Cody

# Problem 1946. Fibonacci-Sum of Squares

Solution 1582889

Submitted on 13 Jul 2018 by Martin C.
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
n = 5; S = 40; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 S = 40

2   Pass
n = 8; S = 714; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 f = 0 1 1 2 3 5 8 f = 0 1 1 2 3 5 8 13 f = 0 1 1 2 3 5 8 13 21 S = 714

3   Pass
n = 11; S = 12816; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 f = 0 1 1 2 3 5 8 f = 0 1 1 2 3 5 8 13 f = 0 1 1 2 3 5 8 13 21 f = 0 1 1 2 3 5 8 13 21 34 f = 0 1 1 2 3 5 8 13 21 34 55 f = 0 1 1 2 3 5 8 13 21 34 55 89 S = 12816

4   Pass
n = 15; S = 602070; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 f = 0 1 1 2 3 5 8 f = 0 1 1 2 3 5 8 13 f = 0 1 1 2 3 5 8 13 21 f = 0 1 1 2 3 5 8 13 21 34 f = 0 1 1 2 3 5 8 13 21 34 55 f = 0 1 1 2 3 5 8 13 21 34 55 89 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 S = 602070

5   Pass
n = 21; S = 193864606; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 f = 0 1 1 2 3 5 8 f = 0 1 1 2 3 5 8 13 f = 0 1 1 2 3 5 8 13 21 f = 0 1 1 2 3 5 8 13 21 34 f = 0 1 1 2 3 5 8 13 21 34 55 f = 0 1 1 2 3 5 8 13 21 34 55 89 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 18 377 610 987 1597 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 19 377 610 987 1597 2584 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 20 377 610 987 1597 2584 4181 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 21 377 610 987 1597 2584 4181 6765 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 22 377 610 987 1597 2584 4181 6765 10946 S = 193864606

6   Pass
n = 26; S = 23843770274; assert(isequal(FibSumSquares(n),S))

f = 0 1 f = 0 1 1 f = 0 1 1 2 f = 0 1 1 2 3 f = 0 1 1 2 3 5 f = 0 1 1 2 3 5 8 f = 0 1 1 2 3 5 8 13 f = 0 1 1 2 3 5 8 13 21 f = 0 1 1 2 3 5 8 13 21 34 f = 0 1 1 2 3 5 8 13 21 34 55 f = 0 1 1 2 3 5 8 13 21 34 55 89 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 f = 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 18 377 610 987 1597 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 19 377 610 987 1597 2584 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 20 377 610 987 1597 2584 4181 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 21 377 610 987 1597 2584 4181 6765 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 22 377 610 987 1597 2584 4181 6765 10946 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 23 377 610 987 1597 2584 4181 6765 10946 17711 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 24 377 610 987 1597 2584 4181 6765 10946 17711 28657 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 25 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 26 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 f = Columns 1 through 14 0 1 1 2 3 5 8 13 21 34 55 89 144 233 Columns 15 through 27 377 610 987 1597 2584 4181 6765 10946 17711 28657 46368 75025 121393 S = 2.3844e+10