How to compute the fourier transform for a signal u(t) over frequency band [-10,10]?
2 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I have a signal u(t) already defined, but I need to compute the fft and plot the magnitude and phase of the fourier transform. HOW DO I DO THIS?
I TRIED FFT(U,[-10,10]), BUT DOESN'T WORK.
0 Commenti
Risposte (3)
Dr. Seis
il 14 Gen 2012
Say you have the following:
N = 1024; % Number of samples
dt = 0.01; % Seconds per sample
u_time = randn(1,N);
Then, you would have:
Nyquist = 1/(2*dt);
df = 1 / (N*dt);
f = -Nyquist : df : Nyquist-df;
U_freq = fftshift(fft(u_time));
And you can plot this data between -10 and 10 Hertz by:
figure;
plot(f , abs(U_freq)*dt, 'b-'); hold on;
plot(f , angle(U_freq),'r-'); hold off;
xlim([-10 10]);
legend('magnitude','phase');
However, the above formulation assumes that your data are even. I would go further and try to pad your time data with zeros to next power of 2 (i.e., above is 2^10). Let me know if you have questions about doing that.
0 Commenti
Walter Roberson
il 13 Gen 2012
freqs = fft(U);
plot(real(freqs),'b*-');
hold on
plot(imag(freqs),'r+:');
4 Commenti
Honglei Chen
il 13 Gen 2012
Depending on your sampling rate and the number of points in your signal, you may want to also explore the following function
doc goertzel
doc czt
0 Commenti
Vedere anche
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!