edge
Classification edge
Syntax
E = edge(ens,tbl,ResponseVarName)
E = edge(ens,tbl,Y)
E = edge(ens,X,Y)
E = edge(___,Name,Value)
Description
returns the classification edge for E
= edge(ens
,tbl
,ResponseVarName
)ens
with data
tbl
and classification
tbl.ResponseVarName
.
returns the classification edge for E
= edge(ens
,tbl
,Y
)ens
with data
tbl
and classification Y
.
returns the classification edge for E
= edge(ens
,X
,Y
)ens
with data
X
and classification Y
.
computes the edge with additional options specified by one or more
E
= edge(___,Name,Value
)Name,Value
pair arguments, using any of the previous
syntaxes.
Note
If the predictor data X
or the predictor variables in
tbl
contain any missing values, the
edge
function can return NaN. For more details,
see edge can return NaN for predictor data with missing values.
Input Arguments
|
A classification ensemble constructed with |
|
Sample data, specified as a table. Each row of If you trained |
|
Response variable name, specified as the name of a variable in
You must specify |
|
A matrix where each row represents an observation, and each column
represents a predictor. The number of columns in If you trained |
|
Class labels of observations in |
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
| Indices of weak learners in the ensemble ranging from Default: |
|
Meaning of the output
Default: |
|
A logical matrix of size When Default: |
| Indication to perform inference in parallel, specified as Default: |
|
Observation weights, a numeric vector of length
Default: |
Output Arguments
|
The classification edge, a vector or scalar depending on the setting of
the |