Creating a polynomial fit expression using just the order number

56 visualizzazioni (ultimi 30 giorni)

Hello. Im performing a fit to data using e.g a 3rd order polynomial and the expresion below. For cases when i want e.g a 4th or 5th order fit, rather than use a switch / case approach is there a way to construct the expression below simply by passing in n the polynomial order?

a123 = [x.^3, x.^2, x]\y;

Risposta accettata

dpb
dpb il 18 Nov 2025 alle 21:38
Modificato: dpb il 18 Nov 2025 alle 21:57
c=x.^[n:-1:1]\y;
I presume leaving off the intercept is intentional? Otherwise, there's polyfit
  5 Commenti
dpb
dpb il 19 Nov 2025 alle 21:22
With a 7th order polynomial, are you forcing it through a set of points, maybe? Would a spline be an alternative?
Torsten
Torsten il 19 Nov 2025 alle 23:53
Modificato: dpb il 20 Nov 2025 alle 16:37
xtr=x-x0;
% acoeffs=[xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0) %acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0)
acoeffs=[xtr.^7,xtr.^6,xtr.^5,xtr.^4,xtr.^3,xtr.^2,xtr]\(y-y0);
will give you a polynomial that passes through (x0,y0), but will have a constant term - thus will no longer be of the form you used earlier.
Thus the property of passing through (x0,y0) is payed by losing the property of passing through (0,0).

Accedi per commentare.

Più risposte (0)

Categorie

Scopri di più su Interpolation in Help Center e File Exchange

Prodotti


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by