Appending an existing QR decomposition: qrappend(q0, r0, Ap)

Efficiently update a QR decomposition that might be economy size (thin form)
53 download
Aggiornato 3 mar 2017

Visualizza la licenza

This algorithm computes the QR factorization of the matrix "A = q0*r0" with Ap appended at the end via the Modified Gram-Schmidt algorithm. It updates an existing QR decomposition without re-computation. The advantage over qrinsert is that it does not require that "Q must be square", that is, it allows the given QR decomposition to be of "economy size" / "thin form".
The input arguments q0 and r0 can be empty matrices, in that case the algorithm computes a new thin form QR of the matrix Ap.mM is the mass matrix defining a general inner product, setting it to "eye" or not supplying it recovers the regular dot product.

Example:

A = rand(10,5);
B = rand(10,2);
[q0, r0] = qr(A,0); % or qrappend([],[],A);
[q1, r1] = qrappend(q0,r0,B);

Cita come

Yanlai Chen (2025). Appending an existing QR decomposition: qrappend(q0, r0, Ap) (https://it.mathworks.com/matlabcentral/fileexchange/61856-appending-an-existing-qr-decomposition-qrappend-q0-r0-ap), MATLAB Central File Exchange. Recuperato .

Compatibilità della release di MATLAB
Creato con R2007a
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux
Categorie
Scopri di più su Linear Algebra in Help Center e MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versione Pubblicato Note della release
1.1.0.0

Title and description edited.

1.0.0.0