Problem in boundary condition

41 visualizzazioni (ultimi 30 giorni)
george veropoulos
george veropoulos il 30 Dic 2024 alle 21:14
Modificato: Pavl M. circa 22 ore fa
Hi
im trying to solve a proble in EM with method of MAS ( METHOD OF AUXILARY SOURCE)
I have a infiite cylinder ( PERFECT CONDUCTOR) and in incominf fileld strike the cylinder FROM THE Ein+Escat=0 in the surface of cylinder i solve th system and i fins the current Is ( the function is the currentMAS()) . After i find the Escat field form the epresion of MAS theort. After the i check the sumEs_surf =abs(Etotal(xs,ys)) Etotal= Escat(x,y)+E_in_z(x,y) xs=ra cos(phi) ys=cos(phi) rho = ra;
phi =2*pi*(0:Nc-1)/Nc% Create phi values
% Compute Cartesian coordinates (xa, ya)
xs = rho .* cos(phi); % x-coordinates
ys = rho .* sin(phi); % y-coordinates
the sum is not equal to zero !! the real part is zero but the imaginary not
function [Is] = currentMAS()
%UNTITLED Summary of this function goes here
% Detailed explanation goes her
[~,N,Nc,a,ra,k0,Z0,~] = parameter();
% Preallocate arrays for efficiency
xc = ra * cos(2 * pi * (0:N-1)/N); % Observation points (x-coordinates)
yc = ra* sin(2 * pi*(0:N-1)/N); % Observation points (y-coordinates)
xa = a * cos(2 * pi * (0:Nc-1) / Nc); % Source points (x-coordinates)
ya = a * sin(2 * pi * (0:Nc-1) / Nc); % Source points (y-coordinates)
% Compute distance matrix R between source and observation points
[Xa, XC] = meshgrid(xa, xc); % Observation (columns), Source (rows)
[Ya, YC] = meshgrid(ya, yc);
Ra= sqrt((Xa - XC).^2 + (Ya - YC).^2);
% Compute matrix WI based on the Green's function
WI = (1 / 4) * k0 * Z0 .* besselh(0, 2, k0 .* Ra);
% Compute the source field at each source point
Source = arrayfun(@(xi, yi)E_in_z(xi,yi),xc,yc);
%Source = E_in_z(xc, 0);
%Is = linsolve(WI, Source');
%lambda = 1e-1; % Regularization factor
%Is = (WI' * WI + lambda * eye(size(WI, 2))) \ (WI' * Source');
Is =(pinv(WI)* Source')
end
function z = Escat(x, y)
% Get the current values from the input parameters
[Is] = currentMAS()
[f,N,Nc,a,ra,k0,Z0,lambda] = parameter();
% Precompute coordinates of the points
xx = a * cos(2 * pi * (0:Nc-1) / Nc); % Length Nc
yy = a * sin(2 * pi * (0:Nc-1) / Nc); % Length Nc
% Initialize the S_UM for each (x, y) pair
E_scat = zeros(size(x)); % Result will be the same size as x and y
% Compute the distances and the contributions for each (x, y) pair
for jj = 1:Nc
RR = sqrt((x - xx(jj)).^2 + (y - yy(jj)).^2); % Calculate distance for all (x, y)
% Sum the contributions (note the broadcasting)
E_scat = E_scat - (1/4).*Is(jj) .* k0 * Z0 .* besselh(0, 2, k0 .* RR);
end
% Output the computed value
z = E_scat;
end
function [f,N,Nc,a,ra,k0,Z0,lambda] = parameter()
%UNTITLED Summary of this function goes here
c0=3e8;
Z0=120.*pi;
ra=1;
a=0.85;
N=120;
Nc=120;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
function y = Etotal(x,y)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
y=Escat(x,y)+E_in_z(x,y);
end
function z=E_in_z(x,y)
%amplitude
[f,N,Nc,a,ra,k0,Z0] = parameter();
E0=1;
z=E0.*exp(1i.*k0*x);
end
I Atach the mathematical description
tnank you
i wish a happy new year
  1 Commento
george veropoulos
george veropoulos il 30 Dic 2024 alle 21:14
% Define phi and rho
clear all
[f,N,Nc,a,ra,k0,Z0,lambda] = parameter();
rho = ra;
phi =2*pi*(0:Nc-1)/Nc% Create phi values
% Compute Cartesian coordinates (xa, ya)
xs = rho .* cos(phi); % x-coordinates
ys = rho .* sin(phi); % y-coordinates
% Compute Escat for all points (vectorized)
Es_surf =abs(Etotal(xs,ys))
%max(abs(E_in_z(xs,ys))); % Vectorized Escat call
% Plot results
phi_d = phi*(180./pi) % Convert phi to degrees
figure;
plot(phi_d, Es_surf, 'b', 'LineWidth', 2);
set(gca,'FontSize',19,'FontName','Times')
xlabel('$\phi$','Interpreter','latex')
ylabel('$BERROR$','Interpreter','latex' )
%legend('surface point','collocation point')
print('MAS_closed.jpg','-djpeg')

Accedi per commentare.

Risposte (1)

Pavl M.
Pavl M. il 31 Dic 2024 alle 4:51
Modificato: Pavl M. il 31 Dic 2024 alle 5:08
%To be continued...
clear; close all; clc;
function [f,N,Nc,a,ra,k0,Z0,lambda] = parameter()
%
c0=3e8;
Z0=120.*pi;
ra=1;
a=0.85;
N=120;
Nc=120;
f=300e6;
lambda=c0./f;
k0=2*pi./lambda;
end
function [Is] = currentMAS()
%
[~,N,Nc,a,ra,k0,Z0,~] = parameter();
% Preallocate arrays for efficiency
xc = ra * cos(2 * pi * (0:N-1)/N); % Observation points (x-coordinates)
yc = ra* sin(2 * pi*(0:N-1)/N); % Observation points (y-coordinates)
xa = a * cos(2 * pi * (0:Nc-1) / Nc); % Source points (x-coordinates)
ya = a * sin(2 * pi * (0:Nc-1) / Nc); % Source points (y-coordinates)
% Compute distance matrix R between source and observation points
[Xa, XC] = meshgrid(xa, xc); % Observation (columns), Source (rows)
[Ya, YC] = meshgrid(ya, yc);
Ra= sqrt((Xa - XC).^2 + (Ya - YC).^2);
% Compute matrix WI based on the Green's function
WI = (1 / 4) * k0 * Z0 .* besselh(0, 2, k0 .* Ra);
% Compute the source field at each source point
Source = arrayfun(@(xi, yi)E_in_z(xi,yi),xc,yc);
%Source = E_in_z(xc, 0);
%Is = linsolve(WI, Source');
%lambda = 1e-1; % Regularization factor
%Is = (WI' * WI + lambda * eye(size(WI, 2))) \ (WI' * Source');
Is =(pinv(WI)* Source') %current
end
function z = Escat(x, y)
% Get the current values from the input parameters
[Is] = currentMAS()
[f,N,Nc,a,ra,k0,Z0,lambda] = parameter();
% Precompute coordinates of the points
xx = a * cos(2 * pi * (0:Nc-1) / Nc); % Length Nc
yy = a * sin(2 * pi * (0:Nc-1) / Nc); % Length Nc
% Initialize the S_UM for each (x, y) pair
E_scat = zeros(size(x)); % Result will be the same size as x and y
% Compute the distances and the contributions for each (x, y) pair
for jj = 1:Nc
RR = sqrt((x - xx(jj)).^2 + (y - yy(jj)).^2); % Calculate distance for all (x, y)
% Sum the contributions (note the broadcasting)
E_scat = E_scat - (1/4).*Is(jj) .* k0 * Z0 .* besselh(0, 2, k0 .* RR);
end
% Output the computed value
z = E_scat;
end
function y = Etotal(x,y)
%
y=Escat(x,y)+E_in_z(x,y);
end
function z=E_in_z(x,y)
%amplitude
[f,N,Nc,a,ra,k0,Z0] = parameter();
E0=1;
z=E0.*exp(1i.*k0*x);
end
[f,N,Nc,a,ra,k0,Z0,lambda] = parameter();
rho = ra;
phi =2*pi*(0:Nc-1)/Nc% Create phi values
phi = 1×120
0 0.0524 0.1047 0.1571 0.2094 0.2618 0.3142 0.3665 0.4189 0.4712 0.5236 0.5760 0.6283 0.6807 0.7330 0.7854 0.8378 0.8901 0.9425 0.9948 1.0472 1.0996 1.1519 1.2043 1.2566 1.3090 1.3614 1.4137 1.4661 1.5184
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Compute Cartesian coordinates (xa, ya)
xs = rho .* cos(phi); % x-coordinates
ys = rho .* sin(phi); % y-coordinates
sumEs_surf = abs(Etotal(xs,ys))
Is =
1.0e-03 * 0.1921 - 0.0271i 0.1904 - 0.0255i 0.1850 - 0.0208i 0.1758 - 0.0133i 0.1623 - 0.0035i 0.1444 + 0.0081i 0.1219 + 0.0205i 0.0950 + 0.0329i 0.0644 + 0.0445i 0.0314 + 0.0545i -0.0027 + 0.0627i -0.0358 + 0.0694i -0.0666 + 0.0758i -0.0936 + 0.0834i -0.1167 + 0.0944i -0.1368 + 0.1110i -0.1559 + 0.1346i -0.1771 + 0.1655i -0.2039 + 0.2022i -0.2393 + 0.2413i -0.2844 + 0.2775i -0.3384 + 0.3049i -0.3972 + 0.3176i -0.4541 + 0.3120i -0.5007 + 0.2874i -0.5287 + 0.2472i -0.5314 + 0.1986i -0.5062 + 0.1519i -0.4553 + 0.1179i -0.3860 + 0.1061i -0.3096 + 0.1220i -0.2392 + 0.1658i -0.1872 + 0.2316i -0.1623 + 0.3089i -0.1680 + 0.3842i -0.2020 + 0.4441i -0.2562 + 0.4776i -0.3193 + 0.4782i -0.3786 + 0.4450i -0.4225 + 0.3823i -0.4426 + 0.2985i -0.4348 + 0.2041i -0.3994 + 0.1098i -0.3404 + 0.0249i -0.2643 - 0.0441i -0.1790 - 0.0936i -0.0921 - 0.1232i -0.0101 - 0.1347i 0.0623 - 0.1316i 0.1223 - 0.1181i 0.1690 - 0.0985i 0.2026 - 0.0764i 0.2249 - 0.0546i 0.2379 - 0.0351i 0.2438 - 0.0189i 0.2448 - 0.0063i 0.2431 + 0.0029i 0.2401 + 0.0092i 0.2371 + 0.0131i 0.2350 + 0.0152i 0.2342 + 0.0159i 0.2350 + 0.0152i 0.2371 + 0.0131i 0.2401 + 0.0092i 0.2431 + 0.0029i 0.2448 - 0.0063i 0.2438 - 0.0189i 0.2379 - 0.0351i 0.2249 - 0.0546i 0.2026 - 0.0764i 0.1690 - 0.0985i 0.1223 - 0.1181i 0.0623 - 0.1316i -0.0101 - 0.1347i -0.0921 - 0.1232i -0.1790 - 0.0936i -0.2643 - 0.0441i -0.3404 + 0.0249i -0.3994 + 0.1098i -0.4348 + 0.2041i -0.4426 + 0.2985i -0.4225 + 0.3823i -0.3786 + 0.4450i -0.3193 + 0.4782i -0.2562 + 0.4776i -0.2020 + 0.4441i -0.1680 + 0.3842i -0.1623 + 0.3089i -0.1872 + 0.2316i -0.2392 + 0.1658i -0.3096 + 0.1220i -0.3860 + 0.1061i -0.4553 + 0.1179i -0.5062 + 0.1519i -0.5314 + 0.1986i -0.5287 + 0.2472i -0.5007 + 0.2874i -0.4541 + 0.3120i -0.3972 + 0.3176i -0.3384 + 0.3049i -0.2844 + 0.2775i -0.2393 + 0.2413i -0.2039 + 0.2022i -0.1771 + 0.1655i -0.1559 + 0.1346i -0.1368 + 0.1110i -0.1167 + 0.0944i -0.0936 + 0.0834i -0.0666 + 0.0758i -0.0358 + 0.0694i -0.0027 + 0.0627i 0.0314 + 0.0545i 0.0644 + 0.0445i 0.0950 + 0.0329i 0.1219 + 0.0205i 0.1444 + 0.0081i 0.1623 - 0.0035i 0.1758 - 0.0133i 0.1850 - 0.0208i 0.1904 - 0.0255i
Is =
1.0e-03 * 0.1921 - 0.0271i 0.1904 - 0.0255i 0.1850 - 0.0208i 0.1758 - 0.0133i 0.1623 - 0.0035i 0.1444 + 0.0081i 0.1219 + 0.0205i 0.0950 + 0.0329i 0.0644 + 0.0445i 0.0314 + 0.0545i -0.0027 + 0.0627i -0.0358 + 0.0694i -0.0666 + 0.0758i -0.0936 + 0.0834i -0.1167 + 0.0944i -0.1368 + 0.1110i -0.1559 + 0.1346i -0.1771 + 0.1655i -0.2039 + 0.2022i -0.2393 + 0.2413i -0.2844 + 0.2775i -0.3384 + 0.3049i -0.3972 + 0.3176i -0.4541 + 0.3120i -0.5007 + 0.2874i -0.5287 + 0.2472i -0.5314 + 0.1986i -0.5062 + 0.1519i -0.4553 + 0.1179i -0.3860 + 0.1061i -0.3096 + 0.1220i -0.2392 + 0.1658i -0.1872 + 0.2316i -0.1623 + 0.3089i -0.1680 + 0.3842i -0.2020 + 0.4441i -0.2562 + 0.4776i -0.3193 + 0.4782i -0.3786 + 0.4450i -0.4225 + 0.3823i -0.4426 + 0.2985i -0.4348 + 0.2041i -0.3994 + 0.1098i -0.3404 + 0.0249i -0.2643 - 0.0441i -0.1790 - 0.0936i -0.0921 - 0.1232i -0.0101 - 0.1347i 0.0623 - 0.1316i 0.1223 - 0.1181i 0.1690 - 0.0985i 0.2026 - 0.0764i 0.2249 - 0.0546i 0.2379 - 0.0351i 0.2438 - 0.0189i 0.2448 - 0.0063i 0.2431 + 0.0029i 0.2401 + 0.0092i 0.2371 + 0.0131i 0.2350 + 0.0152i 0.2342 + 0.0159i 0.2350 + 0.0152i 0.2371 + 0.0131i 0.2401 + 0.0092i 0.2431 + 0.0029i 0.2448 - 0.0063i 0.2438 - 0.0189i 0.2379 - 0.0351i 0.2249 - 0.0546i 0.2026 - 0.0764i 0.1690 - 0.0985i 0.1223 - 0.1181i 0.0623 - 0.1316i -0.0101 - 0.1347i -0.0921 - 0.1232i -0.1790 - 0.0936i -0.2643 - 0.0441i -0.3404 + 0.0249i -0.3994 + 0.1098i -0.4348 + 0.2041i -0.4426 + 0.2985i -0.4225 + 0.3823i -0.3786 + 0.4450i -0.3193 + 0.4782i -0.2562 + 0.4776i -0.2020 + 0.4441i -0.1680 + 0.3842i -0.1623 + 0.3089i -0.1872 + 0.2316i -0.2392 + 0.1658i -0.3096 + 0.1220i -0.3860 + 0.1061i -0.4553 + 0.1179i -0.5062 + 0.1519i -0.5314 + 0.1986i -0.5287 + 0.2472i -0.5007 + 0.2874i -0.4541 + 0.3120i -0.3972 + 0.3176i -0.3384 + 0.3049i -0.2844 + 0.2775i -0.2393 + 0.2413i -0.2039 + 0.2022i -0.1771 + 0.1655i -0.1559 + 0.1346i -0.1368 + 0.1110i -0.1167 + 0.0944i -0.0936 + 0.0834i -0.0666 + 0.0758i -0.0358 + 0.0694i -0.0027 + 0.0627i 0.0314 + 0.0545i 0.0644 + 0.0445i 0.0950 + 0.0329i 0.1219 + 0.0205i 0.1444 + 0.0081i 0.1623 - 0.0035i 0.1758 - 0.0133i 0.1850 - 0.0208i 0.1904 - 0.0255i
sumEs_surf = 1×120
0.0000 0.0172 0.0688 0.1546 0.2737 0.4249 0.6054 0.8106 1.0338 1.2651 1.4917 1.6975 1.8641 1.9710 1.9981 1.9278 1.7473 1.4521 1.0481 0.5536 0.0000 0.5702 1.1061 1.5540 1.8641 1.9969 1.9305 1.6642 1.2211 0.6459
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
% Compute Escat for all points (vectorized)
Es_surf =sumEs_surf
Es_surf = 1×120
0.0000 0.0172 0.0688 0.1546 0.2737 0.4249 0.6054 0.8106 1.0338 1.2651 1.4917 1.6975 1.8641 1.9710 1.9981 1.9278 1.7473 1.4521 1.0481 0.5536 0.0000 0.5702 1.1061 1.5540 1.8641 1.9969 1.9305 1.6642 1.2211 0.6459
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
m1 = max(abs(E_in_z(xs,ys))); % Vectorized Escat call
% Plot results
phi_d = phi*(180./pi) % Convert phi to degrees
phi_d = 1×120
0 3.0000 6.0000 9.0000 12.0000 15.0000 18.0000 21.0000 24.0000 27.0000 30.0000 33.0000 36.0000 39.0000 42.0000 45.0000 48.0000 51.0000 54.0000 57.0000 60.0000 63.0000 66.0000 69.0000 72.0000 75.0000 78.0000 81.0000 84.0000 87.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
E1 = Escat(xs,ys);
Is =
1.0e-03 * 0.1921 - 0.0271i 0.1904 - 0.0255i 0.1850 - 0.0208i 0.1758 - 0.0133i 0.1623 - 0.0035i 0.1444 + 0.0081i 0.1219 + 0.0205i 0.0950 + 0.0329i 0.0644 + 0.0445i 0.0314 + 0.0545i -0.0027 + 0.0627i -0.0358 + 0.0694i -0.0666 + 0.0758i -0.0936 + 0.0834i -0.1167 + 0.0944i -0.1368 + 0.1110i -0.1559 + 0.1346i -0.1771 + 0.1655i -0.2039 + 0.2022i -0.2393 + 0.2413i -0.2844 + 0.2775i -0.3384 + 0.3049i -0.3972 + 0.3176i -0.4541 + 0.3120i -0.5007 + 0.2874i -0.5287 + 0.2472i -0.5314 + 0.1986i -0.5062 + 0.1519i -0.4553 + 0.1179i -0.3860 + 0.1061i -0.3096 + 0.1220i -0.2392 + 0.1658i -0.1872 + 0.2316i -0.1623 + 0.3089i -0.1680 + 0.3842i -0.2020 + 0.4441i -0.2562 + 0.4776i -0.3193 + 0.4782i -0.3786 + 0.4450i -0.4225 + 0.3823i -0.4426 + 0.2985i -0.4348 + 0.2041i -0.3994 + 0.1098i -0.3404 + 0.0249i -0.2643 - 0.0441i -0.1790 - 0.0936i -0.0921 - 0.1232i -0.0101 - 0.1347i 0.0623 - 0.1316i 0.1223 - 0.1181i 0.1690 - 0.0985i 0.2026 - 0.0764i 0.2249 - 0.0546i 0.2379 - 0.0351i 0.2438 - 0.0189i 0.2448 - 0.0063i 0.2431 + 0.0029i 0.2401 + 0.0092i 0.2371 + 0.0131i 0.2350 + 0.0152i 0.2342 + 0.0159i 0.2350 + 0.0152i 0.2371 + 0.0131i 0.2401 + 0.0092i 0.2431 + 0.0029i 0.2448 - 0.0063i 0.2438 - 0.0189i 0.2379 - 0.0351i 0.2249 - 0.0546i 0.2026 - 0.0764i 0.1690 - 0.0985i 0.1223 - 0.1181i 0.0623 - 0.1316i -0.0101 - 0.1347i -0.0921 - 0.1232i -0.1790 - 0.0936i -0.2643 - 0.0441i -0.3404 + 0.0249i -0.3994 + 0.1098i -0.4348 + 0.2041i -0.4426 + 0.2985i -0.4225 + 0.3823i -0.3786 + 0.4450i -0.3193 + 0.4782i -0.2562 + 0.4776i -0.2020 + 0.4441i -0.1680 + 0.3842i -0.1623 + 0.3089i -0.1872 + 0.2316i -0.2392 + 0.1658i -0.3096 + 0.1220i -0.3860 + 0.1061i -0.4553 + 0.1179i -0.5062 + 0.1519i -0.5314 + 0.1986i -0.5287 + 0.2472i -0.5007 + 0.2874i -0.4541 + 0.3120i -0.3972 + 0.3176i -0.3384 + 0.3049i -0.2844 + 0.2775i -0.2393 + 0.2413i -0.2039 + 0.2022i -0.1771 + 0.1655i -0.1559 + 0.1346i -0.1368 + 0.1110i -0.1167 + 0.0944i -0.0936 + 0.0834i -0.0666 + 0.0758i -0.0358 + 0.0694i -0.0027 + 0.0627i 0.0314 + 0.0545i 0.0644 + 0.0445i 0.0950 + 0.0329i 0.1219 + 0.0205i 0.1444 + 0.0081i 0.1623 - 0.0035i 0.1758 - 0.0133i 0.1850 - 0.0208i 0.1904 - 0.0255i
Is =
1.0e-03 * 0.1921 - 0.0271i 0.1904 - 0.0255i 0.1850 - 0.0208i 0.1758 - 0.0133i 0.1623 - 0.0035i 0.1444 + 0.0081i 0.1219 + 0.0205i 0.0950 + 0.0329i 0.0644 + 0.0445i 0.0314 + 0.0545i -0.0027 + 0.0627i -0.0358 + 0.0694i -0.0666 + 0.0758i -0.0936 + 0.0834i -0.1167 + 0.0944i -0.1368 + 0.1110i -0.1559 + 0.1346i -0.1771 + 0.1655i -0.2039 + 0.2022i -0.2393 + 0.2413i -0.2844 + 0.2775i -0.3384 + 0.3049i -0.3972 + 0.3176i -0.4541 + 0.3120i -0.5007 + 0.2874i -0.5287 + 0.2472i -0.5314 + 0.1986i -0.5062 + 0.1519i -0.4553 + 0.1179i -0.3860 + 0.1061i -0.3096 + 0.1220i -0.2392 + 0.1658i -0.1872 + 0.2316i -0.1623 + 0.3089i -0.1680 + 0.3842i -0.2020 + 0.4441i -0.2562 + 0.4776i -0.3193 + 0.4782i -0.3786 + 0.4450i -0.4225 + 0.3823i -0.4426 + 0.2985i -0.4348 + 0.2041i -0.3994 + 0.1098i -0.3404 + 0.0249i -0.2643 - 0.0441i -0.1790 - 0.0936i -0.0921 - 0.1232i -0.0101 - 0.1347i 0.0623 - 0.1316i 0.1223 - 0.1181i 0.1690 - 0.0985i 0.2026 - 0.0764i 0.2249 - 0.0546i 0.2379 - 0.0351i 0.2438 - 0.0189i 0.2448 - 0.0063i 0.2431 + 0.0029i 0.2401 + 0.0092i 0.2371 + 0.0131i 0.2350 + 0.0152i 0.2342 + 0.0159i 0.2350 + 0.0152i 0.2371 + 0.0131i 0.2401 + 0.0092i 0.2431 + 0.0029i 0.2448 - 0.0063i 0.2438 - 0.0189i 0.2379 - 0.0351i 0.2249 - 0.0546i 0.2026 - 0.0764i 0.1690 - 0.0985i 0.1223 - 0.1181i 0.0623 - 0.1316i -0.0101 - 0.1347i -0.0921 - 0.1232i -0.1790 - 0.0936i -0.2643 - 0.0441i -0.3404 + 0.0249i -0.3994 + 0.1098i -0.4348 + 0.2041i -0.4426 + 0.2985i -0.4225 + 0.3823i -0.3786 + 0.4450i -0.3193 + 0.4782i -0.2562 + 0.4776i -0.2020 + 0.4441i -0.1680 + 0.3842i -0.1623 + 0.3089i -0.1872 + 0.2316i -0.2392 + 0.1658i -0.3096 + 0.1220i -0.3860 + 0.1061i -0.4553 + 0.1179i -0.5062 + 0.1519i -0.5314 + 0.1986i -0.5287 + 0.2472i -0.5007 + 0.2874i -0.4541 + 0.3120i -0.3972 + 0.3176i -0.3384 + 0.3049i -0.2844 + 0.2775i -0.2393 + 0.2413i -0.2039 + 0.2022i -0.1771 + 0.1655i -0.1559 + 0.1346i -0.1368 + 0.1110i -0.1167 + 0.0944i -0.0936 + 0.0834i -0.0666 + 0.0758i -0.0358 + 0.0694i -0.0027 + 0.0627i 0.0314 + 0.0545i 0.0644 + 0.0445i 0.0950 + 0.0329i 0.1219 + 0.0205i 0.1444 + 0.0081i 0.1623 - 0.0035i 0.1758 - 0.0133i 0.1850 - 0.0208i 0.1904 - 0.0255i
E2 = E_in_z(xs,ys);
figure
plot(phi_d,abs(E1))
title('Absolute Scat. Field')
figure
plot(phi_d,phase(E1))
title('Phase Scat. Field')
figure
quiver(real(E1),imag(E1),3)
title('Directions Scat. Field')
figure
plot(phi_d,abs(E2))
title('Absolute Vertical Field')
figure
plot(phi_d,phase(E2))
title('Phase Vertical. Field')
figure
quiver(real(E2),imag(E2),3)
title('Directions vertical field')
figure;
plot(phi_d, Es_surf, 'b', 'LineWidth', 2);
hold on
plot(m1)
set(gca,'FontSize',19,'FontName','Times')
xlabel('$\phi$','Interpreter','latex')
ylabel('$BERROR$','Interpreter','latex' )
%legend('surface point','collocation point')
print('MAS_closed.jpg','-djpeg')
  2 Commenti
george veropoulos
george veropoulos il 31 Dic 2024 alle 5:27
Spostato: Torsten il 31 Dic 2024 alle 11:37

The problem is that the total field I. Thdkthis. Point are not equal to zero

Pavl M.
Pavl M. circa 13 ore fa
Modificato: Pavl M. circa 13 ore fa
Dear George Veropoulos,
OK. What is sure, there are many healthy points and flows (see phase plot) and a little bit of ill, sick with due,(E1,E2, quiver usage to amend).
You wrote: "The problem is that the total field I. Thdkthis. Point are not equal to zero"
To continue more clear, what do you mean by total field this Es_surf = Etotal(xs,ys) ?
What do you mean by I, which current?
What do you mean by Thd?
Who, why, for what wants to suppress the field around that figure(cyllinder)? What is more correct is to amplify better to amplify good, not parazitic, make stronger and more beutiful shaped utile field and so associated with EM field E current ->.
What do you mean by point are not equal to zero?

Accedi per commentare.

Categorie

Scopri di più su Mathematics and Optimization in Help Center e File Exchange

Prodotti


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by