Terminal Fall Velocity of a Single Spherical Particle in a Newtonian Fluid

Computes terminal fall velocity
2,5K download
Aggiornato 17 dic 2007

Nessuna licenza

Newton number (also called the drag coefficient) and Archimedes number are plotted versus the Reynolds number for the laminar, transition and turbulent flow types using a log-log scale. A numerical example of the terminal fall velocity computation of a single spherical particle in a Newtonian fluid, for the turbulent flow type, is given in the program. For laminar flow, the terminal velocity expression is given by the well-known Stokes? law. Measurement of terminal fall velocity has important applications such as viscosity determination (e.g. falling-sphere viscometer) and decanter sizing.

For a similar code using Mathematica 5.2, please visit:

http://library.wolfram.com/infocenter/MathSource/5969/

Cita come

Housam Binous (2024). Terminal Fall Velocity of a Single Spherical Particle in a Newtonian Fluid (https://www.mathworks.com/matlabcentral/fileexchange/13425-terminal-fall-velocity-of-a-single-spherical-particle-in-a-newtonian-fluid), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R14SP1
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Chemistry in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.0.0.0

added link to Wolfram Library Archive