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ABSTRACT 

Using Model-Based Design, engineers model complex 
systems and simulate them on their desktop 
environment for analysis and design purposes. Model-
Based Design supports a wide variety of C/C++ code 
generation applications that include stand-alone 
simulation, rapid control prototyping, hardware-in-the-
loop testing, and production or embedded code 
deployment. 

Many of these code generation scenarios impose 
different requirements on the generated code. Stand-
alone simulations usually need to run fast, for parameter 
sweep or Monte Carlo studies, but do not need to 
execute in true hard real-time. Hardware-in-the-loop 
tests by definition use engine control unit (ECU) 
component hardware that requires a hard real-time 
execution environment to protect the physical devices. 
Code generated for production ECUs must satisfy hard 
real-time, efficiency, legacy code, and other 
requirements involving verification and validation efforts. 

With Model-Based Design, the functional behavior of the 
model needs to match that of the generated code. As a 
result the transformation of models into generated code 
must include necessary deployment and real-time 
artifacts to ensure that the code executes properly in the 
final software and hardware environments. 

For example, in a typical commercial vehicle use case, a 
diesel engine control algorithm and engine plant model 
are simulated together as a hybrid system. The plant 
model is input into the code generator for deployment in 
a hard real-time HIL lab. Code generation for the engine 
control algorithm is often done in two, or even three, 
phases. First, the code is generated for real-time rapid 
control prototyping for algorithm assessment and 
refinement. Next, the code may be generated for 
execution on the actual embedded microprocessor 
during on-target rapid prototyping for algorithm 
assessment on the ECU hardware. Finally, the code is 

generated for production ECUs and several verification 
steps are employed, including software-in-the-loop (SIL), 
processor-in-the-loop (PIL), and finally hardware-in-the-
loop (HIL) testing. 

Organizations moving from traditional waterfall 
processes that involve paper documents and hand code 
to Model-Based Design face challenges familiar to those 
who have followed other technology migrations, such as 
drafting tables to CAD systems or Assembly language to 
C code. These challenges center on how to: 

• best leverage the technology 

• reuse existing process 

• pace the transition 

• develop necessary skills sets and training 

This paper describes case studies on how John Deere 
adopted Model-Based Design for commercial vehicle 
development and discusses the benefits and lessons 
learned.  

INTRODUCTION TO MODEL-BASED DESIGN 

A model represents a dynamic system whose response 
at any time is a mathematical function based on its 
inputs, current state, and current time. Historically, 
system engineers have used block diagrams as shown 
in Figure 1 to create models and design algorithms 
within numerous engineering areas such as Feedback 
Control and Signal Processing. In recent years, 
graphical modeling environments consisting of block 
diagrams and  
state machines have been used to analyze, simulate, 
prototype, specify, and deploy software algorithms within 
a variety embedded systems and applications. Model-
Based Design refers to the use of models and modeling 
environments as the basis for embedded system 
development.  
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Figure 1: Feedback controller model. 

Examples of systems developed using Model-Based 
Design include: 
• Aircraft avionic systems 
• Commercial vehicle electronics 
• Power plant regulators  
• Digital motor controllers 
• Medical devices 
• Audio and video signal processors 
 
Model-Based Design is used throughout the system 
development life cycle because it focuses on producing 
design flows that lead toward continuous verification and 
validation of requirements, designs, and 
implementations. This approach is important for formal 
software processes as well as risk management of any 
project that finds solace in error prevention and early 
error detection. 

The main activities that occur during Model-Based 
Design include: 
• Modeling 
• Simulation 
• Rapid prototyping 
• Embedded deployment 
• In-the-loop testing 
• Integral activities 
 
MODELING – A block diagram model of a dynamic 
system is represented schematically as a collection of 
blocks interconnected by lines that represent signals. 
The signals are the inputs, outputs, and states of the 
blocks processed.  

Blocks and lines can be real or virtual. Virtual blocks or 
lines have no effect on the simulation results but aid in 
constructing or understanding diagrams. Blocks and 
subsystems, whether they are real or virtual, can be 
stored in custom libraries to facilitate reuse and 
abstraction. 

Models can be classified in many ways. One method 
involves whether the model contains continuous or 
discrete dynamics. A continuous-time system is a 
system in which the evolutions of the system results are 
continuously changing. Continuous system models are 
used to represent analog signals or real-world effects 
where time continues without interruption.  

A discrete-time system is one in which the evolution of 
the system results are tracked at finite intervals of time. 
One example of a discrete-time system is an embedded 
microprocessor because it relies on clocks or interrupts 
to begin executing the software. A typical system model 
is hybrid and contains both continuous-time and 
discrete-time dynamics. Simulation and code generation 
are integral parts of Model-Based Design. It is important 
that hybrid models can be simulated and used for code 
generation. 

SIMULATION - Integration is one of the key aspects of 
dynamic system simulation. During simulation, 
continuous-time signals are changed using numerical 
integration solvers. There are many solvers within 
Model-Based Design environments. They are classified 
into fixed-step and variable-step solvers.  

As the name implies, fixed-step solvers use explicit 
methods to compute the next continuous state at fixed 
periodic intervals of time. A variable-step system uses 
explicit or implicit methods to compute the next 
continuous state at non-periodic intervals of time. A 
sample time also needs to be selected. For fixed-step 
solvers the sample time is the fixed step time. For 
variable-step solvers, the sample time is the maximum 
allowable sample time. Ultimately, the goal during 
simulation is to choose a sample time and integration 
method that will provide an accurate approximation of 
the continuous system’s behavior but run reasonably 
fast. However, variable step solvers and continuous-time 
systems don’t lend themselves to deterministic real-time 
executables, so this combination should be used 
sparingly on portions of the model that are targeted for 
embedded code generation. 

Discrete systems, on the other hand, have their states 
explicitly updated and are well suited for code 
generation. They execute at the appropriate sample 
time, or interrupt, and generate outputs. If a system has 
only one sample time, it is single rate. If the system has 
multiple sample times, it is multirate. Multirate systems 
can be evaluated (executed) using either a single-
tasking form of execution or a multitasking form. When 
multitasking execution is used, it often conforms to rate 
monotonic scheduling principals. 

Finally, simulation can be accomplished in two ways. 
One way is to use an in-memory representation of the 
systems and execute the simulation in an interpretive 
mode. The other way is to generate code from the model 
and execute the code using a technique of simulation 
through code generation. Interpretive simulation 
provides users with more control of the execution 
environment and interaction capabilities, but it can be 
slow for large models. Simulation through code 
generation provides less user interaction but more 
speed. For this reason, it is also known as simulation 
acceleration. 



RAPID PROTOTYPING - In bypass rapid prototyping, 
code is generated from the controller or algorithm model. 
The code is then cross-compiled and downloaded to a 
high-speed, often floating-point, rapid-prototyping 
computer where it executes in real time. I/O is typically 
managed by memory pod or emulation device that is 
connected to both the rapid prototyping computer and an 
existing ECU, perhaps still residing in a vehicle. Other 
I/O options include communication via buses, such as 
CAN, or other I/O devices, which may require some 
custom signal processing and power electronics. The 
controller parameters are tweaked “on-the-fly” during 
test drives or in the lab involving the actual plant (e.g., 
engine) and allowing for the insertion of new code to 
bypass existing ECU code. Success is declared when 
performance requirements are met, proving that the new 
algorithm is feasible. See Figure 2. 

 

Figure 2: Bypass rapid prototyping. 

In on-target rapid prototyping, as with bypass rapid 
prototyping, code is generated just for the controller 
portion of the model. However, the code is then cross-
compiled and downloaded to the embedded 
microprocessor or ECU used in production, or perhaps 
to a close approximation of it configured with a little 
more memory and I/O. On-target rapid prototyping often 
uses an integer processor and thus needs a more 
detailed, fixed-point model, as opposed to the floating-
point processors and models used for bypass rapid 
prototyping. I/O is managed via standard ECU devices.  

The host computer then interfaces directly with the on-
target rapid-prototyping ECU hardware, perhaps residing 
in fleet vehicles. Controller parameters are tweaked “on-
the-fly.” Success is declared when performance 
requirements are met, proving that the new algorithm is 
both feasible and practical; it will work in a production, 
resource-constrained, environment. See Figure 3. 

EMBEDDED DEPLOYMENT - After rapid prototyping, a 
detailed software design activity is often undertaken to 
convert the controller model to a detailed, executable 
software specification. 

 

 

 

 

 

 

 

 

 

Figure 3: On-target rapid prototyping. 

There are a number of topics involved here, such as 
fixed-point data types, function and file partition, 
defensive programming measures, startup and 
shutdown procedures, and diagnostics and built-in test 
routines. The model is in effect constrained and 
elaborated to perform properly on embedded system 
hardware. 

Embedded code is then generated for the detailed 
controller model and downloaded to the actual 
embedded microprocessor or ECU as part of the 
production software build. No simulation activity is 
associated with this step. The key here is to ensure that 
the final build has fully integrated the automatically 
generated code with existing legacy code, I/O drivers, 
and real-time operating system (RTOS) software.  

There are two approaches to code-generation 
embedded deployment. The first approach is to generate 
code for the functions and then integrate into the overall 
hand written application. A second, emerging approach 
is to use the model to generate the entire application. 
The first approach is more commonly used today. See 
Figure 4. 

 

 

 

 

 

 

 

 

Figure 4: Embedded code deployment using function 
generation. 



IN-THE-LOOP TESTING -Simulation of models is one of 
the first verification and validation (V&V) steps. Testing 
models via simulation requires a more rigorous 
approach than the ad-hoc simulation runs that are often 
used in early algorithm development. Model testing 
involves a formal approach to the creation and execution 
of test cases. Special blocks, such as signal builders 
and assertions, facilitate this type of formal test 
procedure. New tools are emerging to assist with model 
V&V based on V&V techniques applied on the code, 
such as structural coverage analysis and test 
generation.  

Software-in-the-loop (SIL) testing involves executing the 
production code for the controller within the modeling 
environment for non-real-time execution with the plant 
model and interaction with the user. The code executes 
on the same host platform that is used by the modeling 
environment. A code wrapper of the generated code 
provides the interface between the simulation and the 
generated code. See Figure 5. 

 

 

 

 

 

 

Figure 5: Software-in-the-loop testing. 

Processor-in-the-loop (PIL) testing is similar to SIL in 
that it too executes the production code for the 
controller. However the code executes on the actual 
embedded processor or an instruction set simulator, so 
that this verifies the code behavior on the actual target. 
Real I/O via CAN or serial devices are used to pass data 
between the production code executing on the processor 
and a p lant  model  execut ing in the model ing 
environment. As with SIL, PIL testing is a non-real-time 
execut ion scenar io  as shown in  F igures 6-7. 

 
 

 

 

 

 

 

Figure 6: Processor-in-the-loop testing using direct 
hardware connection. 

Figure 7: Processor-in-the-loop testing using Instruction 
Set Simulator. 

For hardware-in-the-loop (HIL) testing, the code is 
generated just for the plant model. It runs on a highly 
deterministic, real-time computer. Sophisticated signal 
conditioning and power electronics are needed to 
properly stimulate the ECU inputs (sensors) and receive 
the ECU outputs (actuator commands). Whereas rapid 
prototyping is often a development or design activity, HIL 
serves as a final lab test phase before final system 
integration and field tests commence. See Figure 8. 

  Figure 8: Hardware-in-the-loop testing. 

INTEGRAL ACTIVITIES - Model-Based Design 
environments automate the generation of documentation 
from models. In one case, documentation is done in 
template form letting users specify the content of each 
documentation section. Requirements traceability is 
accomplished using interfaces between blocks in the 
model and existing requirement management sources. 
The code generated from the model can also be traced 
back to the block, letting auditors trace high-level 
requirements all the way to the code. As with 
requirements management, source control for a model is 
accomplished outside the modeling environment using 
existing source control products. Interfaces are provided 
that let developers check in and check out models as 
well as document the changes. 



CASE STUDY – JOHN DEERE CONSTRUCTION 
AND FORESTRY 

The Construction and Forestry Division of John Deere is 
employing Model-Based Design on several 2008 
production programs, including a crawler tractor 
program. A significant aspect of these projects is that 
100% of the application code is automatically being 
generated using Real-Time Workshop® Embedded 
Coder. Real-Time Workshop Embedded Coder 
generates the entire algorithm portion of the application 
(85-90%) and automatically includes the required 
interfaces to the rest of the operating system code. 
Unlike function-based code generation in Figure 4, 
application-based code generation outputs the complete 
executable including John Deere Operating System 
(JDOS) services and fault codes, as shown in Figure 9. 

 

Figure 9: Full embedded application deployment using 
JDOS. 

For the crawler tractor, John Deere used Model-Based 
Design to implement advanced functions that 
synchronize the left and right crawler speeds for even 
tracking and include added functions that will smooth the 
starting and stopping motion.  

By developing an application-based automatic code 
generation environment, John Deere was able to reduce 
the amount of hand integration required for auto-code 
generation and remove unnecessary wrapper code. As 
part of this effort, they were also able to keep the 
automatically generated code better synchronized with 
the production software while reducing maintenance 
issues. Finally, John Deere was able to develop a single 
model for the complete application that was used for 
both on-target rapid prototyping and production code 
deployment as described earlier in this paper. 

A basic JDOS Library was created in Simulink® to read 
and write variables, plus handle fault codes. It uses a 
VAR Manager that was constructed with help from The 
MathWorksTM consulting services. The VAR Manager 
gives access to all  existing I/O variables. These 

variables are read into the model from a header file and 
are available to the model developer via the ReadVar, 
WriteVar Mask. If a new variable is required in the 
model, the user can add the variable to the list via the 
VAR Manager interface. A header file is automatically 
recreated during the code generation process that keeps 
the model algorithm code synchronized with the 
operating system and I/O code.  

Figure 10 shows an example model that uses several 
JDOS Library blocks and shows the VAR Manager 
interfaces. Code generation and the header file creation 
are done via the custom menu selection in Figure 11. 

 

 

 

 

 

 

 

 

 

Figure 10: Top-level model showing example JDOS 
library blocks.  

 

 

 

 

 

 

 

 

Figure 11: Custom menu for generating production code 
and custom headers. 

The top-level model in Figure 10 shows the basic model 
architecture of reading in measurements and variables 
using CAN, doing input signal handling, performing the 
algorithm calculation, and writing outputs and 
commands using CAN.  

For this model, the Input Handler subsystem scales the 
Shaft Speed signal appropriately for use later in the 



Ground Speed Equation subsystem. Prior to scaling, the 
Input Handler uses a custom block (Input Chooser), 
which was built by John Deere to determine whether the 
application or environment is a simulator or embedded 
system. If the application is for simulation or rapid 
prototyping, then specially prepared simulation inputs 
are accessed and used to execute and test the algorithm 
(Input_Chooser_RP). If the application is for code 
generated and running on the embedded system, then 
the actual CAN messages are accessed and processed 
(Input_Choser_CG). By using an input selector 
technique, John Deere is able to use a single model for 
multiple purposes: simulation, rapid prototyping, and 
production.  

The custom tool menu in Figure 11 shows a variety of 
tools and applications in addition to the custom header 
file creation. Creating custom menus and dialogs in 
Simulink is straightforward and requires a customization 
file (sl_customization.m) that is placed on the MATLAB® 
path. At the bottom of the menu is a “Build the software 
…” menu option.  

By selecting this option, the full production build process 
begins as follows: 
1. Simulink Model Advisor is invoked to check if model 

is suitable for production. 
2. C Code is generated for the algorithm with JDOS 

interfaces and header files. 
3. JDOS code is linked in. 
4. The complete executable is cross-compiled and 

built. 
 
By using this master build technique; John Deere can 
use the model as the primary maintenance mechanism 
for their entire production software process. The code 
builds the same way every time by generating the same 
number of files with the same interfaces (e.g., 
modelname_step, modelname_initialize, …). 

One of the main benefits to using Model-Based Design 
is that it lets John Deere reduce the need for expensive 
rapid-prototyping hardware ($30,000 vs. $200). For 
example, John Deere’s rapid prototyping can mainly be 
done on a simple ST10 development board as opposed 
to using a powerful real-time system simulator. 
Prototyping directly on the target eliminates the need for 
creating custom bypass controllers, which not only add 
delays to the program, but also add delays (latencies) to 
the I/O and data processing, making it difficult to 
estimate the algorithm’s true target performance. 

By using application-focused Model-Based Design, John 
Deere now ensures that the early algorithm designs are 
quickly tested in a production hardware environment, 
which imposes CPU and memory limitations on the 
model designer. This testing promotes good modeling 
practices and helps ensure that algorithms can make it 
into the field. 

The Model-Based Design focus at John Deere currently 
also includes: 
• Improving functionality of the JDOS library 
• Establishing modeling design guidelines (using 

MAAB as the starting point) 
• Automatically configuring the automatic code 

generation environment with existing code and I/O 
drivers 

• Integrating CCP protocol into JDOS, using John 
Deere’s own CCP 

• Utilizing more model validation and verification tools 
 
CONCLUSION  

Automatic code generation with Model-Based Design is 
an important technology that offers embedded system 
developers a number of advanced options for 
prototyping, deploying, and verifying production 
software. It is important to understand the potential 
applications of code generation. But technology alone is 
not going to improve production processes. Embedded 
system developers must also establish a production 
workflow that leverages code generation technologies 
and yet fits within well-established software engineer 
principals, such as reducing complexity and establishing 
proper configuration management and version control. 

In the case study, John Deere focused their 
development process on using single models for multiple 
purposes and controlling the entire production build 
process with a single source (the model). Thus, John 
Deere leverages Model-Based Design with automatic 
code generation but does so in way that greatly 
facilitates maintenance and configuration management 
for their production workflows. 

John Deere is currently using on-target rapid prototyping 
and production code generation for several production-
intent programs. Using on-target rapid prototyping 
instead of traditional rapid prototyping on real-time 
computers has saved time and reduced costs. Reusing 
the models for production deployment on embedded 
ECUs provides additional returns on their Model-Based 
Design investments. 
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