10 fold cross validation

18 visualizzazioni (ultimi 30 giorni)
uma
uma il 13 Apr 2022
Risposto: uma il 16 Giu 2022
how to use 10 fold cross validation in Multilayer extreme learning machine

Risposta accettata

Demet
Demet il 19 Apr 2022
Modificato: Demet il 19 Apr 2022
Hello,
I have never used Multilayer extreme learning machine but i found this. The code below was written assuming that the code in this link is correct and It would be helpful for you
data= dlmread('data\\inputs1.txt'); %inputs
groups=dlmread('data\\targets1.txt'); % target
Fold=10;
indices = crossvalind('Kfold',length(groups),Fold);
for i =1:Fold
testy = (indices == i);
trainy = (~testy);
TestInputData=data(testy,:)';
TrainInputData=data(trainy,:)';
TestOutputData=groups(testy,:)';
TrainOutputData=groups(trainy,:)';
number_neurons=[1000 100 100 100];% acchetecture of network
NL=4;
ELM_Type=1;
[training_Acuracy]=MLP_elm_train(TrainInputData,TrainOutputData,number_neurons,ELM_Type,NL);%training
training_Acuracy_f(fold)=training_Acuracy; %keep training acc for each fold
[testing_Accuracy,output]=MLP_elm_predict(TestInputData, TestOutputData,ELM_Type,NL);%testing
testing_Accuracy_f(Fold)=testing_Accuracy;% keep testing acc for each fold
end
  1 Commento
uma
uma il 15 Giu 2022
thank you so much.

Accedi per commentare.

Più risposte (1)

uma
uma il 16 Giu 2022
how we can specify the input and target data as i have a dataset namely segment attached here.

Categorie

Scopri di più su Statistics and Machine Learning Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by