swaptionbyhw
Price swaption from Hull-White interest-rate tree
Syntax
Description
[
prices swaption using a Hull-White tree.Price,PriceTree]
= swaptionbyhw(HWTree,OptSpec,Strike,ExerciseDates,Spread,Settle,Maturity)
Note
Alternatively, you can use the Swaption object to price
swaption instruments. For more information, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
[
adds optional name-value pair arguments.Price,PriceTree]
= swaptionbyhw(___,Name,Value)
Examples
This example shows how to price a 3-year put swaption using an HW interest-rate tree with the following data.
Rates =0.075 * ones (10,1); Compounding = 2; StartDates = [datetime(2007,1,1);datetime(2007,7,1);datetime(2008,1,1);datetime(2008,7,1);datetime(2009,1,1);datetime(2009,7,1);datetime(2010,1,1);datetime(2010,7,1);datetime(2011,1,1);datetime(2011,7,1)]; EndDates = [datetime(2007,7,1);datetime(2008,1,1);datetime(2008,7,1);datetime(2009,1,1);datetime(2009,7,1);datetime(2010,1,1);datetime(2010,7,1);datetime(2011,1,1);datetime(2011,7,1);datetime(2012,1,1)]; ValuationDate = datetime(2007,1,1); % Define the RatesSpec RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',... EndDates, 'Compounding', Compounding); % Use HWVolSpec to compute the interest-rate volatility Volatility = 0.05*ones(10,1); AlphaCurve = 0.01*ones(10,1); AlphaDates = EndDates; HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve); % Use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding); % Build the HW tree HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec); % Use the following arguments for a 1-year swap and 3-year swaption ExerciseDates = datetime(2010,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2012,1,1); Spread = 0; SwapReset = 2 ; Principal = 100; OptSpec = 'put'; Strike= 0.04; Basis=1; % Price the swaption PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ... 'Basis', Basis,'Principal', Principal)
PriceSwaption = 2.9201
This example shows how to price a 3-year put swaption with receiving and paying legs using an HW interest-rate tree with the following data.
Rates =0.075 * ones (10,1); Compounding = 2; StartDates = [datetime(2007,1,1);datetime(2007,7,1);datetime(2008,1,1);datetime(2008,7,1);datetime(2009,1,1);datetime(2009,7,1);datetime(2010,1,1);datetime(2010,7,1);datetime(2011,1,1);datetime(2011,7,1)]; EndDates = [datetime(2007,7,1);datetime(2008,1,1);datetime(2008,7,1);datetime(2009,1,1);datetime(2009,7,1);datetime(2010,1,1);datetime(2010,7,1);datetime(2011,1,1);datetime(2011,7,1);datetime(2012,1,1)]; ValuationDate = datetime(2007,1,1);
Define the RatesSpec.
RateSpec = intenvset('Rates', Rates, 'StartDates', StartDates, 'EndDates',... EndDates, 'Compounding', Compounding);
Use HWVolSpec to compute the interest-rate volatility.
Volatility = 0.05*ones(10,1); AlphaCurve = 0.01*ones(10,1); AlphaDates = EndDates; HWVolSpec = hwvolspec(ValuationDate, EndDates, Volatility, AlphaDates, AlphaCurve);
Use HWTimeSpec to specify the structure of the time layout for an HW interest-rate tree.
HWTimeSpec = hwtimespec(ValuationDate, EndDates, Compounding);
Build the HW tree.
HWTree = hwtree(HWVolSpec, RateSpec, HWTimeSpec);
Use the following arguments for a 1-year swap and 3-year swaption
ExerciseDates = datetime(2010,1,1); SwapSettlement = ExerciseDates; SwapMaturity = datetime(2012,1,1); Spread = 0; SwapReset = [2 2]; % 1st column represents receiving leg, 2nd column represents paying leg Principal = 100; OptSpec = 'put'; Strike= 0.04; Basis= [1 3]; % 1st column represents receiving leg, 2nd column represents paying leg
Price the swaption.
PriceSwaption = swaptionbyhw(HWTree, OptSpec, Strike, ExerciseDates, ... Spread, SwapSettlement, SwapMaturity,'SwapReset', SwapReset, ... 'Basis', Basis,'Principal', Principal)
PriceSwaption = 2.9201
Input Arguments
Interest-rate tree structure, specified by using hwtree.
Data Types: struct
Definition of the option as 'call' or 'put',
specified as a NINST-by-1 cell
array of character vectors. For more information, see More About.
Data Types: char | cell
Strike swap rate values, specified as a NINST-by-1 vector.
Data Types: double
Exercise dates for the swaption, specified as a
NINST-by-1 vector or a
NINST-by-2 vector using a datetime array, string
array, or date character vectors, depending on the option type.
For a European option,
ExerciseDatesare aNINST-by-1vector of exercise dates. Each row is the schedule for one option. When using a European option, there is only oneExerciseDateon the option expiry date.For an American option,
ExerciseDatesare aNINST-by-2vector of exercise date boundaries. For each instrument, the option can be exercised on any coupon date between or including the pair of dates on that row. If only one non-NaNdate is listed, or ifExerciseDatesisNINST-by-1, the option can be exercised between theValuationDateof the tree and the single listedExerciseDate.
To support existing code, swaptionbyhw also
accepts serial date numbers as inputs, but they are not recommended.
Number of basis points over the reference rate, specified as
a NINST-by-1 vector.
Data Types: double
Settlement date (representing the settle date for each swap), specified as a
NINST-by-1 vector using a datetime array, string
array, or date character vectors. The Settle date for every swaption
is set to the ValuationDate of the HW tree. The swap argument
Settle is ignored. The underlying swap starts at the maturity of
the swaption.
To support existing code, swaptionbyhw also
accepts serial date numbers as inputs, but they are not recommended.
Maturity date for each swap, specified as a NINST-by-1
vector using a datetime array, string array, or date character vectors.
To support existing code, swaptionbyhw also
accepts serial date numbers as inputs, but they are not recommended.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: [Price,PriceTree] = swaptionbyhw(HWTree,OptSpec,
ExerciseDates,Spread,Settle,Maturity,'SwapReset',4,'Basis',5,'Principal',10000)
(Optional) Option type, specified as the comma-separated pair consisting of
'AmericanOpt' and
NINST-by-1 positive integer flags with values:
0— European1— American
Data Types: double
Reset frequency per year for the underlying swap, specified as the comma-separated pair
consisting of 'SwapReset' and a
NINST-by-1 vector or
NINST-by-2 matrix representing the reset
frequency per year for each leg. If SwapReset is
NINST-by-2, the first column represents the
receiving leg, while the second column represents the paying leg.
Data Types: double
Day-count basis representing the basis used when annualizing the input forward rate tree for
each instrument, specified as the comma-separated pair consisting of
'Basis' and a NINST-by-1
vector or NINST-by-2 matrix representing the
basis for each leg. If Basis is
NINST-by-2, the first column represents the
receiving leg, while the second column represents the paying leg.
0 = actual/actual
1 = 30/360 (SIA)
2 = actual/360
3 = actual/365
4 = 30/360 (PSA)
5 = 30/360 (ISDA)
6 = 30/360 (European)
7 = actual/365 (Japanese)
8 = actual/actual (ICMA)
9 = actual/360 (ICMA)
10 = actual/365 (ICMA)
11 = 30/360E (ICMA)
12 = actual/365 (ISDA)
13 = BUS/252
For more information, see Basis.
Data Types: double
Notional principal amount, specified as the comma-separated pair consisting of
'Principal' and a
NINST-by-1 vector.
Data Types: double
Derivatives pricing options structure, specified as the comma-separated pair consisting of
'Options' and a structure obtained from using derivset.
Data Types: struct
Output Arguments
Expected prices of the swaptions at time 0, returned as a NINST-by-1 vector.
Tree structure of instrument prices, returned as a MATLAB® structure
of trees containing vectors of swaption instrument prices and a vector
of observation times for each node. Within PriceTree:
PriceTree.PTreecontains the clean prices.PriceTree.tObscontains the observation times.
More About
A swaption (swap option) is a financial derivative that gives the holder the right, but not the obligation, to enter into an interest-rate swap agreement at a specified future date and under predetermined terms.
Swaptions are used by investors and institutions to hedge against interest rate fluctuations or to speculate on future changes in interest rates.
A call swaption or payer swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option pays the fixed rate and receives the floating rate.
A put swaption or receiver swaption allows the option buyer to enter into an interest-rate swap in which the buyer of the option receives the fixed rate and pays the floating rate.
Version History
Introduced before R2006aAlthough swaptionbyhw supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
See Also
hwtree | instswaption | swapbyhw | Swaption
Topics
- Pricing Using Interest-Rate Tree Models
- Calibrating Hull-White Model Using Market Data
- Price a Swaption Using SABR Model and Analytic Pricer
- Swaption
- Pricing Options Structure
- Understanding Interest-Rate Tree Models
- Supported Interest-Rate Instrument Functions
- Mapping Financial Instruments Toolbox Functions for Interest-Rate Instrument Objects
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)