the 
expected output, then the model can be said to meet the requirement on which that test case is based. 
When the tests case is also traced to a requirement, verification shows that the model behaved as expected 
based on the textual requirement.  

While simulating the model driven by these requirements-based tests, a good practice is to measure 
model coverage. There are different levels of model coverage, condition coverage, condition/decision 
coverage, and modified condition decision coverage (MCDC). Choosing the appropriate level of coverage 
is a function of the project and/or level of certification required. The model coverage achieved with the 
requirements-based tests is a measure of the requirements coverage. A gap in requirements coverage is 
apparent if each textual requirement is associated with a test case, all of these test cases have been 
simulated, and the achieved model coverage is less than 100 percent. This gap can be resolved in two 
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possible ways. The first is that the uncovered functionality in the model in unintended functionality, and 
should be removed. The second is that the uncovered functionality is necessary for the model to function 
properly to meet the other requirements-based test cases, meaning that the requirement for this 
functionality is missing or is incomplete. In this case a new requirement should be written to clarify the 
need for the functionality in question. This refinement of the requirements at the model level is a key 
enabler of a more efficient and cost-effective process, as lack of clarity and missing requirements are 
identified much earlier than the code verification phase, where these gaps would be identified in a 
traditional process. 

 Showing that the model behaves as expected for a single specific set of inputs is far different than 
showing that the model will behave as expected for every possible set of inputs; a task that is better 
handled via formal analysis. One way to show that the model will meet the requirement for every possible 
input scenario is to create test cases that represent every possible permutation of input values, execute 
these test cases against the model, and compare the model outputs to the expected outputs. Even for 
simple models, developing and running these test cases quickly becomes unworkable. An alternative 
method is proving through the application of formal analysis. In this case, if the expected behavior from 
the requirement can be expressed in mathematical terms, then it is possible to perform a mathematical 
proof to show that the model will always exhibit the desired behavior. Because formal analysis is a 
mathematical analysis rather than a dynamic analysis (simulation), it can be applied only to the types of 
problems for which closed-form solutions to the mathematical proofs exist. As previously noted, 
algorithms that contain nonlinear math are difficult or impossible to prove; however, algorithms that are 
mathematically linear or logic-intensive are excellent candidates for a formal analysis approach.  

SOFTWARE DEVELOPMENT WORKFLOW EXAMPLE 

Figure 3 expands on the modeling workflow illustrated in Figure 2 to show a more complete software 
development workflow. 
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Figure 3: Software development workflow 

 

Automatic Code Generation 

After fully verifying the model against the requirements, the next step is translating the model into the 
form used for final implementation in an embedded system. For high-integrity software projects, this is 
almost always C code, though in increasingly rare cases Ada is also used. On some occasions C++ is also 
used, and there is a subset of C++ that is strongly recommended in these cases10

In a Model-Based Design process, embedded code can be automatically generated from the model.  
Code generation can help reduce translation errors and accelerates the propagation of changes from the 
model to the code. For further reading on the advantages of automatic code generation, refer to Model-
Based Design for DO-178B with Qualifiable Tools3 and Checking Code and Models in Production 
Environments

.  Essentially, it omits any 
part of the C++ language for which the compiler must determine what code to execute in a given 
situation. 

11

Tracing the Code to the Model and Requirements 

. 

In a Model-Based Design process, the code is traced to elements of the model, which are in turn 
traced to the requirements.  Code generation helps ensure the traceability of the code to the model. It also 
provides documentation that can help show that everything in the model is represented in the code, and 
that nothing extra is in the code that was not in the model. Thus, this traceability maps each line of code 
to the corresponding piece of the model, and maps each piece of the model to lines of code. 

Traceability of the code to the model is not sufficient. It must also be shown that the code implements 
an algorithm that satisfies all of the requirements for that software component. Ideally, each requirement 
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should be traced to one or more lines of code, and each line of code should be traced to one or more 
requirements. If the model was already traced to the requirements, some automatic code generation tools 
can be configured to include the textual requirements for all pieces that were linked to a requirement (see 
Figure 4). In addition, a traceability report detailing the mapping between the model blocks and the 
resulting code can be generated automatically. This artifact can be used for credit in the certification 
process. A Model-Based Design process using automated tools as described here can provide traceability 
of the code all the way to the requirements.   

 

Figure 4: Generated c-code from Real-Time Workshop Embedded Coder 

Conforming to Coding Standards 

Having traced the code to the model and to the requirements, the next step is to show that the code 
conforms to the coding standard specified for the design. Coding standards are common in software 
development and provide a way to ensure that code written by different programmers has the same 
structure, organization, style, and level of readability.  

Coding standards generally evolve over time, from project to project. The standards are a collection 
of best practices and lessons learned, and they are derived from issues that have been encountered in the 
past. The value of coding standards is based on the idea that code written to conform to a well-defined 
standard is less likely to have errors.  

The activity of code conformance checking is an examination of the code against certain rules. This 
can be done using a manual review process, a static analysis tool, or both. Static analysis is done without 
compiling and executing the code. One of the more popular C coding standards for the aerospace and 
automotive industries is MISRA C, developed by the Motor Industry Software Reliability Association. 
For a detailed discussion on using Model-Based Design and conforming to MISRA-C, see Checking Code 
and Models in Production Environments10. 

Verifying the Absence of Run-Time Errors  

Although code that conforms to the standard is less likely to contain errors, there are some situations 
in which “less likely” is not good enough. This is especially true for DO-178 projects where an error can 
lead to a catastrophic event, resulting in loss of life. In these situations, organizations must apply more 
rigor to design and testing to ensure the code is safe. Specifically, this involves ensuring that the code is 
free of any defects, including run-time errors, which would lead to unintended behavior. Quite often, run-
time errors occur during off-nominal conditions, and thus may go undetected during normal testing. Run-
time errors can be caused by out-of-bounds array indexes, out-of-bounds pointers, dividing by zero, data 
type overflows, and uninitialized data. These types of software errors are usually easy to fix, but can be 
very difficult to detect via manual review, static rules checking, and standard functional tests.  

There are several techniques available to help analyze code for run-time errors. As with the 
verification of the model against requirements, the approaches can be broadly grouped into three 
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categories: brute force, Monte Carlo, and formal analysis. With a brute-force dynamic approach, code is 
executed with every possible permutation of input values. For example, a function with two double 
precision inputs would require executing the function (1.797693134862316e+308)^2 times to cover every 
possible permutation of two doubles. It is clear that for anything but trivial functions a brute-force 
approach is not feasible. A Monte Carlo approach could be used to show the code is statistically safe, but 
it does not prove that the code is safe for all possible inputs. 

The most rigorous approach uses abstract interpretation, a formal analysis technique used to prove 
the absence of run-time errors. Described simply, this technique solves the problem by mathematically 
showing the ranges of all variables as they propagate through the code, and analyzing if any possible 
value within this range could cause a run-time error at each operation.  

Compiling the Code 

Execution of code is only possible if it is compiled, and there are many options for how and where the 
code can be compiled. It could be compiled locally on a desktop computer (for Software-in-the-Loop or 
SIL testing), or it could be compiled using an Integrated Development Environment (IDE) and executed 
in an Instruction Set Simulator (ISS). The code could also be compiled using an IDE and placed on a 
target processor (for Processor-in-the-Loop or PIL testing). Each of these approaches results in different 
object code. Although compilers are an important part of software development and the verification 
process, they will not be covered here in detail. It is important to recognize that the same source code can 
be compiled using different compilers and different options, resulting in noticeable differences in the 
compiled code. Because of this, some software development processes carefully define where testing 
must be performed. For example, DO-178B requires that tests to be counted for certification credit must 
be executed against the code on the target processor. This means that the user must execute the code on 
the same processor as the embedded system; a similar target processor will not do. Often a surrogate 
processor is used for initial testing until the actual embedded processor is available, but in the end, the 
code must be tested on the actual embedded processor for certification. 

One of the advantages to Model-Based Design is that it readily supports SIL and PIL testing. SIL 
verification shows that the compiled code produces the same results as the original model. Even if SIL 
verification shows that the code is equivalent to the model, PIL testing on the actual embedded processor 
is still needed, as there may be numerical differences between SIL and PIL results. This can happen when 
the target processor implements word sizes differently from the machine being used for SIL. Consider an 
algorithm that calculates position relative to the center of the earth. Running the code in SIL testing on a 
PC may give significantly different answers than running the code on a single precision SHARC 
processor due to rounding errors. If a user assumes these numerical errors do not exist or are negligible, 
then PIL verification may be seen as unnecessary. This is not a conservative assumption, however, and 
that is why DO-178B requires testing on the target processor. PIL testing eliminates this potentially 
dangerous assumption by verifying behavior on the actual processor. Because this is the more rigorous 
approach, the following sections assume the target code is executed via PIL testing rather than SIL 
testing. 

Verifying the Code against the Model 

The next step in the process is verifying the code behaves the same as the model and produces the 
same results.  Determining what test cases should be executed is vital.  Frequently the test cases are based 
on the textual requirements, but this is not always sufficient. To show that the compiled generated code is 
functionally equivalent to the model in every possible case, the test cases used for this step must provide 
100 percent model coverage. Since the model is an expression of low-level requirements, these test cases 
are verifying the code against the low-level requirements, which is still considered functional testing. 
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Though closely related, showing 100 percent coverage of the model is not the same as showing 100 
percent coverage of the code. There are different forms of code coverage, including statement coverage, 
branch coverage, and modified condition decision coverage (MCDC). The concept of coverage also 
applies to the model, though model coverage has a slightly different meaning. For details on these 
differences, refer to the MathWorks product documentation for Simulink Verification and Validation.12

After choosing the most appropriate level of coverage for the project and creating the test vectors to 
achieve that level of coverage in the model environment, the task is to execute test cases against the 
model and the code to ensure equivalent functionality. If the test vectors used provide 100 percent model 
coverage, and the model and the code produce the same outputs for these test cases, then it has been 
shown that the code and the model are functionally equivalent in every possible case.  

 
Some projects require 100 percent code coverage in testing, which may necessitate additional effort 
beyond the functional testing. 

As noted earlier, the most rigorous verification requires execution of the code on the target processor. 
With Model-Based Design, this is possible via PIL testing, given the appropriate tool chain and target 
hardware. To realize the maximum benefit from PIL testing, this tool chain must be both efficient and 
easy to use.  

Verifying the Code against Requirements 

The final step in the process is very similar to the previous step. The only difference between 
verifying the code against the model and verifying it against the requirements is the origin of the test 
cases being executed. Assuming that the previous step verified that the executable code on the target 
processor is functionally equivalent to the model, the final step is to rerun the high level requirements-
based test cases on the executable code on the target processor. A key benefit of PIL testing in a Model-
Based Design process is test case reuse. Recall that the requirements-based tests were executed against 
the model during the verification of the model against the requirements. Reusing the same instantiation of 
the test cases directly without having to rewrite them is a significant efficiency benefit. To directly reuse 
test cases, the tool chain being used for Model-Based Design must support PIL testing.  

HARDWARE DEVELOPMENT WORKFLOW EXAMPLE 

When using Model-Based Design, the process for developing complex electronics such as FPGAs 
and ASICs is very similar to the process for developing software. In fact, one of the significant 
advantages of Model-Based Design is that the modeling portion can be abstracted from the target 
implementation. As a result an algorithm that meets the requirements can be developed before the target 
implementation is even known. This is illustrated in the hardware development workflow example shown 
in Figure 5. 
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Figure 5: Hardware development workflow 

This workflow mirrors the software workflow from requirements through verification of the model 
against the requirements. In fact, the process is the same through traceability of the code to the model. 
This portion of the workflow is the same regardless of whether the target is software or hardware. An 
overview of the Model-Based Design hardware development workflow follows. The discussion is less 
detailed than in the section on software development because in many steps (for example, traceability) the 
concepts and the workflow are essentially the same.   

Additional Modeling Considerations 

For hardware development, models must be elaborated to include fixed-point design considerations. 
Hardware development may also require elaboration to specify implementation details such as pipelining 
and parallel versus serial implementations. This is similar to the elaboration of a model with multiple 
sampling rates for software development, though the modeling constructs are different. As models evolve, 
the test cases can be reused to verify that designs still meet their requirements. 

Automatic HDL Generation 

In the case of hardware design, the design will be implemented in hardware description language 
(HDL) or Verilog code. Just as for software, this implementation can be automatically generated from the 
model in a Model-Based Design environment. The same benefits are also realized, specifically the 
reduced likelihood of translation errors and the ability to more quickly propagate changes from the model 
to the code. 

Tracing the HDL to the Model and Requirements 
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For the same reasons enumerated in the software workflow, traceability of the HDL to the model and 
requirements is required. Using Model-Based Design, the capabilities for maintaining and reporting on 
traceability from requirements to model to HDL code are the same as for software (see figure 5). 

 

Figure 6: Generated HDL code from Simulink HDL CoderConforming to HDL Standards 

Similar to software, organizations have developed coding standards for VHDL.  One example is the 
set of VHDL standards developed by the European Space Agency6.   Ultimately, HDL checking is 
performed in an HDL authoring tool. However, as with software, model structure and configuration 
options can affect generated code. Proper enforcement of standards at the model level will help in 
generating HDL code that also conforms to standards.  

Verifying the HDL against the Model  

HDL differs from c-code in that it can be simulated before being synthesized and deployed to 
hardware. As a result, there is an additional verification step required. In order to verify generated HDL, it 
can be cosimulated with Simulink®. Cosimulation allows test cases to be reused and results to be 
compared with those from the original design. This is roughly equivalent to SIL testing in the software 
development workflow.  

DO-254 Levels A & B require code coverage, although less specific guidance is given compared to 
DO-178B. While HDL coverage is measured within the HDL simulation environment, the process of 
ensuring coverage is essentially the same as that for software. Developing test cases that prove 
requirements are met and fully exercise the design at the model level can streamline or reduce testing at 
the HDL level.  

Verifying the Netlist against Hardware Synthesis 

A major difference between software and hardware development is evident at the compile phase. 
Whereas software is compiled from source code into object code, HDL code is first synthesized before 
going through place and route for final implementation on the target hardware. The same cosimulation 
capabilities for the HDL code exist for cosimulating the netlist, however simulation is much slower.  

Verifying the Hardware against Requirements 

Place and route is the final stage in hardware implementation, and it produces an FPGA or ASIC. The 
output produced by this hardware must also be compared with the output from models and the expected 
output defined in the requirements to help ensure that requirements are still being met. This is 
accomplished using hardware-in-the-loop (HIL) testing. Again, test cases and analyses used at the model 
and HDL cosimulation stages can be reused. The software equivalent of HIL testing is PIL testing.  

Additional Notes on Hardware Development 
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EDA tool vendors provide additional tools for hardware verification. For example, equivalency 
checking tools based on formal methods can be used to prove the equivalency between HDL and the 
netlist. There are also tools focused on analyzing implementation effects rather than algorithmic effects. 
An example is static timing analysis tools, which help ensure the algorithm will perform as expected on 
hardware despite manufacturing variations, temperature changes, voltage fluctuations, and so on. These 
tools can complement the workflow discussed here.  

CONCLUSION 

This paper introduced a rigorous Model-Based Design process for software and hardware 
development. Each step of the development process was described, and in some cases tools to aid in 
individual steps were identified.  

Model-Based Design provides a common design workflow for both software and hardware 
development projects. This allows acceleration of the design process as model development can begin 
before the target is chosen. Furthermore, rework is significantly reduced if the desired target (software or 
hardware) is changed late in the development process.  At an organizational level, increased consistency 
between software and hardware development processes can reduce the number of tools and processes to 
be managed.   

The automation and reuse of test cases provide significant cost and schedule benefits compared to a 
traditional development process. These benefits stem from the ability to author test cases based on 
requirements just once, and execute these test cases in an automated way on a model, on software 
compiled locally or running on a target processor, or hardware designs being co-simulated or running on a 
target FPGA or ASIC. 

The ability to automatically generate documentation and artifacts, particularly during the cyclical 
process of change requests and regression testing, also provides significant time and cost savings. The 
most rigorous processes require that each step in the workflows discussed above must be documented. In 
a traditional development process, this requires a significant amount of manual effort. This effort is 
magnified by the repetitive nature of these tasks. Model-Based Design enables many documentation steps 
to be automated efficiently. 

While a thorough discussion is beyond the scope of this paper, it should be noted that many safety 
standards, including DO-178B, DO-278, and DO-254 allow for verification tools to be qualified.  
Qualifying a verification tool allows certain steps in the certification process to be skipped or streamlined.  
Tool qualification can further magnify the cost savings realized by automation. Please see Model-Based 
Design for DO-178B with Qualified Tools3 for a detailed discussion on tool qualification for DO-178B 
certification.  

Like many industries, the aerospace industry is seeing a continued increase in the amount and 
complexity of embedded software and hardware. In this environment, finding more efficient methods to 
develop these systems while also maintaining the highest levels of quality is essential. Model-Based 
Design provides an efficient process to develop, verify, validate, and document complex embedded 
systems.   
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