How to add Inception-Res block and Dense-Inception block in 3D U-Net Layers
75 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
mohd akmal masud
il 10 Set 2024 alle 6:08
Modificato: Malay Agarwal
il 18 Set 2024 alle 13:26
Dear All,
I have the coding below,
lgraph = layerGraph();
tempLayers = [
image3dInputLayer([128 128 128 3],"Name","ImageInputLayer")
convolution3dLayer([3 3 3],16,"Name","Encoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Encoder-Stage-1-BN-1")
reluLayer("Name","Encoder-Stage-1-ReLU-1")
convolution3dLayer([3 3 3],32,"Name","Encoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Encoder-Stage-1-BN-2")
reluLayer("Name","Encoder-Stage-1-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling3dLayer([2 2 2],"Name","Encoder-Stage-1-MaxPool","Stride",[2 2 2])
convolution3dLayer([3 3 3],32,"Name","Encoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Encoder-Stage-2-BN-1")
reluLayer("Name","Encoder-Stage-2-ReLU-1")
convolution3dLayer([3 3 3],64,"Name","Encoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Encoder-Stage-2-BN-2")
reluLayer("Name","Encoder-Stage-2-ReLU-2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
maxPooling3dLayer([2 2 2],"Name","Encoder-Stage-2-MaxPool","Stride",[2 2 2])
convolution3dLayer([3 3 3],64,"Name","Bridge-Conv-1","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Bridge-BN-1")
reluLayer("Name","Bridge-ReLU-1")
convolution3dLayer([3 3 3],128,"Name","Bridge-Conv-2","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Bridge-BN-2")
reluLayer("Name","Bridge-ReLU-2")
transposedConv3dLayer([2 2 2],128,"Name","Decoder-Stage-1-UpConv","BiasLearnRateFactor",2,"Stride",[2 2 2],"WeightsInitializer","he")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
concatenationLayer(4,2,"Name","Decoder-Stage-1-Concatenation")
convolution3dLayer([3 3 3],64,"Name","Decoder-Stage-1-Conv-1","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Decoder-Stage-1-BN-1")
reluLayer("Name","Decoder-Stage-1-ReLU-1")
convolution3dLayer([3 3 3],64,"Name","Decoder-Stage-1-Conv-2","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Decoder-Stage-1-BN-2")
reluLayer("Name","Decoder-Stage-1-ReLU-2")
transposedConv3dLayer([2 2 2],64,"Name","Decoder-Stage-2-UpConv","BiasLearnRateFactor",2,"Stride",[2 2 2],"WeightsInitializer","he")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
concatenationLayer(4,2,"Name","Decoder-Stage-2-Concatenation")
convolution3dLayer([3 3 3],32,"Name","Decoder-Stage-2-Conv-1","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Decoder-Stage-2-BN-1")
reluLayer("Name","Decoder-Stage-2-ReLU-1")
convolution3dLayer([3 3 3],32,"Name","Decoder-Stage-2-Conv-2","Padding","same","WeightsInitializer","he")
batchNormalizationLayer("Name","Decoder-Stage-2-BN-2")
reluLayer("Name","Decoder-Stage-2-ReLU-2")
convolution3dLayer([1 1 1],5,"Name","Final-ConvolutionLayer","Padding","same","WeightsInitializer","he")
softmaxLayer("Name","Softmax-Layer")
pixelClassificationLayer("Name","Segmentation-Layer")];
lgraph = addLayers(lgraph,tempLayers);
% clean up helper variable
clear tempLayers;
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Encoder-Stage-1-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-1-ReLU-2","Decoder-Stage-2-Concatenation/in2");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Encoder-Stage-2-MaxPool");
lgraph = connectLayers(lgraph,"Encoder-Stage-2-ReLU-2","Decoder-Stage-1-Concatenation/in2");
lgraph = connectLayers(lgraph,"Decoder-Stage-1-UpConv","Decoder-Stage-1-Concatenation/in1");
lgraph = connectLayers(lgraph,"Decoder-Stage-2-UpConv","Decoder-Stage-2-Concatenation/in1");
plot(lgraph);
and the graph like below
But I want to insert the Inception-Res block and Dense-Inception block in my 3D U-Net like picture below
This is Inception-Res block propose
This is Dense-Inception block propose
Anyone can help me?
0 Commenti
Risposta accettata
Malay Agarwal
il 18 Set 2024 alle 12:58
Modificato: Malay Agarwal
il 18 Set 2024 alle 13:26
You can implement the Inception-Res and Dense Inception-Res blocks by implementing a custom nested deep learning layer.
You can refer to the following resource, which shows how to create a residual block using nested layers: https://www.mathworks.com/help/releases/R2023a/deeplearning/ug/define-nested-deep-learning-layer.html.
I have attached an example implementation of the Inception-Res block to the answer. If you'd like to plot the internal network, you can use the following code:
layer = Inception_Res();
inputSize = [224 224 3];
layout = networkDataLayout(inputSize, "SSC");
layer = initialize(layer, layout);
plot(layer.Network)
Note that the code contains a commented line (line 72) in the initialize() method. I have commented this out since I am not sure about the dimensions of the convolutional operations and initializing the internal network is leading to an error. You'll need to modify the parameters of the convolutional operations to make sure all the dimensions work out.
The Dense Inception-Res block can be created similarly.
Hope this helps!
0 Commenti
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Point Cloud Processing in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!