Matlab-GAN

MATLAB implementations of Generative Adversarial Networks -- from GAN to Pixel2Pixel, CycleGAN
2,4K download
Aggiornato 22 mar 2023

Collection of MATLAB implementations of Generative Adversarial Networks (GANs) suggested in research papers. It includes GAN, conditional-GAN, info-GAN, Adversarial AutoEncoder, Pix2Pix, CycleGAN and more, and the models are applied to different datasets such as MNIST, celebA and Facade.

Cita come

Yui Chun Leung (2024). Matlab-GAN (https://github.com/zcemycl/Matlab-GAN), GitHub. Recuperato .

Y. LeCun and C. Cortes, “MNIST handwritten digitdatabase,” 2010. [MNIST]

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, andL. Fei-Fei, “ImageNet: A Large-Scale Hierarchical Image Database,” inCVPR09, 2009. [Apple2Orange (ImageNet)]

R. Tyleček and R. Šára, “Spatial pattern templates forrecognition of objects with regular structure,” inProc.GCPR, (Saarbrucken, Germany), 2013. [Facade]

Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learn-ing face attributes in the wild,” inProceedings of In-ternational Conference on Computer Vision (ICCV),December 2015. [CelebA]

Goodfellow, Ian J. et al. “Generative Adversarial Networks.” ArXiv abs/1406.2661 (2014): n. pag. (GAN)

Radford, Alec et al. “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.” CoRR abs/1511.06434 (2015): n. pag. (DCGAN)

Denton, Emily L. et al. “Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks.” ArXiv abs/1611.06430 (2017): n. pag. (CGAN)

Odena, Augustus et al. “Conditional Image Synthesis with Auxiliary Classifier GANs.” ICML (2016). (ACGAN)

Chen, Xi et al. “InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets.” NIPS (2016). (InfoGAN)

Makhzani, Alireza et al. “Adversarial Autoencoders.” ArXiv abs/1511.05644 (2015): n. pag. (AAE)

Isola, Phillip et al. “Image-to-Image Translation with Conditional Adversarial Networks.” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016): 5967-5976. (Pix2Pix)

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpairedimage-to-image translation using cycle-consistent ad-versarial networks,” 2017. (CycleGAN)

Compatibilità della release di MATLAB
Creato con R2019b
Compatibile con R2019b fino a R2020a
Compatibilità della piattaforma
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Le versioni che utilizzano il ramo predefinito di GitHub non possono essere scaricate

Versione Pubblicato Note della release
1.0.1

Add image

1.0.0

Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.
Per visualizzare o segnalare problemi su questo componente aggiuntivo di GitHub, visita GitHub Repository.