Cody

# Problem 60. The Goldbach Conjecture

Solution 896603

Submitted on 27 May 2016 by Dennis Winston
This solution is locked. To view this solution, you need to provide a solution of the same size or smaller.

### Test Suite

Test Status Code Input and Output
1   Pass
nList = 28:6:76; for i = 1:length(nList) n = nList(i); [p1,p2] = goldbach(n) assert(isprime(p1) && isprime(p2) && (p1+p2==n)); end

P = 2 3 5 7 11 13 17 19 23 row = 1 col = 9 p1 = 5 p2 = 23 p1 = 11 p2 = 17 p1 = 17 p2 = 11 p1 = 23 p2 = 5 p1 = 23 p2 = 5 P = 2 3 5 7 11 13 17 19 23 29 31 row = 1 col = 11 p1 = 3 p2 = 31 p1 = 5 p2 = 29 p1 = 11 p2 = 23 p1 = 17 p2 = 17 p1 = 23 p2 = 11 p1 = 29 p2 = 5 p1 = 31 p2 = 3 p1 = 31 p2 = 3 P = 2 3 5 7 11 13 17 19 23 29 31 37 row = 1 col = 12 p1 = 3 p2 = 37 p1 = 11 p2 = 29 p1 = 17 p2 = 23 p1 = 23 p2 = 17 p1 = 29 p2 = 11 p1 = 37 p2 = 3 p1 = 37 p2 = 3 P = 2 3 5 7 11 13 17 19 23 29 31 37 41 43 row = 1 col = 14 p1 = 3 p2 = 43 p1 = 5 p2 = 41 p1 = 17 p2 = 29 p1 = 23 p2 = 23 p1 = 29 p2 = 17 p1 = 41 p2 = 5 p1 = 43 p2 = 3 p1 = 43 p2 = 3 P = 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 row = 1 col = 15 p1 = 5 p2 = 47 p1 = 11 p2 = 41 p1 = 23 p2 = 29 p1 = 29 p2 = 23 p1 = 41 p2 = 11 p1 = 47 p2 = 5 p1 = 47 p2 = 5 P = 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 row = 1 col = 16 p1 = 5 p2 = 53 p1 = 11 p2 = 47 p1 = 17 p2 = 41 p1 = 29 p2 = 29 p1 = 41 p2 = 17 p1 = 47 p2 = 11 p1 = 53 p2 = 5 p1 = 53 p2 = 5 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 18 59 61 row = 1 col = 18 p1 = 3 p2 = 61 p1 = 5 p2 = 59 p1 = 11 p2 = 53 p1 = 17 p2 = 47 p1 = 23 p2 = 41 p1 = 41 p2 = 23 p1 = 47 p2 = 17 p1 = 53 p2 = 11 p1 = 59 p2 = 5 p1 = 61 p2 = 3 p1 = 61 p2 = 3 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 19 59 61 67 row = 1 col = 19 p1 = 3 p2 = 67 p1 = 11 p2 = 59 p1 = 17 p2 = 53 p1 = 23 p2 = 47 p1 = 29 p2 = 41 p1 = 41 p2 = 29 p1 = 47 p2 = 23 p1 = 53 p2 = 17 p1 = 59 p2 = 11 p1 = 67 p2 = 3 p1 = 67 p2 = 3 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 21 59 61 67 71 73 row = 1 col = 21 p1 = 3 p2 = 73 p1 = 5 p2 = 71 p1 = 17 p2 = 59 p1 = 23 p2 = 53 p1 = 29 p2 = 47 p1 = 47 p2 = 29 p1 = 53 p2 = 23 p1 = 59 p2 = 17 p1 = 71 p2 = 5 p1 = 73 p2 = 3 p1 = 73 p2 = 3

2   Pass
nList = [18 20 22 100 102 114 1000 2000 36 3600]; for i = 1:length(nList) n = nList(i); [p1,p2] = goldbach(n) assert(isprime(p1) && isprime(p2) && (p1+p2==n)); end

P = 2 3 5 7 11 13 17 row = 1 col = 7 p1 = 5 p2 = 13 p1 = 7 p2 = 11 p1 = 11 p2 = 7 p1 = 13 p2 = 5 p1 = 13 p2 = 5 P = 2 3 5 7 11 13 17 19 row = 1 col = 8 p1 = 3 p2 = 17 p1 = 7 p2 = 13 p1 = 13 p2 = 7 p1 = 17 p2 = 3 p1 = 17 p2 = 3 P = 2 3 5 7 11 13 17 19 row = 1 col = 8 p1 = 3 p2 = 19 p1 = 5 p2 = 17 p1 = 11 p2 = 11 p1 = 17 p2 = 5 p1 = 19 p2 = 3 p1 = 19 p2 = 3 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 25 59 61 67 71 73 79 83 89 97 row = 1 col = 25 p1 = 3 p2 = 97 p1 = 11 p2 = 89 p1 = 17 p2 = 83 p1 = 29 p2 = 71 p1 = 41 p2 = 59 p1 = 47 p2 = 53 p1 = 53 p2 = 47 p1 = 59 p2 = 41 p1 = 71 p2 = 29 p1 = 83 p2 = 17 p1 = 89 p2 = 11 p1 = 97 p2 = 3 p1 = 97 p2 = 3 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 26 59 61 67 71 73 79 83 89 97 101 row = 1 col = 26 p1 = 5 p2 = 97 p1 = 13 p2 = 89 p1 = 19 p2 = 83 p1 = 23 p2 = 79 p1 = 29 p2 = 73 p1 = 31 p2 = 71 p1 = 41 p2 = 61 p1 = 43 p2 = 59 p1 = 59 p2 = 43 p1 = 61 p2 = 41 p1 = 71 p2 = 31 p1 = 73 p2 = 29 p1 = 79 p2 = 23 p1 = 83 p2 = 19 p1 = 89 p2 = 13 p1 = 97 p2 = 5 p1 = 97 p2 = 5 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 30 59 61 67 71 73 79 83 89 97 101 103 107 109 113 row = 1 col = 30 p1 = 5 p2 = 109 p1 = 7 p2 = 107 p1 = 11 p2 = 103 p1 = 13 p2 = 101 p1 = 17 p2 = 97 p1 = 31 p2 = 83 p1 = 41 p2 = 73 p1 = 43 p2 = 71 p1 = 47 p2 = 67 p1 = 53 p2 = 61 p1 = 61 p2 = 53 p1 = 67 p2 = 47 p1 = 71 p2 = 43 p1 = 73 p2 = 41 p1 = 83 p2 = 31 p1 = 97 p2 = 17 p1 = 101 p2 = 13 p1 = 103 p2 = 11 p1 = 107 p2 = 7 p1 = 109 p2 = 5 p1 = 109 p2 = 5 P = Columns 1 through 16 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 Columns 17 through 32 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131 Columns 33 through 48 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223 Columns 49 through 64 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311 Columns 65 through 80 313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 Columns 81 through 96 419 421 431 433 439 443 449 457 461 463 467 479 487 491 499 503 Columns 97 through 112 509 521 523 541 547 557 563 569 571 577 587 593 599 601 607 613 Columns 113 through 128 617 619 631 641 643 647 653 659 661 673 677 683 691 701 709 719 Columns 129 through 144 727 733 739 743 751 757 761 769 773 787 797 809 811 821 823 827 Columns 145 through 160 829 839 853 857 859 863 877 881 883 887 907 911 919 929 937 941 Columns 161 through 168 947 953 967 971 977 983 991 997 row = 1 col = 168 p1 = 3 p2 = 997 p1 = 17 p2 = 983 p1 = 23 p2 = 977 p1 = 29 p2 = 971 p1 = 47 p2 = 953 p1 = 53 p2 = 947 p1 = 59 p2 = 941 p1 = 71 p2 = 929 p1 = 89 p2 = 911 p1 = 113 p2 = 887 p1 = 137 p2 = 863 p1 = 173 p2 = 827 p1 = 179 p2 = 821 p1 = 191 p2 = 809 p1 = 227 p2 = 773 p1 = 239 p2 = 761 p1 = 257 p2 = 743 p1 = 281 p2 = 719 p1 = 317 p2 = 683 p1 = 347 p2 = 653 p1 = 353 p2 = 647 p1 = 359 p2 = 641 p1 = 383 p2 = 617 p1 = 401 p2 = 599 p1 = 431 p2 = 569 p1 = 443 p2 = 557 p1 = 479 p2 = 521 p1 = 491 p2 = 509 p1 = 509 p2 = 491 p1 = 521 p2 = 479 p1 = 557 p2 = 443 p1 = 569 p2 = 431 p1 = 599 p2 = 401 p1 = 617 p2 = 383 p1 = 641 p2 = 359 p1 = 647 p2 = 353 p1 = 653 p2 = 347 p1 = 683 p2 = 317 p1 = 719 p2 = 281 p1 = 743 p2 = 257 p1 = 761 p2 = 239 p1 = 773 p2 = 227 p1 = 809 p2 = 191 p1 = 821 p2 = 179 p1 = 827 p2 = 173 p1 = 863 p2 = 137 p1 = 887 p2 = 113 p1 = 911 p2 = 89 p1 = 929 p2 = 71 p1 = 941 p2 = 59 p1 = 947 p2 = 53 p1 = 953 p2 = 47 p1 = 971 p2 = 29 p1 = 977 p2 = 23 p1 = 983 p2 = 17 p1 = 997 p2 = 3 p1 = 997 p2 = 3 P = Columns 1 through 8 2 3 5 7 11 13 17 19 Columns 9 through 16 23 29 31 37 41 43 47 53 Columns 17 through 24 59 61 67 71 73 79 83 89 Columns 25 through 32 97 101 103 107 109 113 127 131 Columns 33 through 40 137 139 149 151 157 163 167 173 Columns 41 through 48 179 181 191 193 197 199 211 223 Columns 49 through 56 227 229 233 239 241 251 257 263 Columns 57 through 64 269 271 277 281 283 293 307 311 Columns 65 through 72 313 317 331 337 347 349 353 359 Columns 73 through 80 367 373 379 383 389 397 401 409 Columns 81 through 88 419 421 431 433 439 443 449 457 Columns 89 through 96 461 463 467 479 487 491 499 503 Columns 97 through 104 509 521 523 541 547 557 563 569 Columns 105 through 112 571 577 587 593 599 601 607 613 Columns 113 through 120 617 619 631 641 643 647 653 659 Columns 121 through 128 661 673 677 683 691 701 709 719 Columns 129 through 136 727 733 739 743 751 757 761 769 Columns 137 through 144 773 787 797 809 811 821 823 827 Columns 145 through 152 829 839 853 857 859 863 877 881 Columns 153 through 160 883 887 907 911 919 929 937 941 Columns 161 through 168 947 953 967 971 977 983 991 997 Columns 169 through 176 1009 1013 1019 1021 1031 1033 1039 1049 Columns 177 through 184 1051 1061 1063 1069 1087 1091 1093 1097 Columns 185 through 192 1103 1109 1117 1123 1129 1151 1153 1163 Columns 193 through 200 1171 1181 1187 1193 1201 1213 1217 1223 Columns 201 through 208 1229 1231 1237 1249 1259 1277 1279 1283 Columns 209 through 216 1289 1291 1297 1301 1303 1307 1319 1321 Columns 217 through 224 1327 1361 1367 1373 1381 1399 1409 1423 Columns 225 through 232 1427 1429 1433 1439 1447 1451 1453 1459 Columns 233 through 240 1471 1481 1483 1487 1489 1493 1499 1511 Columns 241 through 248 1523 1531 1543 1549 1553 1559 1567 1571 Columns 249 through 256 1579 1583 1...