Shor Algorithm for prime factoring
A Version of the Shor-Algorithm for prime Factoring. Please feel free to comment on it or recommend improvements.
Performance is pretty poor, since creating the "superposition" required for the analysis of hidden frequencies is quite intensive (and I do not have a quantum computer). This step consumes about 99% of the total runtime.
Performance tests produced similar results as I found in: https://scholar.colorado.edu/math_gradetds/39/ (Parsons, Elizabeth Ellen, "Simulation of a Quantum Prime Factoring Algorithm" (2016), p. 42.)
The program can also handle numbers with factors of the kind p^n with p = a prime and n>1. (not all versions of Shor I found, could do this)
Using a "parfor" inside the "order_qstyle" function would help to speed it up a bit.
Example(s):
shor(156) delivers : 2 2 3 13 in 0.060103 seconds
shor(793) delivers: 13 61 in 287.038115 seconds
shor(1185) delivers: 3 5 79 in 80.203060 seconds
(on my computer)
Cita come
Thomas (2025). Shor Algorithm for prime factoring (https://it.mathworks.com/matlabcentral/fileexchange/72945-shor-algorithm-for-prime-factoring), MATLAB Central File Exchange. Recuperato .
Compatibilità della release di MATLAB
Compatibilità della piattaforma
Windows macOS LinuxCategorie
- MATLAB > Data Import and Analysis > Large Files and Big Data >
- Sciences > Physics > Quantum Mechanics >
- Sciences > Chemistry > Quantum Computing >
Tag
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Scopri Live Editor
Crea script con codice, output e testo formattato in un unico documento eseguibile.
| Versione | Pubblicato | Note della release | |
|---|---|---|---|
| 1.0.0 |
