
08AE-22

Automatic Code Generation – Technology Adoption Lessons
Learned from Commercial Vehicle Case Studies

Tom Erkkinen
The MathWorks, Inc.

Scott Breiner
John Deere

Copyright © 2007 The MathWorks, Inc

ABSTRACT

Using Model-Based Design, engineers model complex
systems and simulate them on their desktop
environment for analysis and design purposes. Model-
Based Design supports a wide variety of C/C++ code
generation applications that include stand-alone
simulation, rapid control prototyping, hardware-in-the-
loop testing, and production or embedded code
deployment.

Many of these code generation scenarios impose
different requirements on the generated code. Stand-
alone simulations usually need to run fast, for parameter
sweep or Monte Carlo studies, but do not need to
execute in true hard real-time. Hardware-in-the-loop
tests by definition use engine control unit (ECU)
component hardware that requires a hard real-time
execution environment to protect the physical devices.
Code generated for production ECUs must satisfy hard
real-time, efficiency, legacy code, and other
requirements involving verification and validation efforts.

With Model-Based Design, the functional behavior of the
model needs to match that of the generated code. As a
result the transformation of models into generated code
must include necessary deployment and real-time
artifacts to ensure that the code executes properly in the
final software and hardware environments.

For example, in a typical commercial vehicle use case, a
diesel engine control algorithm and engine plant model
are simulated together as a hybrid system. The plant
model is input into the code generator for deployment in
a hard real-time HIL lab. Code generation for the engine
control algorithm is often done in two, or even three,
phases. First, the code is generated for real-time rapid
control prototyping for algorithm assessment and
refinement. Next, the code may be generated for
execution on the actual embedded microprocessor
during on-target rapid prototyping for algorithm
assessment on the ECU hardware. Finally, the code is

generated for production ECUs and several verification
steps are employed, including software-in-the-loop (SIL),
processor-in-the-loop (PIL), and finally hardware-in-the-
loop (HIL) testing.

Organizations moving from traditional waterfall
processes that involve paper documents and hand code
to Model-Based Design face challenges familiar to those
who have followed other technology migrations, such as
drafting tables to CAD systems or Assembly language to
C code. These challenges center on how to:

• best leverage the technology

• reuse existing process

• pace the transition

• develop necessary skills sets and training

This paper describes case studies on how John Deere
adopted Model-Based Design for commercial vehicle
development and discusses the benefits and lessons
learned.

INTRODUCTION TO MODEL-BASED DESIGN

A model represents a dynamic system whose response
at any time is a mathematical function based on its
inputs, current state, and current time. Historically,
system engineers have used block diagrams as shown
in Figure 1 to create models and design algorithms
within numerous engineering areas such as Feedback
Control and Signal Processing. In recent years,
graphical modeling environments consisting of block
diagrams and
state machines have been used to analyze, simulate,
prototype, specify, and deploy software algorithms within
a variety embedded systems and applications. Model-
Based Design refers to the use of models and modeling
environments as the basis for embedded system
development.

OutputPlant
Environment

Embedded
System

Input

+ -

Figure 1: Feedback controller model.

Examples of systems developed using Model-Based
Design include:
• Aircraft avionic systems
• Commercial vehicle electronics
• Power plant regulators
• Digital motor controllers
• Medical devices
• Audio and video signal processors

Model-Based Design is used throughout the system
development life cycle because it focuses on producing
design flows that lead toward continuous verification and
validation of requirements, designs, and
implementations. This approach is important for formal
software processes as well as risk management of any
project that finds solace in error prevention and early
error detection.

The main activities that occur during Model-Based
Design include:
• Modeling
• Simulation
• Rapid prototyping
• Embedded deployment
• In-the-loop testing
• Integral activities

MODELING – A block diagram model of a dynamic
system is represented schematically as a collection of
blocks interconnected by lines that represent signals.
The signals are the inputs, outputs, and states of the
blocks processed.

Blocks and lines can be real or virtual. Virtual blocks or
lines have no effect on the simulation results but aid in
constructing or understanding diagrams. Blocks and
subsystems, whether they are real or virtual, can be
stored in custom libraries to facilitate reuse and
abstraction.

Models can be classified in many ways. One method
involves whether the model contains continuous or
discrete dynamics. A continuous-time system is a
system in which the evolutions of the system results are
continuously changing. Continuous system models are
used to represent analog signals or real-world effects
where time continues without interruption.

A discrete-time system is one in which the evolution of
the system results are tracked at finite intervals of time.
One example of a discrete-time system is an embedded
microprocessor because it relies on clocks or interrupts
to begin executing the software. A typical system model
is hybrid and contains both continuous-time and
discrete-time dynamics. Simulation and code generation
are integral parts of Model-Based Design. It is important
that hybrid models can be simulated and used for code
generation.

SIMULATION - Integration is one of the key aspects of
dynamic system simulation. During simulation,
continuous-time signals are changed using numerical
integration solvers. There are many solvers within
Model-Based Design environments. They are classified
into fixed-step and variable-step solvers.

As the name implies, fixed-step solvers use explicit
methods to compute the next continuous state at fixed
periodic intervals of time. A variable-step system uses
explicit or implicit methods to compute the next
continuous state at non-periodic intervals of time. A
sample time also needs to be selected. For fixed-step
solvers the sample time is the fixed step time. For
variable-step solvers, the sample time is the maximum
allowable sample time. Ultimately, the goal during
simulation is to choose a sample time and integration
method that will provide an accurate approximation of
the continuous system’s behavior but run reasonably
fast. However, variable step solvers and continuous-time
systems don’t lend themselves to deterministic real-time
executables, so this combination should be used
sparingly on portions of the model that are targeted for
embedded code generation.

Discrete systems, on the other hand, have their states
explicitly updated and are well suited for code
generation. They execute at the appropriate sample
time, or interrupt, and generate outputs. If a system has
only one sample time, it is single rate. If the system has
multiple sample times, it is multirate. Multirate systems
can be evaluated (executed) using either a single-
tasking form of execution or a multitasking form. When
multitasking execution is used, it often conforms to rate
monotonic scheduling principals.

Finally, simulation can be accomplished in two ways.
One way is to use an in-memory representation of the
systems and execute the simulation in an interpretive
mode. The other way is to generate code from the model
and execute the code using a technique of simulation
through code generation. Interpretive simulation
provides users with more control of the execution
environment and interaction capabilities, but it can be
slow for large models. Simulation through code
generation provides less user interaction but more
speed. For this reason, it is also known as simulation
acceleration.

RAPID PROTOTYPING - In bypass rapid prototyping,
code is generated from the controller or algorithm model.
The code is then cross-compiled and downloaded to a
high-speed, often floating-point, rapid-prototyping
computer where it executes in real time. I/O is typically
managed by memory pod or emulation device that is
connected to both the rapid prototyping computer and an
existing ECU, perhaps still residing in a vehicle. Other
I/O options include communication via buses, such as
CAN, or other I/O devices, which may require some
custom signal processing and power electronics. The
controller parameters are tweaked “on-the-fly” during
test drives or in the lab involving the actual plant (e.g.,
engine) and allowing for the insertion of new code to
bypass existing ECU code. Success is declared when
performance requirements are met, proving that the new
algorithm is feasible. See Figure 2.

Figure 2: Bypass rapid prototyping.

In on-target rapid prototyping, as with bypass rapid
prototyping, code is generated just for the controller
portion of the model. However, the code is then cross-
compiled and downloaded to the embedded
microprocessor or ECU used in production, or perhaps
to a close approximation of it configured with a little
more memory and I/O. On-target rapid prototyping often
uses an integer processor and thus needs a more
detailed, fixed-point model, as opposed to the floating-
point processors and models used for bypass rapid
prototyping. I/O is managed via standard ECU devices.

The host computer then interfaces directly with the on-
target rapid-prototyping ECU hardware, perhaps residing
in fleet vehicles. Controller parameters are tweaked “on-
the-fly.” Success is declared when performance
requirements are met, proving that the new algorithm is
both feasible and practical; it will work in a production,
resource-constrained, environment. See Figure 3.

EMBEDDED DEPLOYMENT - After rapid prototyping, a
detailed software design activity is often undertaken to
convert the controller model to a detailed, executable
software specification.

Figure 3: On-target rapid prototyping.

There are a number of topics involved here, such as
fixed-point data types, function and file partition,
defensive programming measures, startup and
shutdown procedures, and diagnostics and built-in test
routines. The model is in effect constrained and
elaborated to perform properly on embedded system
hardware.

Embedded code is then generated for the detailed
controller model and downloaded to the actual
embedded microprocessor or ECU as part of the
production software build. No simulation activity is
associated with this step. The key here is to ensure that
the final build has fully integrated the automatically
generated code with existing legacy code, I/O drivers,
and real-time operating system (RTOS) software.

There are two approaches to code-generation
embedded deployment. The first approach is to generate
code for the functions and then integrate into the overall
hand written application. A second, emerging approach
is to use the model to generate the entire application.
The first approach is more commonly used today. See
Figure 4.

Figure 4: Embedded code deployment using function
generation.

IN-THE-LOOP TESTING -Simulation of models is one of
the first verification and validation (V&V) steps. Testing
models via simulation requires a more rigorous
approach than the ad-hoc simulation runs that are often
used in early algorithm development. Model testing
involves a formal approach to the creation and execution
of test cases. Special blocks, such as signal builders
and assertions, facilitate this type of formal test
procedure. New tools are emerging to assist with model
V&V based on V&V techniques applied on the code,
such as structural coverage analysis and test
generation.

Software-in-the-loop (SIL) testing involves executing the
production code for the controller within the modeling
environment for non-real-time execution with the plant
model and interaction with the user. The code executes
on the same host platform that is used by the modeling
environment. A code wrapper of the generated code
provides the interface between the simulation and the
generated code. See Figure 5.

Figure 5: Software-in-the-loop testing.

Processor-in-the-loop (PIL) testing is similar to SIL in
that it too executes the production code for the
controller. However the code executes on the actual
embedded processor or an instruction set simulator, so
that this verifies the code behavior on the actual target.
Real I/O via CAN or serial devices are used to pass data
between the production code executing on the processor
and a p lant model execut ing in the model ing
environment. As with SIL, PIL testing is a non-real-time
execut ion scenar io as shown in F igures 6-7.

Figure 6: Processor-in-the-loop testing using direct
hardware connection.

Figure 7: Processor-in-the-loop testing using Instruction
Set Simulator.

For hardware-in-the-loop (HIL) testing, the code is
generated just for the plant model. It runs on a highly
deterministic, real-time computer. Sophisticated signal
conditioning and power electronics are needed to
properly stimulate the ECU inputs (sensors) and receive
the ECU outputs (actuator commands). Whereas rapid
prototyping is often a development or design activity, HIL
serves as a final lab test phase before final system
integration and field tests commence. See Figure 8.

 Figure 8: Hardware-in-the-loop testing.

INTEGRAL ACTIVITIES - Model-Based Design
environments automate the generation of documentation
from models. In one case, documentation is done in
template form letting users specify the content of each
documentation section. Requirements traceability is
accomplished using interfaces between blocks in the
model and existing requirement management sources.
The code generated from the model can also be traced
back to the block, letting auditors trace high-level
requirements all the way to the code. As with
requirements management, source control for a model is
accomplished outside the modeling environment using
existing source control products. Interfaces are provided
that let developers check in and check out models as
well as document the changes.

CASE STUDY – JOHN DEERE CONSTRUCTION
AND FORESTRY

The Construction and Forestry Division of John Deere is
employing Model-Based Design on several 2008
production programs, including a crawler tractor
program. A significant aspect of these projects is that
100% of the application code is automatically being
generated using Real-Time Workshop® Embedded
Coder. Real-Time Workshop Embedded Coder
generates the entire algorithm portion of the application
(85-90%) and automatically includes the required
interfaces to the rest of the operating system code.
Unlike function-based code generation in Figure 4,
application-based code generation outputs the complete
executable including John Deere Operating System
(JDOS) services and fault codes, as shown in Figure 9.

Figure 9: Full embedded application deployment using
JDOS.

For the crawler tractor, John Deere used Model-Based
Design to implement advanced functions that
synchronize the left and right crawler speeds for even
tracking and include added functions that will smooth the
starting and stopping motion.

By developing an application-based automatic code
generation environment, John Deere was able to reduce
the amount of hand integration required for auto-code
generation and remove unnecessary wrapper code. As
part of this effort, they were also able to keep the
automatically generated code better synchronized with
the production software while reducing maintenance
issues. Finally, John Deere was able to develop a single
model for the complete application that was used for
both on-target rapid prototyping and production code
deployment as described earlier in this paper.

A basic JDOS Library was created in Simulink® to read
and write variables, plus handle fault codes. It uses a
VAR Manager that was constructed with help from The
MathWorksTM consulting services. The VAR Manager
gives access to all existing I/O variables. These

variables are read into the model from a header file and
are available to the model developer via the ReadVar,
WriteVar Mask. If a new variable is required in the
model, the user can add the variable to the list via the
VAR Manager interface. A header file is automatically
recreated during the code generation process that keeps
the model algorithm code synchronized with the
operating system and I/O code.

Figure 10 shows an example model that uses several
JDOS Library blocks and shows the VAR Manager
interfaces. Code generation and the header file creation
are done via the custom menu selection in Figure 11.

Figure 10: Top-level model showing example JDOS
library blocks.

Figure 11: Custom menu for generating production code
and custom headers.

The top-level model in Figure 10 shows the basic model
architecture of reading in measurements and variables
using CAN, doing input signal handling, performing the
algorithm calculation, and writing outputs and
commands using CAN.

For this model, the Input Handler subsystem scales the
Shaft Speed signal appropriately for use later in the

Ground Speed Equation subsystem. Prior to scaling, the
Input Handler uses a custom block (Input Chooser),
which was built by John Deere to determine whether the
application or environment is a simulator or embedded
system. If the application is for simulation or rapid
prototyping, then specially prepared simulation inputs
are accessed and used to execute and test the algorithm
(Input_Chooser_RP). If the application is for code
generated and running on the embedded system, then
the actual CAN messages are accessed and processed
(Input_Choser_CG). By using an input selector
technique, John Deere is able to use a single model for
multiple purposes: simulation, rapid prototyping, and
production.

The custom tool menu in Figure 11 shows a variety of
tools and applications in addition to the custom header
file creation. Creating custom menus and dialogs in
Simulink is straightforward and requires a customization
file (sl_customization.m) that is placed on the MATLAB®
path. At the bottom of the menu is a “Build the software
…” menu option.

By selecting this option, the full production build process
begins as follows:
1. Simulink Model Advisor is invoked to check if model

is suitable for production.
2. C Code is generated for the algorithm with JDOS

interfaces and header files.
3. JDOS code is linked in.
4. The complete executable is cross-compiled and

built.

By using this master build technique; John Deere can
use the model as the primary maintenance mechanism
for their entire production software process. The code
builds the same way every time by generating the same
number of files with the same interfaces (e.g.,
modelname_step, modelname_initialize, …).

One of the main benefits to using Model-Based Design
is that it lets John Deere reduce the need for expensive
rapid-prototyping hardware ($30,000 vs. $200). For
example, John Deere’s rapid prototyping can mainly be
done on a simple ST10 development board as opposed
to using a powerful real-time system simulator.
Prototyping directly on the target eliminates the need for
creating custom bypass controllers, which not only add
delays to the program, but also add delays (latencies) to
the I/O and data processing, making it difficult to
estimate the algorithm’s true target performance.

By using application-focused Model-Based Design, John
Deere now ensures that the early algorithm designs are
quickly tested in a production hardware environment,
which imposes CPU and memory limitations on the
model designer. This testing promotes good modeling
practices and helps ensure that algorithms can make it
into the field.

The Model-Based Design focus at John Deere currently
also includes:
• Improving functionality of the JDOS library
• Establishing modeling design guidelines (using

MAAB as the starting point)
• Automatically configuring the automatic code

generation environment with existing code and I/O
drivers

• Integrating CCP protocol into JDOS, using John
Deere’s own CCP

• Utilizing more model validation and verification tools

CONCLUSION

Automatic code generation with Model-Based Design is
an important technology that offers embedded system
developers a number of advanced options for
prototyping, deploying, and verifying production
software. It is important to understand the potential
applications of code generation. But technology alone is
not going to improve production processes. Embedded
system developers must also establish a production
workflow that leverages code generation technologies
and yet fits within well-established software engineer
principals, such as reducing complexity and establishing
proper configuration management and version control.

In the case study, John Deere focused their
development process on using single models for multiple
purposes and controlling the entire production build
process with a single source (the model). Thus, John
Deere leverages Model-Based Design with automatic
code generation but does so in way that greatly
facilitates maintenance and configuration management
for their production workflows.

John Deere is currently using on-target rapid prototyping
and production code generation for several production-
intent programs. Using on-target rapid prototyping
instead of traditional rapid prototyping on real-time
computers has saved time and reduced costs. Reusing
the models for production deployment on embedded
ECUs provides additional returns on their Model-Based
Design investments.

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology, SimHydraulics, SimEvents, and xPC TargetBox are registered
trademarks and The MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are trademarks of The MathWorks, Inc. Other
product or brand names are trademarks or registered trademarks of their respective holders.

