adjoint
Classical adjoint (adjugate) of square matrix
Syntax
Description
returns
the Classical Adjoint (Adjugate) Matrix
X = adjoint(A)X of A, such that A*X = det(A)*eye(n) =
X*A, where n is the number of rows in
A.
Examples
Find the classical adjoint of a numeric matrix.
A = magic(3); X = adjoint(A)
X = 3×3
-53.0000 52.0000 -23.0000
22.0000 -8.0000 -38.0000
7.0000 -68.0000 37.0000
Find the classical adjoint of a symbolic matrix.
syms x y z A = sym([x y z; 2 1 0; 1 0 2]); X = adjoint(A)
X =
Verify that det(A)*eye(3) = X*A by using isAlways.
cond = det(A)*eye(3) == X*A; isAlways(cond)
ans = 3×3 logical array
1 1 1
1 1 1
1 1 1
Compute the inverse of this matrix by computing its classical adjoint and determinant.
syms a b c d A = [a b; c d]; invA = adjoint(A)/det(A)
invA =
Verify that invA is the inverse of A.
isAlways(invA == inv(A))
ans = 2×2 logical array
1 1
1 1
Input Arguments
Square matrix, specified as a numeric matrix, matrix of symbolic scalar variables, symbolic matrix variable, symbolic function, symbolic matrix function, or symbolic expression.
Data Types: single | double | sym | symfun | symmatrix | symfunmatrix
More About
The classical adjoint, or adjugate, of a square matrix A is the square matrix X, such that the (i,j)-th entry of X is the (j,i)-th cofactor of A.
The (j,i)-th cofactor of A is defined as follows.
Aij is the submatrix of A obtained from A by removing the i-th row and j-th column.
The classical adjoint matrix should not be confused with the adjoint matrix. The adjoint is the conjugate transpose of a matrix while the classical adjoint is another name for the adjugate matrix or cofactor transpose of a matrix.
Version History
Introduced in R2013aThe adjoint function accepts an input argument of type
symfunmatrix.
The adjoint function accepts an input argument of type
symmatrix.
The adjoint function accepts a numeric matrix as an input
argument.
The adjoint function supports numeric matrices of type
double and single, as well as symbolic matrices of
type sym and symfun.
See Also
ctranspose | det | inv | rank
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleziona un sito web
Seleziona un sito web per visualizzare contenuto tradotto dove disponibile e vedere eventi e offerte locali. In base alla tua area geografica, ti consigliamo di selezionare: .
Puoi anche selezionare un sito web dal seguente elenco:
Come ottenere le migliori prestazioni del sito
Per ottenere le migliori prestazioni del sito, seleziona il sito cinese (in cinese o in inglese). I siti MathWorks per gli altri paesi non sono ottimizzati per essere visitati dalla tua area geografica.
Americhe
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)