Main Content

Winding

Electromagnetic converter with ohmic and magnetic flux losses

  • Library:
  • Simscape / Electrical / Passive

  • Winding block

Description

The Winding block represents an electromagnetic converter with winding resistance and leakage reluctance. You can use this block as a base component for building custom transformers. For an ideal electromagnetic converter, see the Electromagnetic Converter.

When you apply a positive current across the electrical ports of the block, a positive magnetomotive force (MMF) is induced across the magnetic terminals.

F=Ni

Where:

  • is the MMF across the magnetic terminals of the block

  • N is the number of winding turns

  • i is the current through the winding

When you apply a positive time-varying flux across the magnetic terminals of the block, a negative voltage is induced across the electrical terminals of the block.

v=Ndϕdt+N2Rldidt+Rwi

Where:

  • φ is the flux through the magnetic terminals of the block

  • i is the current through the electrical terminals of the block

  • l is the leakage reluctance

  • Rw is the winding resistance

  • is the magnetomotive force across the magnetic terminals of the block

  • v is the voltage drop across the electrical terminals of the block

This figure shows the equivalent circuit for the block.

In the diagram, φmp corresponds to the main-path flux, or the flux through the main winding. You can set the initial condition for this flux in the block's Variables tab.

Ports

Conserving

expand all

Electrical conserving port associated with the positive terminal of the block.

Electrical conserving port associated with the negative terminal of the block.

Magnetic conserving port associated with the north terminal of the block.

Magnetic conserving port associated with the south terminal of the block.

Parameters

expand all

Number of wire turns on the transformer winding.

Power loss in the winding.

Magnetic flux loss in the winding.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Introduced in R2018a