revertToOriginal
Class: FunctionApproximation.LUTSolution
Namespace: FunctionApproximation
Revert the block that was replaced by the approximation back to its original state
Syntax
revertToOriginal(solution)
Description
revertToOriginal(
reverts the block
that was replaced by a lookup table approximation back to its original state.solution
)
Note
You can only revert a block back to its original state within a single MATLAB® session.
Input Arguments
The solution approximating the block you want to revert to its original state,
specified as a FunctionApproximation.LUTSolution
object.
Examples
This example shows how to approximate a block using a lookup table approximation, replace the original block with the approximation, and then revert the block back to its original state.
Open the model containing the block to approximate. In this example, replace the tan block with a lookup table approximation.
open_system('ex_luto_approx')
Create a FunctionApproximation.Problem
object specifying what you want to approximate.
problem = FunctionApproximation.Problem('ex_luto_approx/Trigonometric Function')
problem = 1×1 FunctionApproximation.Problem with properties: FunctionToApproximate: 'ex_luto_approx/Trigonometric Function' NumberOfInputs: 1 InputTypes: "numerictype('double')" InputLowerBounds: -1.5083 InputUpperBounds: 1.5083 OutputType: "numerictype('double')" Options: [1×1 FunctionApproximation.Options]
Use default values for all other options. To approximate the block use the solve
method.
solution = solve(problem)
Searching for fixed-point solutions. | ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 0 | 48 | 0 | 2 | 8 | 16 | EvenSpacing | 7.812500e-03, 9.471100e+00 | | 1 | 800 | 0 | 49 | 8 | 16 | EvenSpacing | 7.812500e-03, 4.497029e-01 | | 2 | 1584 | 1 | 98 | 8 | 16 | EvenSpacing | 7.812500e-03, 1.016505e-05 | | 3 | 1056 | 0 | 65 | 8 | 16 | EvenSpacing | 7.812500e-03, 4.497029e-01 | | 4 | 544 | 0 | 33 | 8 | 16 | EvenSpacing | 7.812500e-03, 4.497029e-01 | | 5 | 416 | 0 | 25 | 8 | 16 | EvenSpacing | 7.812500e-03, 4.497029e-01 | | 6 | 368 | 0 | 22 | 8 | 16 | EvenSpacing | 7.812500e-03, 4.534664e+00 | | 7 | 64 | 0 | 2 | 16 | 16 | EvenSpacing | 7.812500e-03, 9.517788e+00 | | 8 | 768 | 1 | 46 | 16 | 16 | EvenSpacing | 7.812500e-03, 2.192364e-04 | | 9 | 752 | 1 | 45 | 16 | 16 | EvenSpacing | 7.812500e-03, 1.220687e-04 | | 10 | 592 | 1 | 35 | 16 | 16 | EvenSpacing | 7.812500e-03, 2.388241e-04 | | 11 | 576 | 1 | 34 | 16 | 16 | EvenSpacing | 7.812500e-03, 6.201875e-05 | | 12 | 416 | 0 | 24 | 16 | 16 | EvenSpacing | 7.812500e-03, 8.559014e-01 | | 13 | 400 | 0 | 23 | 16 | 16 | EvenSpacing | 7.812500e-03, 1.008229e+00 | | 14 | 496 | 0 | 29 | 16 | 16 | EvenSpacing | 7.812500e-03, 2.136958e-01 | | 15 | 528 | 1 | 31 | 16 | 16 | EvenSpacing | 7.812500e-03, 1.018354e-04 | | 16 | 512 | 0 | 30 | 16 | 16 | EvenSpacing | 7.812500e-03, 1.037605e-01 | | 17 | 288 | 0 | 16 | 16 | 16 | EvenSpacing | 7.812500e-03, 2.391904e+00 | | 18 | 464 | 0 | 27 | 16 | 16 | EvenSpacing | 7.812500e-03, 4.491186e-01 | | 19 | 80 | 0 | 2 | 8 | 32 | EvenSpacing | 7.812500e-03, 9.471052e+00 | | 20 | 48 | 0 | 2 | 8 | 16 | EvenPow2Spacing | 7.812500e-03, 1.146582e+01 | | 21 | 416 | 0 | 25 | 8 | 16 | EvenPow2Spacing | 7.812500e-03, 4.497029e-01 | | 22 | 224 | 0 | 13 | 8 | 16 | EvenPow2Spacing | 7.812500e-03, 2.887487e+00 | | 23 | 64 | 0 | 2 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 1.145654e+01 | | 24 | 432 | 0 | 25 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 6.957588e-01 | | 25 | 240 | 0 | 13 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 3.221296e+00 | | 26 | 80 | 0 | 2 | 8 | 32 | EvenPow2Spacing | 7.812500e-03, 1.146600e+01 | | 27 | 432 | 0 | 13 | 8 | 32 | EvenPow2Spacing | 7.812500e-03, 2.887556e+00 | | 28 | 96 | 0 | 2 | 16 | 32 | EvenPow2Spacing | 7.812500e-03, 1.145661e+01 | | 29 | 448 | 0 | 13 | 16 | 32 | EvenPow2Spacing | 7.812500e-03, 3.221186e+00 | | 30 | 128 | 0 | 2 | 32 | 32 | EvenPow2Spacing | 7.812500e-03, 1.145660e+01 | | 31 | 480 | 0 | 13 | 32 | 32 | EvenPow2Spacing | 7.812500e-03, 3.220685e+00 | | 32 | 96 | 0 | 2 | 32 | 16 | EvenPow2Spacing | 7.812500e-03, 1.145654e+01 | | 33 | 464 | 0 | 25 | 32 | 16 | EvenPow2Spacing | 7.812500e-03, 6.951333e-01 | | 34 | 272 | 0 | 13 | 32 | 16 | EvenPow2Spacing | 7.812500e-03, 3.220611e+00 | | 35 | 216 | 1 | 9 | 8 | 16 | ExplicitValues | 7.812500e-03, 9.900552e-04 | | 36 | 192 | 0 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.142949e-02 | | 37 | 192 | 0 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.142949e-02 | | 38 | 192 | 0 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.142949e-02 | | 39 | 192 | 0 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.142949e-02 | | 40 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 | Searching for floating-point solutions. | 41 | 64 | 0 | 2 | 16 | 16 | EvenSpacing | 7.812500e-03, 9.424033e+00 | | 42 | 768 | 0 | 46 | 16 | 16 | EvenSpacing | 7.812500e-03, 9.531209e-01 | | 43 | 752 | 1 | 45 | 16 | 16 | EvenSpacing | 7.812500e-03, 3.864191e-05 | | 44 | 160 | 0 | 2 | 16 | 64 | EvenSpacing | 7.812500e-03, 9.421379e+00 | | 45 | 64 | 0 | 2 | 16 | 16 | EvenPow2Spacing | 7.812500e-03, 1.145605e+01 | | 46 | 160 | 0 | 2 | 16 | 64 | EvenPow2Spacing | 7.812500e-03, 1.145598e+01 | Best Solution | ID | Memory (bits) | Feasible | Table Size | Breakpoints WLs | TableData WL | BreakpointSpecification | Error(Max,Current) | | 40 | 192 | 1 | 8 | 8 | 16 | ExplicitValues | 7.812500e-03, 1.383244e-03 | solution = 1×1 FunctionApproximation.LUTSolution with properties: ID: 40 Feasible: "true"
Generate a Simulink® subsystem containing the lookup table approximation using the approximate
method.
approximate(solution)
Replace the original block with the approximation.
replaceWithApproximate(solution)
You can revert the system back to its original state using the revertToOriginal
method.
revertToOriginal(solution)
Version History
Introduced in R2018b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)