This seems like it might be what I'm looking for, but it is not quite working yet. It is not throwing an error or anything, but I am still figuring out how to put the data. I've attached the CSV (thought I did that the first time around), and I'm including the Matlab code I have so far (it is still very much a work in progress). If you pay attention to TyH, I need that to be Yield Stress as a function of H, and I need H to be a function of amperes applied to the solenoid. So I give it amperes, it calculated H, goes to the CSV, finds/calculates the Ty for that H, and inputs it into MR fluid equation.
%%Importation
MRdata = csvread('122EG-Tyresponse.csv');
MRdata = sortrows(MRdata,1);
%TyH = interp1(MRdata(:,1),MRdata(:,2),x); %MRdata(:,1) is H, MRdata(:,2) is Ty
TyH = griddedInterpolant(MRdata(:,1),MRdata(:,2),x);
%H = MRdata(:, 1); %H field (kAmp/m)
%Ty = Mrdata(:, 2); %Yield Stress (kPa)
%%Variable Definitions
u0=4*pi*(10^-7); %Magnetic field in a vacuum constant
n=0.042; %Newtonian Viscosity (Pa-s @ 40°C); MR Fluid: ± 0.020
Dv=0:0.001:0.5; %velocity through MR (m/s)
Dz=0.001; %Distance between flow layers (m)
a=0:0.001:1; %Amperes
r=0.01331; %Radius between wire and central axis of piston
t=360; %Number of turns
l=5; %Length of wire
F=16; %Applied force(kg) to piston; worst case for 32kg system load
A=0.00002; %Area of force (of cut-outs? solid area? total area?)
%%System Equations
DvDz=DV/DZ; %Velocity Gradient in the z-direction (m/s); motion through MR
T=F/A; %Shear Stress
%Magnetic EQs
B=((u0*a)/(2*pi*r)); %B-field equation; Biot Savart
H=(B/u0); %H-field equation, possibly H=(B/u)-M
%%MR Fluid
T=TyH + n*DvDz; %MR fluid equation; shear stress
%%Plotting
figure
plot(a,B)
xlabel('Current (Amper)')
ylabel('Magnetic Field Intensity (Tesla)')
title('Magnetic Field Intensity as a Function of Electric Current')
figure
[X,Y,Z]=peaks(30) %plaseholder for data
surfc(X,Y,Z)
%surfc(H,DvDz,T) %3D surface for Shear stress as a function of velocity and magnetic field strength
%xlabel('Magnetic Field Intensity')
%ylabel('Velocity Gradient')
%zlabel('Shear Stress of MR Fluid')