Mean and Standard Deviation of outputs on a neural network
7 visualizzazioni (ultimi 30 giorni)
Mostra commenti meno recenti
I am trying to train a Bayesian neural network, and with 5 inputs and 4 outputs. In the end, I want to have a mean prediction for all the outputs and a estimate of the standard deviation. When I ran the following code, it says that the network must have an output layer. I am wondering whats incorrect. I have followed this example.
PS: I have updated the code and am using trainnet now. The error that comes now is that :Fixed sequence length training option is not supported: in Trainnet.
My utrain_load has a size 5*78739 and ytrain_load has a size 4*78739.
addpath('~\MATLAB\Examples\R2024a\nnet\TrainBayesianNeuralNetworkUsingBayesByBackpropExample')
numHiddenUnits1= 8;
numResponses = 4; % y1 y2 y3 y4
featureDimension = 5; % u1 u2 u3 u4 u5 %
% featureDimension = 4; % u1 u2 u3 u4 u5
maxEpochs = 100; % IMPORTANT PARAMETER
miniBatchSize = 512; % IMPORTANT PARAMETER
% architecture
Networklayer_h2df = [...
sequenceInputLayer(featureDimension)
fullyConnectedLayer(4*numHiddenUnits1)
reluLayer
bayesFullyConnectedLayer(4*numHiddenUnits1,Sigma1=1,Sigma2=0.5)
reluLayer
fullyConnectedLayer(8*numHiddenUnits1)
reluLayer
gruLayer(LSTMStateNum,'OutputMode','sequence',InputWeightsInitializer='he',RecurrentWeightsInitializer='he')
fullyConnectedLayer(8*numHiddenUnits1)
reluLayer
fullyConnectedLayer(4*numHiddenUnits1)
reluLayer
fullyConnectedLayer(numResponses)
bayesFullyConnectedLayer(numResponses,Sigma1=1,Sigma2=0.5)
];
% training options
options_tr = trainingOptions('adam', ...
'MaxEpochs',maxEpochs, ...
'MiniBatchSize',miniBatchSize, ...
'GradientThreshold',1, ...
'SequenceLength',8192,...
'Shuffle','once', ...
'Plots','training-progress',...
'Verbose',1, ...
'VerboseFrequency',64,...
'LearnRateSchedule','piecewise',...
'LearnRateDropPeriod',250,...
'LearnRateDropFactor',0.75,...
'L2Regularization',0.1,...
'ValidationFrequency',10,...
'InitialLearnRate', 0.001,...
'Verbose', false, ...
'ExecutionEnvironment', 'cpu', ...
'ValidationData',[{uval_load} {yval_load}],...
'OutputNetwork','best-validation-loss');
%% training and Saving model data
savename = [sprintf('%04d',MP),'_',sprintf('%04d',numHiddenUnits1),'_',sprintf('%04d',LSTMStateNum),'_',sprintf('%04d',trainingrun),'.mat'];
if do_training == true
tic
[h2df_model, h2df_model_infor] = trainnet(utrain_load,ytrain_load,Networklayer_h2df,"mse",options_tr);
toc
ElapsedTime = toc;
h2df_model_analysis = analyzeNetwork(h2df_model); % analysis including total number of learnable parameters
h2df_model_infor.ElapsedTime = ElapsedTime;
save(['../Results/h2df_model_',savename],"h2df_model")
save(['../Results/h2df_model_info_',savename],"h2df_model_infor")
save(['../Results/h2df_model_analysis_',savename],"h2df_model_analysis")
else
load(['../Results/h2df_model_',savename])
load(['../Results/h2df_model_info_',savename])
load(['../Results/h2df_model_analysis_',savename])
end
2 Commenti
Aditya
il 31 Lug 2024
@Vasu Sharma Could you provide the exact error message and the code till the line where the error hits!
Risposte (1)
Matt J
il 31 Lug 2024
Modificato: Matt J
il 31 Lug 2024
You have shown the code for your network, but not how you have adapted the training code, nor the error messages. So, it calls for guesswork.
A fair guess however is that you are using the deprecated trainnetwork() function rather than trainnet() to do the training. With trainnetwork, the network must have an output layer, for example a regressionLayer or a classificationLayer which specifies the loss function to be used during training. The network in your code does not have such a layer.
Vedere anche
Categorie
Scopri di più su Image Data Workflows in Help Center e File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!