Why is the polyval command giving two different answers?
    14 visualizzazioni (ultimi 30 giorni)
  
       Mostra commenti meno recenti
    
Why does the polyval operator not work as expected. Is the ans variable not stored as a column vector? Why aren't the second, fifth, and sixth results equal?
>> roots([1,-8,17,2,-24])
ans =
    4.0000
    3.0000
    2.0000
   -1.0000
>> polyval([1.-8,17,2,-24],ans)
ans =
 -192.0000
  -54.0000
   -8.0000
   -2.0000
>> roots([1,-8,17,2,-24])
ans =
    4.0000
    3.0000
    2.0000
   -1.0000
>> x=ans
x =
    4.0000
    3.0000
    2.0000
   -1.0000
>> polyval([1,-8,17,2,-24],x)
ans =
   1.0e-13 *
    0.8882
    0.3197
    0.0355
    0.1421
>> polyval([1,-8,17,2,-24],[2.0000;3.0000;-1.0000;3])
ans =
     0
     0
     0
     0
0 Commenti
Risposta accettata
  Alberto
      
 il 22 Set 2014
        Instruction roots uses an iterative numeric method to approximate the solution in float arithmetic. What you get is an excellent approximation.
If you need the exact solution you should try a symbolic method:
g = x^4-8*x^3 + 17*x^2 +2*x -24
g =
x^4 - 8*x^3 + 17*x^2 + 2*x - 24
>> sol=solve(g==0)
sol =
2
3
4
-1
1 Commento
  Matt J
      
      
 il 23 Set 2014
				You also may need a symbolic version of polyval, even when you have the exact roots:
      >> polyval([1,-8,17,2,-24]/3,[4 3 2 -1])
    ans =
       1.0e-14 *
        0.8882    0.1776    0.1776    0.1776
Vedere anche
Categorie
				Scopri di più su Entering Commands in Help Center e File Exchange
			
	Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!