crossval
Class: ClassificationDiscriminant
Cross-validated discriminant analysis classifier
Syntax
cvmodel = crossval(obj)
cvmodel = crossval(obj,Name,Value)
Description
creates
a partitioned model from cvmodel
= crossval(obj
)obj
, a fitted discriminant
analysis classifier. By default, crossval
uses 10-fold
cross validation on the training data to create cvmodel
.
creates
a partitioned model with additional options specified by one or more cvmodel
= crossval(obj
,Name,Value
)Name,Value
pair
arguments.
Input Arguments
|
Discriminant analysis classifier, produced using |
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
|
Object of class Use only one of these options at a time: Default: |
|
Holdout validation tests the specified fraction of the data,
and uses the rest of the data for training. Specify a numeric scalar
from |
|
Number of folds to use in a cross-validated classifier, a positive integer value greater than 1. Use only one of these options at a time: Default: 10 |
|
Set to Use only one of these options at a time: |
Examples
Create a classification model for the Fisher iris data, and
then create a cross-validation model. Evaluate the quality the model
using kfoldLoss
.
load fisheriris obj = fitcdiscr(meas,species); cvmodel = crossval(obj); L = kfoldLoss(cvmodel) L = 0.0200
Tips
Assess the predictive performance of
obj
on cross-validated data using the “kfold” methods and properties ofcvmodel
, such askfoldLoss
.
Alternatives
You can create a cross-validation classifier directly from the
data, instead of creating a discriminant analysis classifier followed
by a cross-validation classifier. To do so, include one of these options
in fitcdiscr
: 'CrossVal'
, 'CVPartition'
, 'Holdout'
, 'KFold'
,
or 'Leaveout'
.
See Also
fitcdiscr
| crossval
| kfoldEdge
| kfoldfun
| kfoldLoss
| kfoldMargin
| kfoldPredict