How to solve coupled odes with two time dependent variables with ode45?
30 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am having two coupled odes in which there are two dependent variables are present. I tried solving them with the below but I am getting error. Can someone help me in solving the below equations?
%% equations which I need to solve are:
%% dc/dt = -((1-eps)*rhop/eps)*(dq/dt);
%% dq/dt = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n)) - q);
eps = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
t = 0:1:100;
y0= zeros(2,1);
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
plot(tsol,ysol(:,1))
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
The error which I am getting when I am running this code is as follows:
Not enough input arguments.
Error in odcase>odfun (line 21)
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
Error in odcase>@(t,y)odfun(t,y) (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Error in odearguments (line 90)
f0 = feval(ode,t0,y0,args{:}); % ODE15I sets args{1} to yp0.
Error in ode45 (line 115)
odearguments(FcnHandlesUsed, solver_name, ode, tspan, y0, options, varargin);
Error in odcase (line 14)
[tsol,ysol] = ode45(@(t,y) odfun(t,y), t, y0);
Someone please let me know what are the mistakes in my code.
0 Commenti
Risposta accettata
Torsten
il 31 Mag 2022
Modificato: Torsten
il 31 Mag 2022
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
q = y(1);
c = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
instead of
function dy = odfun(t,y,Kl,qm,Keq,R,T,n,rhop,eps)
c = y(1);
q = y(2);
dy(1) = Kl*((qm*Keq*c*R*T/(1+(Keq*c*R*T)^n)^(1/n))-q);
dy(2) = -((1-eps)*rhop/eps)*dy(1);
end
0 Commenti
Più risposte (1)
Sam Chak
il 31 Mag 2022
Not sure what went wrong and why it is unstable. If you are absolutely sure that the absorption dynamics is stable (converging to a steady-state value), then the ODEs must be incorrect. Please check all parameters and the signs. Sometimes, a single change of sign can make a huge difference. For example, as a test, I simply added a minus sign '–' in front of K1 on the right-hand side of dydt(1), and the system becomes stable.
Please countercheck the ODEs against various textbooks and journal papers. If you only rely on a single reference and there is a misprint, then you know what happens...
function dydt = odefcn(t, y)
dydt = zeros(2,1);
ep = 0.43;
rhop = 1228.5;
qm = 5.09;
R = 8.314;
T = 301;
Kl = 0.226;
n = 0.429;
K0 = 4.31e-9; % in pascal-1
delh = -29380; % heat of adsorption in j/mol
Keq = K0*exp(-delh/(R*T));
c = y(1);
q = y(2);
dydt(1) = -Kl*( ( qm*Keq*c*R*T/(1 + (Keq*c*R*T)^n)^(1/n) ) - q );
dydt(2) = -((1 - ep)*rhop/ep)*dydt(1);
end
tspan = [0 0.1];
init = [1; 0];
[t, y] = ode45(@odefcn, tspan, init);
plot(t, y(:, 1), 'linewidth', 1.5)
3 Commenti
Vedere anche
Categorie
Scopri di più su Ordinary Differential Equations in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!