Azzera filtri
Azzera filtri

i am facing invalid bounding boxes while training faster rcnn on multiclasses

2 visualizzazioni (ultimi 30 giorni)
hi every on. i am facing invalid bounding boxes problem while training faster rcnn how can i remove this error. my code is a attached with file . This is my error Invalid transform function defined on datastore.
The cause of the error was:
Error using vision.internal.cnn.validation.checkTrainingBoxes Training data from a read of the input datastore contains invalid bounding boxes. Bounding boxes must be non-empty, fully contained within their associated image and must have positive width and height. Use datastore transform method and remove invalid bounding boxes.
Error in vision.internal.cnn.fastrcnn.validateImagesAndBoxesTransform (line 20) boxes = vision.internal.cnn.validation.checkTrainingBoxes(images, boxes);
Error in trainFasterRCNNObjectDetector>@(data)vision.internal.cnn.fastrcnn.validateImagesAndBoxesTransform(data,params.ColorPreprocessing) (line 1754) transformFcn = @(data)vision.internal.cnn.fastrcnn.validateImagesAndBoxesTransform(data,params.ColorPreprocessing);
Error in matlab.io.datastore.TransformedDatastore/applyTransforms (line 723) data = ds.Transforms{ii}(data);
Error in matlab.io.datastore.TransformedDatastore/read (line 235) [data, info] = ds.applyTransforms(data, info);
Error in vision.internal.cnn.rcnnDatasetStatistics>readThroughAndGetInformation (line 72) batch = read(datastore);
Error in vision.internal.cnn.rcnnDatasetStatistics (line 29) out = readThroughAndGetInformation(datastore, params, layerGraph);
Error in trainFasterRCNNObjectDetector>iCollectImageInfo (line 1761) imageInfo = vision.internal.cnn.rcnnDatasetStatistics(trainingData, rpnLayerGraph, imageInfoParams);
Error in trainFasterRCNNObjectDetector (line 459) [imageInfo,trainingData,options] = iCollectImageInfo(trainingData, fastRCNN, iRPNParamsEndToEnd(params), params, options);
Error in FASTERRCNN (line 73) [detector , info ]= trainFasterRCNNObjectDetector(trainingDataForEstimation, lgraph, options);

Risposte (1)

Walter Roberson
Walter Roberson il 1 Dic 2023
  3 Commenti
Walter Roberson
Walter Roberson il 1 Dic 2023
Sanitize after resizing the boxes. When the target size is smaller than the original size, a box can get resized from acceptable to not acceptable.

Accedi per commentare.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by