Main Content

refractionexp

CRPL exponential reference atmosphere refraction exponent

Since R2021b

Description

rexp = refractionexp(Ns) computes the refraction exponent or decay constant of the CRPL Exponential Reference Atmosphere Model.

example

Examples

collapse all

Compute the refraction exponents for surface refractivities equal to 200 N-units, 313 N-units, and 450 N-units.

srfrf = [200 313 450];

rexp = refractionexp(srfrf)
rexp = 1×3

    0.1184    0.1439    0.2233

Compute and plot the radar vertical coverage pattern for a sinc antenna pattern. Specify a frequency of 100 MHz, an antenna height of 10 meters, and a range of 100 km. Assume the surface is smooth, the antenna is not tilted, and the transmitted polarization is horizontal.

frq = 100e6;
anht = 10;
rng = 100;

To specify the effective Earth radius, assume a high-latitude atmosphere model and a winter-like seasonal profile. Use the refractiveidx function to compute the refractivity gradient in N-units per meter using the Earth's surface and an altitude of 1 km.

alt1km = 1e3;
[nidx,N] = refractiveidx([0 alt1km], ...
    LatitudeModel="High",Season="Winter");
RGrad = (nidx(2) - nidx(1))/alt1km;

Re = effearthradius(RGrad);

Compute the vertical coverage pattern using the effective Earth radius and the radar parameters.

[vcpKm,vcpangles] = radarvcd(frq,rng,anht, ...
    EffectiveEarthRadius=Re);

Use the refractivity at the surface in N-units to compute the refraction exponent.

Ns = N(1);
rexp = refractionexp(Ns)
rexp = 
0.1440

Plot the vertical coverage pattern in the form of a Blake chart.

blakechart(vcpKm,vcpangles, ...
    SurfaceRefractivity=Ns,RefractionExponent=rexp)

Figure contains an axes object. The axes object with title Blake Chart, xlabel Range (km), ylabel Height (km) contains 14 objects of type patch, text, line. One or more of the lines displays its values using only markers

Input Arguments

collapse all

M-length refractivity at the surface in N-units, specified as a real scalar.

Example: 313

Data Types: double

Output Arguments

collapse all

Refraction exponent or decay constant in km–1, returned as nonnegative real scalar.

More About

collapse all

References

[1] Bean, B.R., and G.D. Thayer. "Central Radio Propagation Laboratory Exponential Reference Atmosphere." Journal of Research of the National Bureau of Standards, Section D: Radio Propagation 63D, no. 3 (November 1959): 315. https://doi.org/10.6028/jres.063D.031.

[2] Dutton, E. J., and G. D. Thayer. Techniques for Computing Refraction of Radio Waves in the Troposphere. National Bureau of Standards Technical Note 97. United States National Bureau of Standards, 1961, revised 1964.

Extended Capabilities

expand all

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Version History

Introduced in R2021b