solution of equation code of transcedental equation

1 visualizzazione (ultimi 30 giorni)
function kps3
p0 = 0.5;
p1 = 1;
p2 = 1.5;
TOL = 10^-8;
N0 = 100; format long
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1) - f(p0))/h1;
DELTA2 = (f(p2) - f(p1))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=3;
while i <= N0
b = DELTA2 + h2*d;
D = (b^2 - 4*f(p2)*d)^(1/2);
if abs(b-D) < abs(b+D)
E = b + D;
else
E = b - D;
end
h = -2*f(p2)/E;
p = p2 + h;
if abs(h) < TOL
disp(p)
break
end
p0 = p1;
p1 = p2;
p2 = p;
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1) - f(p0))/h1;
DELTA2 = (f(p2) - f(p1))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=i+1
end
if i > N0
formatSpec = string('The method failed after N0 iterations,N0= %d \n');
// fprintf(formatSpec,N0);
end
function y=f(x)
t2=1e-9
k0=(2*pi/0.6328)*1e6;
n1=1.521;
n2=2.66;
ns=1.512;
nc=0.15-1i*3.2;
k1=k0*sqrt(n1.^2-x.^2);
k2=k0*sqrt(n2.^2-x.^2);
t1=1.5e-6;
m11= cos(t1*k1)*cos(t2*k2)-(k2/k1)*sin(t1*k1)*sin(t2*k2);
m12=(1/k2)*(cos(t1*k1)*sin(t2*k2)*1i) +(1/k1)*(cos(t2*k2)*sin(t1*k1)*1i);
m21= (k1)*cos(t2*k2)*sin(t1*k1)*1i +(k2)*cos(t1*k1)*sin(t2*k2)*1i;
m22=cos(t1*k1)*cos(t2*k2)-(k1/k2)*sin(t1*k1)*sin(t2*k2);
gs=(x.^2-ns.^2)*k0.^2;
gc= (x.^2-nc.^2)*k0.^2;
y= 1i*(gs*m11+gc*m22)-m21+gc*gs*m12 ;
end
end
  6 Commenti
shiv gaur
shiv gaur il 12 Dic 2021
plot is the problem and loop and store the value if any one have idea plot the graph

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 12 Dic 2021
Modificato: Torsten il 12 Dic 2021
function kps3
T2 = 1e-9:1e-9:1e-6;
for j=1:numel(T2)
t2 = T2(j);
p0 = 0.5;
p1 = 1;
p2 = 1.5;
TOL = 10^-8;
N0 = 100; format long
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,t2) - f(p0,t2))/h1;
DELTA2 = (f(p2,t2) - f(p1,t2))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=3;
while i <= N0
b = DELTA2 + h2*d;
D = (b^2 - 4*f(p2,t2)*d)^(1/2);
if abs(b-D) < abs(b+D)
E = b + D;
else
E = b - D;
end
h = -2*f(p2,t2)/E;
p = p2 + h;
if abs(h) < TOL
%disp(p)
break
end
p0 = p1;
p1 = p2;
p2 = p;
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,t2) - f(p0,t2))/h1;
DELTA2 = (f(p2,t2) - f(p1,t2))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=i+1;
end
if i > N0
formatSpec = string('The method failed after N0 iterations,N0= %d \n');
fprintf(formatSpec,N0);
end
P(j)=real(p);
end
plot(T2,P)
end
function y=f(x,t2)
%t2=1e-9;
k0=(2*pi/0.6328)*1e6;
n1=1.521;
n2=2.66;
ns=1.512;
nc=0.15-1i*3.2;
k1=k0*sqrt(n1.^2-x.^2);
k2=k0*sqrt(n2.^2-x.^2);
t1=1.5e-6;
m11= cos(t1*k1)*cos(t2*k2)-(k2/k1)*sin(t1*k1)*sin(t2*k2);
m12=(1/k2)*(cos(t1*k1)*sin(t2*k2)*1i) +(1/k1)*(cos(t2*k2)*sin(t1*k1)*1i);
m21= (k1)*cos(t2*k2)*sin(t1*k1)*1i +(k2)*cos(t1*k1)*sin(t2*k2)*1i;
m22=cos(t1*k1)*cos(t2*k2)-(k1/k2)*sin(t1*k1)*sin(t2*k2);
gs=(x.^2-ns.^2)*k0.^2;
gc= (x.^2-nc.^2)*k0.^2;
y= 1i*(gs*m11+gc*m22)-m21+gc*gs*m12 ;
end
Maybe you can use p_old = P(j-1) as starting point for the solution of your equation with t2_new = T2(j).
  5 Commenti

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Programming in Help Center e File Exchange

Tag

Prodotti


Release

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by