Livelli personalizzati di Deep Learning
Definire i livelli personalizzati di Deep Learning
È possibile definire un livello di apprendimento profondo personalizzato per il proprio problema. È possibile specificare una funzione di perdita personalizzata utilizzando livelli di output personalizzati e definire livelli personalizzati con o senza parametri apprendibili. Dopo aver definito un livello personalizzato, è possibile verificare che il livello sia valido, compatibile con la GPU e che produca gradienti definiti correttamente.
Funzioni
Argomenti
Panoramica sui livelli personalizzati
- Define Custom Deep Learning Layers
Learn how to define custom deep learning layers. - Define Custom Deep Learning Intermediate Layers
Learn how to define custom deep learning intermediate layers. - Define Custom Deep Learning Output Layers
Learn how to define custom deep learning output layers.
Livelli intermedi personalizzati
- Define Custom Deep Learning Layer with Learnable Parameters
This example shows how to define a PReLU layer and use it in a convolutional neural network. - Define Custom Deep Learning Layer with Multiple Inputs
This example shows how to define a custom weighted addition layer and use it in a convolutional neural network. - Define Custom Deep Learning Layer with Formatted Inputs
This example shows how to define a custom layer with formatteddlarray
inputs. - Define Custom Recurrent Deep Learning Layer
This example shows how to define a peephole LSTM layer and use it in a neural network. - Specify Custom Layer Backward Function
This example shows how to define a PReLU layer and specify a custom backward function. - Custom Layer Function Acceleration
Accelerate custom layer forward and predict functions by caching and reusing traces. - Define Custom Deep Learning Layer for Code Generation
This example shows how to define a PReLU layer that supports code generation. - Assemble Network from Pretrained Keras Layers
This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with custom layers, and assemble the layers into a network ready for prediction. - Replace Unsupported Keras Layer with Function Layer
This example shows how to import the layers from a pretrained Keras network, replace the unsupported layers with function layers, and assemble the layers into a network ready for prediction.
Livello di output personalizzati
- Define Custom Classification Output Layer
This example shows how to define a custom classification output layer with sum of squares error (SSE) loss and use it in a convolutional neural network. - Define Custom Regression Output Layer
This example shows how to define a custom regression output layer with mean absolute error (MAE) loss and use it in a convolutional neural network. - Specify Custom Output Layer Backward Loss Function
This example shows how to define a custom classification output layer with sum of squares error (SSE) loss and specify a custom backward loss function.
Composizione della rete e livelli annidati
- Deep Learning Network Composition
Define custom layers containing layer graphs. - Define Nested Deep Learning Layer
This example shows how to define a nested deep learning layer. - Train Deep Learning Network with Nested Layers
This example shows how to train a network with nested layers.
Validità dei livelli di verifica
- Check Custom Layer Validity
Learn how to check the validity of custom deep learning layers.