# mswcmp

Multisignal 1-D compression using wavelets

## Syntax

## Description

`mswcmp`

computes thresholds and, depending on the selected
option, performs compression of 1-D signals using wavelets.

`[`

returns a compressed version `xc`

,`deccmp`

,`thresh`

] = mswcmp('cmp',`dec`

,`mthd`

)`xc`

of the original multisignal
`x`

, whose wavelet decomposition structure is
`dec`

. The compression method is specified by
`mthd`

. The output `xc`

is obtained by
thresholding the wavelet coefficients. The output `deccmp`

is the
wavelet decomposition associated with `xc`

, and
`thresh`

is the matrix of threshold values.

returns the computed thresholds if `thresh`

= mswcmp('thr',___)`'cmp'`

in the first or second
syntaxes is replaced with `'thr'`

.

## Examples

## Input Arguments

## Output Arguments

## References

[1] Birgé, L., and P. Massart. “From
Model Selection to Adaptive Estimation.” *Festschrift for Lucien Le Cam: Research
Papers in Probability and Statistics* (E. Torgersen, D. Pollard, and G. Yang,
eds.). New York: Springer-Verlag, 1997, pp. 55–88.

[2] DeVore, R. A., B. Jawerth, and
B. J. Lucier. “Image Compression Through Wavelet Transform Coding.”
*IEEE Transactions on Information Theory*. Vol. 38, Number 2, 1992,
pp. 719–746.

[3] Donoho, D. L. “Progress
in Wavelet Analysis and WVD: A Ten Minute Tour.” *Progress in Wavelet
Analysis and Applications* (Y. Meyer, and S. Roques, eds.). Gif-sur-Yvette:
Editions Frontières, 1993.

[4] Donoho, D. L., and I. M.
Johnstone. “Ideal Spatial Adaptation by Wavelet Shrinkage.”
*Biometrika*. Vol. 81, pp. 425–455, 1994.

[5] Donoho, D. L., I. M. Johnstone,
G. Kerkyacharian, and D. Picard. “Wavelet Shrinkage: Asymptopia?”
*Journal of the Royal Statistical Society*, *series
B*, Vol. 57, No. 2, pp. 301–369, 1995.

[6] Donoho, D. L., and I. M.
Johnstone. “Ideal denoising in an orthonormal basis chosen from a library of
bases.” *C. R. Acad. Sci. Paris*, *Ser. I*,
Vol. 319, pp. 1317–1322, 1994.

[7] Donoho, D. L. “De-noising
by Soft-Thresholding.” *IEEE Transactions on Information Theory*.
Vol. 42, Number 3, pp. 613–627, 1995.

[8] Mesa, Hector. “Adapted Wavelets
for Pattern Detection.” In *Progress in Pattern Recognition, Image Analysis and
Applications*, edited by Alberto Sanfeliu and Manuel Lazo Cortés,
3773:933–44. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
https://doi.org/10.1007/11578079_96.

## Version History

**Introduced in R2007a**