optimization of delayed differential equations (dde)

2 visualizzazioni (ultimi 30 giorni)
Hello,
I try to optimise (finding the parameter's value) in the system of dde, unfortunately I can't find any example how to do it. I used to optimization of ode using ode45 solver with lsqlin for instance. I will appreciate the help. The dde23 seems not to be working with lsqlin. I will appreciate any help.
  1 Commento
Torsten
Torsten il 9 Mag 2022
Modificato: Torsten il 9 Mag 2022
Do you have a code for your model equations set up with dde23 ?
If yes, you should include it and tell which parameter(s) you are trying to optimize on the basis of which input data.

Accedi per commentare.

Risposta accettata

Torsten
Torsten il 9 Mag 2022
Modificato: Torsten il 9 Mag 2022
Make the best of it.
pTrue = [1 1 1 1 1 1 1 1 1];
time = 0:7;
Y = ...;
Am1=[1,1.1,1.4,0.7,0.8,1.6,2,1.5];
Bm1=[1.5,1.0,0.4,1.7,0.9,1.3,1.5,1.4];
Am=@(t)interp1(time,Am1,t)
Bm=@(t)interp1(time,Bm1,t)
p = lsqnonlin(@(p) Errors(p,time,Y,Am,Bm),0.8*pTrue)
function res = Errors(p,time,Y,Am,Bm)
lags=[1,2];
[T,SOL]=dde23(@(t,y,Z)ddefunEx(t,y,Z,p,Am,Bm), lags, [1,1,1,1], time);
res = Y-SOL;
res = res(:);
end
function dydt = ddefunEx(t,y,Z,p,Am,Bm)
ylag1 = Z(:,1);
ylag2 = Z(:,2);
E1p=y(1)
E2p=y(2)
A1=y(3)
B1=y(4)
n_A=p(1);%0.6;
n_B=p(2);%0.1;
KE1=p(3);%0.2;
KE2=p(4);%0.2;
Vp_A=p(5);%1.2;
Vp_B=p(6);%1.5;
alpha_p=p(7);%0.4;
kA=p(8);%0.4;
kB=p(9);%1.2;
%Auxiliary equations
ALPHA1=n_A*E1p*A1/(KE1*(1+A1))-A1;
ALPHA2=n_B*E2p*B1/(KE2*(1+B1))-B1;
dydt= [Vp_A*Am(t)-alpha_p*ylag1(1);
Vp_B*Bm(t)-alpha_p*ylag1(2);
kA*Am(t)-ylag2(3)-ALPHA1+ALPHA2;
kB*Bm(t)-ylag2(4)+ALPHA1-ALPHA2];
end
  4 Commenti
Priya Verma
Priya Verma il 14 Mar 2024
how to plot graphs between lags and variables for dde ?...please reply ..
Torsten
Torsten il 14 Mar 2024
What do you mean by your question ? The line
[T,SOL]=dde23(@(t,y,Z)ddefunEx(t,y,Z,p,Am,Bm), lags, [1,1,1,1], time);
gives you a solution SOL at times T that you can plot. How do you think that the lags come into play ?

Accedi per commentare.

Più risposte (1)

Malgorzata Wieteska
Malgorzata Wieteska il 9 Mag 2022
% I'm embedding simplified version of the system. I run it the function ddedunEx to get simulated data (Y) and then try to optimise for the values of the parameters against obtained earlier data.
function dydt = ddefunEx(t,y,Z,p)
%global p
ylag1 = Z(:,1);
ylag2 = Z(:,2);
time=0:7;
E1p=y(1)
E2p=y(2)
A1=y(3)
B1=y(4)
Am1=[1,1.1,1.4,0.7,0.8,1.6,2,1.5];
Bm1=[1.5,1.0,0.4,1.7,0.9,1.3,1.5,1.4];
Am=interp1(time,Am1,t)
Bm=interp1(time,Bm1,t)
n_A=p(1);%0.6;
n_B=p(2);%0.1;
KE1=p(3);%0.2;
KE2=p(4);%0.2;
Vp_A=p(5);%1.2;
Vp_B=p(6);%1.5;
alpha_p=p(7);%0.4;
kA=p(8);%0.4;
kB=p(9);%1.2;
%Auxiliary equations
ALPHA1=n_A*E1p*A1/(KE1*(1+A1))-A1;
ALPHA2=n_B*E2p*B1/(KE2*(1+B1))-B1;
dydt= [Vp_A*Am-alpha_p*ylag1(1);
Vp_B*Bm-alpha_p*ylag1(2);
kA*Am-ylag2(3)-ALPHA1+ALPHA2;
kB*Bm-ylag2(4)+ALPHA1-ALPHA2;];
end
%lags=[1,2];
%tspan=0:7;
%sol = dde23(@ddefunEx, lags, [1,1,1,1], tspan);
%figure(2)
%plot(sol.x,sol.y)
%%%%%%%%%%%%% Obtaining data
%Y=sol.y+0.05*randn(size(sol.x));
function res=Errors(p,Y)
tspan=0:7;;
x0=[4;1];
lags=[1,2];
[T,X]=dde23(@ddefunEx, lags, [1,1,1,1], tspan);
res1=(X(:,1)-Y(:,1));
res2=(X(:,2)-Y(:,2));
res3=(X(:,3)-Y(:,3));
res4=(X(:,4)-Y(:,4));
res=abs(res1)+abs(res2) +abs(res3)+abs(res4);
%pTrue=[0.6;0.1;0.2;0.2];
%[pOpt,resnorm,res,exitflag,~,lambda,J]=...
% lsqnonlin(@(p) Errors(p,Y),0.8*pTrue);
  2 Commenti
Priya Verma
Priya Verma il 14 Mar 2024
these command is not running in my matlab...please share all code..

Accedi per commentare.

Categorie

Scopri di più su Stochastic Differential Equation (SDE) Models in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by