question about dely lines

2 visualizzazioni (ultimi 30 giorni)
Muhsin Zerey
Muhsin Zerey il 1 Dic 2024
Commentato: Muhsin Zerey il 14 Gen 2025
EDITED:
Hey guys, I want to implement an allpass filter but i struggle with the difference equation and its implementation:
heres the structure
and here are the difference equations:
So finally I got the difference equation. I also tried to implemend it into my process function. (d(n) is a delay line in my code before i wanted to implemt the allpass, therefore I commented it out, but can be useful to compare). m(k) and m'(k) are both delays that are calculated. zeta is set to be one and is therefore not in the equation. The plugin sounds wrong and horrible if I try this way. Anyone got an Idea?
function out = process(plugin, in)
out = zeros(size(in));
for i = 1:size(in,1)
% Summieren der L/R - Kanle
inL = in(i,1);
inR = in(i,2);
inSum = (inL + inR)/2;
plugin.buffInput(plugin.pBuffInput + 1) = inSum;
% loop over delay lines
for n=1:plugin.N
% plugin.y_a = 0;
% d_n = gain * delayed v_n
for k=1:plugin.N
% if k == 2 && mod(plugin.pBuffDelayLines,2) == 0
% plugin.gy(k) = 0;
%
% end
plugin.Dg(k) = sqrt(1-plugin.g(k)^2);
%plugin.d(k) = plugin.g(k)*plugin.buffDelayLines(k, mod(plugin.pBuffDelayLines + plugin.m(k), plugin.maxDelay +1) + 1);
% d(k) = (((sqrt(1-plugin.g(k)^2)^2)+ plugin.g(k)^2 + plugin.g(k)^2) * x1_m0p) + (plugin.g(k) * x1_m0) - (plugin.g(k) * y_m0p);
x1_m0p = plugin.buffDelayLines(k, mod(plugin.pBuffDelayLines + plugin.m(k)+plugin.m'(k)+1, plugin.maxDelay +1) + 1);
x1_m1p =plugin.buffDelayLines(k, mod(plugin.pBuffDelayLines+ plugin.m(k) +1, plugin.maxDelay +1) + 1);
plugin.d(k)= (plugin.Dg(k)^2+plugin.g(k)^2)*x1_m0p + plugin.g(k)*x1_m1p- plugin.g(k)*plugin.y_a(k);
plugin.y_a(k) = plugin.d(k);
end
%generate time variant matrix
%generateTIFDNmatrix(plugin,buffA);
% f_n = A(n,:) * d'
plugin.f(n) = plugin.A(n,:) * plugin.d(:);
% v_n with pre delay
plugin.v(n) = plugin.b(n) * plugin.buffInput(mod(plugin.pBuffInput + plugin.preDelayS, (plugin.maxPreDelay * plugin.fs + 1)) + 1) ...
+ plugin.f(n); %An pe delay noch arbeiten
plugin.buffDelayLines(n, plugin.pBuffDelayLines + 1) = plugin.v(n);
% output lines
plugin.s(n) = plugin.c(n)* plugin.d(n);
out(i,:) = out(i,:) + real(plugin.s(n));
end
% Assign to output
out(i,1) = plugin.mix/100 * out(i,1) + (1.0 - plugin.mix/100) * in(i,1);
out(i,2) = plugin.mix/100 * out(i,2) + (1.0 - plugin.mix/100) * in(i,2);
calculatePointer(plugin);
end
end
  2 Commenti
Paul
Paul il 25 Dic 2024
Modificato: Paul il 25 Dic 2024
Are g_0, D_g0, and zeta_0 all constants? Is delta^m0 an integer?
The input to the filter is x_1(n) and the output is y_1(n) ?
Muhsin Zerey
Muhsin Zerey il 13 Gen 2025
Hi, yes they are all constants. I also already have the difference euqation correctly. Should be like this.

Accedi per commentare.

Risposte (2)

Walter Roberson
Walter Roberson il 1 Dic 2024
you cannot implement those equations.
e(n) is defined in terms of d(n)
d(n) is defined in terms of e(n - something)
Substituting, e(n) is defined in terms of e(n - something)
This is infinite recursion, and so has no solution.
  8 Commenti
Walter Roberson
Walter Roberson il 14 Gen 2025
You need to initialize y(1) through y(dm0_prime)
Muhsin Zerey
Muhsin Zerey il 14 Gen 2025
Everything is done with ring buffers. so the buffer delay line is a ring buffer and in the process function you save all the values of v(n) into the buffer delay line. So d(n) as well as y(n) is depented on v(n) and v(n) is pre delay + the outcome of the mixing matrix*d(n)

Accedi per commentare.


Paul
Paul il 26 Dic 2024
One can attack this symbolically if the parameters in the problems aren't known. If they are, one can proceed numerically using the Control System Toolbox. Example of the latter
Define the constants, assume a 4 sample delay
g_0 = 0.5;
D_g0 = sqrt(3)/2;
zeta_0 = 1;
delta_m0 = 4;
Define the lti objects for the three equations
sys1 = ss([g_0,D_g0*zeta_0],'Ts',-1,'InputDelay',[delta_m0,0],'InputName',{'x1','d'},'OutputName','y1');
sys2 = ss([zeta_0*D_g0,-g_0],'Ts',-1,'InputDelay',[delta_m0,0],'InputName',{'x1','d'},OutputName = 'e');
sys3 = ss(1,'Ts',-1,'InputDelay',delta_m0,'InputName','e','OutputName','d');
Connect all together
sys = connect(sys1,sys2,sys3,'x1',{'y1','e','d'});
With the selected constants, the system from x1 to y1 is allpass
opts = bodeoptions;
opts.MagUnits = 'abs';
bodeplot(sys(1,1),opts);
Plot the outputs with an input for x1
N = 50;
x1 = [ones(N/2,1);-ones(N/2,1)];
[z,k] = lsim(sys,x1);
y1 = z(:,1);e = z(:,2); d = z(:,3);
figure
hold on
stem(k,y1,'DisplayName','y1');
stem(k,e ,'DisplayName','e');
stem(k,d ,'DisplayName','d');
legend
Check that the outputs satisfy the original difference equations.
x1s = @(n) interp1(k,x1,n,'linear',0);
es = @(n) interp1(k,e, n,'linear',0);
ds = @(n) interp1(k,d, n,'linear',0);
[norm(y1 - ( g_0*x1s(k-delta_m0) + D_g0*zeta_0*ds(k) ));
norm(e - ( D_g0*zeta_0*x1s(k-delta_m0) - g_0*ds(k) ));
norm(d - es(k-delta_m0))]
ans = 3×1
1.0e-15 * 0.3168 0 0
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 Commento
Muhsin Zerey
Muhsin Zerey il 13 Gen 2025
Hi Paul, I reedited my question and hope you can understand my problem better.

Accedi per commentare.

Categorie

Scopri di più su Audio Processing Algorithm Design in Help Center e File Exchange

Prodotti


Release

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by