please help me !!Dimensions of matrices being concatenated are not consistent.
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Error using vertcat Dimensions of matrices being concatenated are not consistent.
Error in mypaper/myfun (line 47) y = [a+b*(1-a)-x,
Error in fsolve (line 241) fuser = feval(funfcn{3},x,varargin{:});
Error in mypaper (line 5) y = fsolve(@myfun,z0,options);
Error in testMypaper (line 15) x = mypaper(p,min,n,m,N,L);
Caused by: Failure in initial user-supplied objective function evaluation. FSOLVE cannot continue.
function [y] = mypaper(p,min,n,m,N,L)
z0 = [0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1];
options = optimset('Display','off');
y = fsolve(@myfun,z0,options);
function y = myfun(z);
b0 = z(1);
a = z(2);
b = z(3);
x = z(4);
pidle = z(5);
lis1 = z(6);
lis2 = z(7);
ptx = z(8);
pco = z(9);
Pc = z(10);
pback1 = z(11);
pback2 = z(12);
y = [a+b*(1-a)-x,
((1-b)*(1-a)*((1-x^(m+1))/(1-x)) + x^(m+1))*b0/p - pidle,
((1-x^(m+1))/(1-x))*b0 - lis1,
(1-a)*((1-x^(m+1))/(1-x))*b0 - lis2,
1-(1-lis1)^(N-1) - Pc,
(1-Pc)*(1-b)*(1-a)*((1-x^(m+1))/(1-x))*b0 - ptx,
Pc*(1-b)*(1-a)*((1-x^(m+1))/(1-x))*b0 - pco,
((2^(min+n)+1)/2)*((x^n-x^(m+1))/(1-x))*b0 - pback2,
((1-x^(n+1))/(1-x) + 2^min*((1-(2*x)^(n+1))/(1-2*x)))*b0/2 - pback1,
L*Pc*(1-a)*(1-b) - a,
(1- 1/(1+1/(1-(1-lis1)^N)))*(1-(1-lis1)^N) -b,
pidle + ptx + pco + pback2 + pback1 - 1];
end
end
v = 0.2; N = 5; p = v/N; min = 3; n = 5; m = 7; L = 5; x = mypaper(p,min,n,m,N,L);
thank you for you help
0 Commenti
Risposta accettata
Image Analyst
il 23 Dic 2013
One of those lines that comprise y is not a scalar. Check each term one by one to see which is not a scalar.
term = a+b*(1-a)-x;
term = ((1-b)*(1-a)*((1-x^(m+1))/(1-x)) + x^(m+1))*b0/p - pidle;
term = ((1-x^(m+1))/(1-x))*b0 - lis1;
term = (1-a)*((1-x^(m+1))/(1-x))*b0 - lis2;
term = 1-(1-lis1)^(N-1) - Pc;
term = (1-Pc)*(1-b)*(1-a)*((1-x^(m+1))/(1-x))*b0 - ptx;
term = Pc*(1-b)*(1-a)*((1-x^(m+1))/(1-x))*b0 - pco;
term = ((2^(min+n)+1)/2)*((x^n-x^(m+1))/(1-x))*b0 - pback2;
term = ((1-x^(n+1))/(1-x) + 2^min*((1-(2*x)^(n+1))/(1-2*x)))*b0/2 - pback1;
term = L*Pc*(1-a)*(1-b) - a;
term = (1- 1/(1+1/(1-(1-lis1)^N)))*(1-(1-lis1)^N) -b;
term = pidle + ptx + pco + pback2 + pback1 - 1;
One of those will not be the same size as the others. Use the debugger to find out which term it is.
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Creating and Concatenating Matrices in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!