ReliefF and SVM Example

Versione 1.0.1 (3,22 MB) da Frederik D
Example of using ReliefF (Matlab: relieff) and SVM (Matlab: fitcsvm) for the classification of pharmaceutical pellets.
274 download
Aggiornato 28 dic 2020

This repository was created for anybody interested in using feature selection (ReliefF, Matlab: relieff) and support vector machines (SVM, Matlab: fitcsvm) as a minimum working example to reproduce steps described in the publication below (Doerr2020). Data is provided in the sub-folder '_Data'. Structural features were extracted from micro-X-ray tomography data. ReliefF and SVM were used to build a classifier for the detection of broken pharmaceutical pellets within the sample.

Input Data:
(1) Extracted features of six ibuprofen (IBU) capsules (1763 pellets, 206 features):
'Desc_DataFile_C0.csv'
'Desc_DataFile_C1.csv'
'Desc_DataFile_C2.csv'
'Desc_DataFile_C3.csv'
'Desc_DataFile_C4.csv'
'Desc_DataFile_C5.csv'

(2) User defined feature categories:
'Feature_Categories.csv'

(3) Results of a feature sensitivity analysis:
'Feature_SenAnlys_Score.csv'

%------------------------------------------------------------------------------------------------
% Code written by Frederik Doerr, Feb 2020 (MATLAB R2019b)
% Application: For 'Support Vector Machine - Introduction and Application'

% % % Reference (open access):
% Doerr, F. J. S., Florence, A. J. (2020)
% A micro-XRT image analysis and machine learning methodology for the characterisation of multi-particulate capsule formulations.
% International Journal of Pharmaceutics: X.
% https://doi.org/10.1016/j.ijpx.2020.100041
% Data repository: https://doi.org/10.15129/e5d22969-77d4-46a8-83b8-818b50d8ff45
% Video Abstract: https://strathprints.strath.ac.uk/id/eprint/71463
%------------------------------------------------------------------------------------------------

Cita come

Doerr, Frederik J. S., and Alastair J. Florence. “A Micro-XRT Image Analysis and Machine Learning Methodology for the Characterisation of Multi-Particulate Capsule Formulations.” International Journal of Pharmaceutics: X, vol. 2, Elsevier BV, Dec. 2020, p. 100041, doi:10.1016/j.ijpx.2020.100041.

Visualizza più stili
Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con qualsiasi release
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.1

Minor corrections in description, references

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.