Optimizing Monte Carlo Simulation

7 visualizzazioni (ultimi 30 giorni)
Ethan Wilson
Ethan Wilson il 23 Ott 2023
Commentato: Sam Marshalik il 23 Ott 2023
I am running into issues with the simulation of 1 million particles or more. I need the code to run under a minute at 10 million particle sims. I estimate it runs at about 22min for 10 million particles currently. If anyone could help me resolve this or get the computational time down, it would be great. I have the parallel computing toolbox downloaded if it is neccesary.
clear;clc
tic
N = 10000000;
EndPos = zeros(3,N);
SigmaA = 0.00032;
SigmaS = .35429;
Sigmat = SigmaA + SigmaS;
Pscat = SigmaS / Sigmat;
Pabs = SigmaA / Sigmat;
% Precompute random angles
Thetas = unifrnd(0, 2*pi, 1, N);
Phis = unifrnd(0, pi, 1, N);
DistProbs = unifrnd(0, 1, 1, N);
Distance = -1 / Sigmat * log(1 - DistProbs);
XYZ = [Distance .* sin(Thetas) .* cos(Phis); Distance .* sin(Thetas) .* sin(Phis); Distance .* cos(Thetas)];
InteractionProbs = unifrnd(0, 1, 1, N);
ScatEv = InteractionProbs > Pabs;
ScatDist = XYZ(:,ScatEv);
AbsDist = XYZ(:,~ScatEv);
EndPos(:,1:width(AbsDist)) = AbsDist;
while ~isempty(ScatEv)
Thetas = unifrnd(0, 2 * pi, 1, width(ScatDist));
Phis = unifrnd(0, pi, 1, width(ScatDist));
DistProbs = unifrnd(0, 1, 1, width(ScatDist));
Distance = -1 / Sigmat * log(1 - DistProbs);
XYZi = [Distance .* sin(Thetas) .* cos(Phis); Distance .* sin(Thetas) .* sin(Phis); Distance .* cos(Thetas)];
InteractionProbs = unifrnd(0, 1, 1, width(ScatDist));
ScatEv = InteractionProbs > Pabs;
ScatDisti = XYZ(:,ScatEv);
AbsDisti = XYZ(:,~ScatEv);
ScatDisti = ScatDist(:, ScatEv) + ScatDisti;
AbsDist = ScatDist(:, ~ScatEv) + AbsDisti;
ScatDist = ScatDisti;
EndPosInd = find(EndPos(1,:) == 0, 1,'first');
EndPosInd1 = EndPosInd + width(AbsDist) - 1;
EndPos(:,EndPosInd:EndPosInd1) = AbsDist;
end
PosSquare = EndPos.^2;
rsquare = sum(PosSquare);
rsquarebar = sum(rsquare)/N;
RquareSTD = std(rsquare);
RsquareError = RquareSTD/sqrt(width(rsquare));
Lsquare = 1/6*rsquarebar; %diffusion area estimate
toc

Risposte (1)

Walter Roberson
Walter Roberson il 23 Ott 2023
You can make some micro-speedups.
A = unifrnd(0, 2*pi, 1, N)
is slightly slower than
A = 2 * pi * rand(1, N);
width(X) is slightly slower than size(X,2)
Distance = -1 / Sigmat * log(1 - DistProbs);
would be slightly faster as
RNSigmat = -1 ./ Sigmat;
before the loop and then
Distance = log(1 - DistProbs) .* RNSigmat;
but I would not expect those changes to add up to even 1 second savings in execution time.
  1 Commento
Sam Marshalik
Sam Marshalik il 23 Ott 2023
I am not sure if Parallel Computing Toolbox will be helpful with this particular problem, but you could run multiple simulations at the same time. Meaning, I do not think Parallel Computing Toolbox will help speed up a single simulation but you could run multiple simulations in parallel at the same time on your machine with parfor.

Accedi per commentare.

Categorie

Scopri di più su Collaborative Model Editing in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by