solution for steady flow at Re = 10. in coursera i took mathematics for engineers.for that i need to solve an assignment. For this code i cant get correct stream & vorticity
36 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
flow_around_cylinder_steady
function [psi, omega] = flow_around_cylinder_steady
Re=10;
%%%%% define the grid %%%%%
n=101; m=101; % number of grid points
N=n-1; M=m-1; % number of grid intervals
h=pi/M; % grid spacing based on theta variable
xi=(0:N)*h; theta=(0:M)*h; % xi and theta variables on the grid
%%%%% Initialize the flow fields %%%%%
psi=zeros(n,m);
omega=zeros(n,m);
psi(n,:)=0 % Free stream boundary condition (psi = 0 at the top edge)
%%%%% Set relax params, tol, extra variables %%%%%
r_psi=1.8; % Set the relaxation parameter here, psi equation
r_omega=0.9; % Set the relaxation parameter here, omega equation
delta=1.e-08; % error tolerance
error=2*delta; % initialize error variable
%%%%% Add any additional variable definitions here %%%%%
...
...
%%%%% Main SOR Loop %%%%%
while (error > delta)
psi_old = psi; omega_old = omega;
for i=2:n-1
for j=2:m-1
psi(i,j)=... % (1 - r_psi) * psi_old(i, j) + ...
r_psi * 0.5 * (psi_old(i+1, j) + psi_old(i-1, j) + ...
psi_old(i, j+1) + psi_old(i, j-1) - h^2 * omega(i, j));
end
end
error_psi=max(abs(psi(:)-psi_old(:)));
omega(1,:)=0 % Boundary condition at theta = 0
for i=2:n-1
for j=2:m-1
omega(i,j)=... % (1 - r_omega) * omega_old(i, j) + ...
r_omega * ( (omega_old(i+1, j) + omega_old(i-1, j) + ...
omega_old(i, j+1) + omega_old(i, j-1) - ...
(4 - (2/h^2)) * omega_old(i, j)) / (4 - (2/h^2)) );
end
end
error_omega=max(abs(omega(:)-omega_old(:)));
error=max(error_psi, error_omega);
end
plot_Re10(psi);
end
Please refer to page 59 (64/69) of the PDF document for the 'plot_Re10' custom plotting function.
12 Commenti
Torsten
il 8 Ago 2024
And where do you take care of the inscribed cylinder in your code ? I only see a rectangular region in which you compute "psi" and "omega".
Risposte (3)
LeoAiE
il 7 Ago 2024
Modificato: Sam Chak
il 8 Ago 2024
Hi there!
This is not exact solution you looking for but more to help you think about the issue you are facing!
[psi, omega] = flow_around_cylinder_steady
function [psi, omega] = flow_around_cylinder_steady
Re = 10;
% Define the grid
n = 101;
m = 101;
N = n - 1;
M = m - 1;
h = 2 * pi / M;
xi = linspace(0, 1, N+1);
theta = linspace(0, 2*pi, M+1);
% Initialize the flow fields
psi = zeros(n, m);
omega = zeros(n, m);
% Boundary conditions for psi (streamfunction)
psi(n, :) = 0; % Top boundary (free stream)
psi(1, :) = 0; % Bottom boundary (cylinder surface)
psi(:, 1) = psi(:, 2); % Left boundary (symmetry)
psi(:, end) = psi(:, end-1); % Right boundary (symmetry)
% Boundary conditions for omega (vorticity)
omega(1, :) = -2 * psi(2, :) / h^2; % No-slip condition at cylinder surface
omega(:, 1) = omega(:, 2); % Left boundary (symmetry)
omega(:, end) = omega(:, end-1); % Right boundary (symmetry)
% Set relax params, tol, extra variables
r_psi = 1.8;
r_omega = 0.9;
delta = 1.e-08;
error = 2 * delta;
% Main SOR Loop
while (error > delta)
psi_old = psi;
omega_old = omega;
% Update psi
for i = 2:n-1
for j = 2:m-1
psi(i, j) = (1 - r_psi) * psi_old(i, j) + ...
r_psi * 0.25 * (psi_old(i+1, j) + psi_old(i-1, j) + ...
psi_old(i, j+1) + psi_old(i, j-1) - h^2 * omega(i, j));
end
end
error_psi = max(abs(psi(:) - psi_old(:)));
% Update omega
for i = 2:n-1
for j = 2:m-1
omega(i, j) = (1 - r_omega) * omega_old(i, j) + ...
r_omega * 0.25 * (omega_old(i+1, j) + omega_old(i-1, j) + ...
omega_old(i, j+1) + omega_old(i, j-1) - ...
(4 - h^2) * omega_old(i, j)) / (4 - h^2);
end
end
error_omega = max(abs(omega(:) - omega_old(:)));
error = max(error_psi, error_omega);
end
plot_Re10(psi);
end
%% Code snippet for plotting 'psi'
function plot_Re10(psi)
% This function plots the streamfunction psi
figure;
contourf(psi', 20); % Transpose psi to get correct orientation
colorbar;
title('Streamfunction \psi for Re = 10');
xlabel('x');
ylabel('y');
end
0 Commenti
Sam Chak
il 8 Ago 2024
Hi @SANTHOSH
The code for plot_Re10() function is based on the video lecture of Prof. Jeffrey Chasnov.
[psi, omega] = flow_around_cylinder_steady;
function [psi, omega] = flow_around_cylinder_steady
Re=10;
%%%%% define the grid %%%%%
n=101; m=101; % number of grid points
N=n-1; M=m-1; % number of grid intervals
h=pi/M; % grid spacing based on theta variable
xi=(0:N)*h; theta=(0:M)*h; % xi and theta variables on the grid
%%%%% Initialize the flow fields %%%%%
psi=zeros(n,m);
omega=zeros(n,m);
psi(n,:)=exp(xi(n))*sin(theta(:)); % Write the free stream bc here
%%%%% Set relax params, tol, extra variables %%%%%
r_psi=1.8; % Set the relaxation parameter here, psi equation
r_omega=0.9; % Set the relaxation parameter here, omega equation
delta=1.e-08; % error tolerance
error=2*delta; % initialize error variable
%%%%% Add any additional variable definitions here %%%%%
...
...
%%%%% Main SOR Loop %%%%%
while (error > delta)
psi_old = psi; omega_old = omega;
for i=2:n-1
for j=2:m-1
psi(i,j)=(1-r_psi)*psi(i,j)+(r_psi/4)*(psi(i+1,j)+psi(i-1,j)+psi(i,j+1)+psi(i,j-1)+h*h*exp(2*xi(i))*omega(i,j));% Write psi equation here
end
end
error_psi=max(abs(psi(:)-psi_old(:)));
omega(1,:)=(psi(3,:) - 8*psi(2,:))/(2*h^2); % Write the boundary condition here
for i=2:n-1
for j=2:m-1
omega(i,j)=(1-r_omega)*omega(i,j)+(r_omega/4)*(omega(i+1,j)+omega(i-1,j)+omega(i,j+1)+omega(i,j-1)+(Re/8)*((psi(i+1,j)-psi(i-1,j))*(omega(i,j+1)-omega(i,j-1))-(psi(i,j+1)-psi(i,j-1))*(omega(i+1,j)-omega(i-1,j)))); % Write omega equation here
end
end
error_omega=max(abs(omega(:)-omega_old(:)));
error=max(error_psi, error_omega);
end
%psi
plot_Re10(psi);
% figure(1)
% contourf(xi,theta,psi.')
% colorbar
% figure(2)
% contourf(xi,theta,omega.')
% colorbar
end
%% Code by Prof. Jeffrey Chasnov
function plot_Re10(psi)
% Reynolds number (design parameter)
Re = 10;
% setup the xi-theta grid
n = size(psi,1);
m = size(psi,2);
N = n - 1;
M = m - 1;
h = pi/M; % grid spacing
xi = (0:N)*h;
theta = (0:M)*h;
[XI, THETA] = meshgrid(xi,theta);
... (Code is very long. Please refer to Prof. Jeffrey Chasnov's video lecture)
end
6 Commenti
Cris LaPierre
il 9 Ago 2024
Assuming this exercise is coming from Week 2 of Mathematics for Engineers: The Capstone Course, I can't duplicate the error. I'd suggest trying to submit your solution again.
0 Commenti
Vedere anche
Categorie
Scopri di più su Legend in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!