Ellipse around Circle problem
1 visualizzazione (ultimi 30 giorni)
Mostra commenti meno recenti
Any idea how I could make the ellipses go around the circle to make a flower?
Here's the code:
clf
figure;
t=0:0.01:2*pi;
x=10*cos(t);
y=3*sin(t);
for i=1:12
hold on;
q=[x;y];
e=pi/12*i;
z=[cos(e) -sin(e);sin(e) cos(e)];
k=z*q;
r=k(1,:);
d=k(2,:);
plot(r,d);
axis square;
pause(1);
end
hold on;
drawCircle(0,0,1);
1 Commento
Risposta accettata
Yusuf Suer Erdem
il 6 Gen 2022
That is the required code below. The red one with the dashed line is the circle and the other ones are the ellipses around it. You could increase the quantity of ellipses by using other type of formulas or you could try to rotate the existing ones.
clc; clear; close all;
C = [0 0] ; % center
a = 2.5 ; % major axis
e = 0.8 ; % eccentricity
b = a*sqrt(1-e^2) ; % minor axis
R = 2; % Radius if cricle
th = linspace(0,2*pi) ;
% Ellipse
xe = C(1)+a*cos(th) ;
ye = C(2)+b*sin(th) ;
% Ellipse
xe2 = C(1)+b*cos(th) ;
ye2 = C(2)+a*sin(th) ;
% Circle
xc = C(1)+R*cos(th) ;
yc = C(2)+R*sin(th) ;
% plot
plot(xe,ye,'b',xe2,ye2,'g',xc,yc,'r--')
axis equal
4 Commenti
Yusuf Suer Erdem
il 6 Gen 2022
I changed the codes into that way. And the graph is below. For the missing ellipses, you need to identify the center points and add these ellipses to these points. After you need to rotate them according to the required angle without changing their sizes.
clc; clear; close all;
CC = [0 0] ;
CE = [0 1.5] ;
CE2= [1.5 0] ;
CE3= [0 -1.5];
CE4= [-1.5 0];
a = 0.5 ;
e = 0.8 ;
b = a*sqrt(1-e^2) ;
R = 0.5;
th = linspace(0,2*pi) ;
xe = CE(1)+b*cos(th) ;
ye = CE(2)+a*sin(th) ;
xe2 = CE2(1)+a*cos(th) ;
ye2 = CE2(2)+b*sin(th) ;
xe3 = CE3(1)+b*cos(th) ;
ye3 = CE3(2)+a*sin(th) ;
xe4 = CE4(1)+a*cos(th) ;
ye4 = CE4(2)+b*sin(th) ;
xc = CC(1)+R*cos(th) ;
yc = CC(2)+R*sin(th) ;
plot(xe,ye,'b',xe2,ye2,'g',xe3,ye3,'y',xe4,ye4,'c',xc,yc,'r--')
axis equal
Più risposte (0)
Vedere anche
Categorie
Scopri di più su Data Distribution Plots in Help Center e File Exchange
Prodotti
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!