How can I fit data to a piecewise function, where the breakpoint of the function is also a parameter to be optimised?

62 visualizzazioni (ultimi 30 giorni)
I have data with x and y values. This data should conform to a function: an assymmetric parabola. Here, the parameters that define the shape of the parabola should be different on either side of the maximum point of the parabola i.e. the breakpoint is where the maximum value of y occurs.
I was hoping to use 'fit' and to define an anonymous function for my data. But I'm not able to work out how to define an anonymous, piecewise function, especially where the breakpoint is one of the parameters to be determined by the fitting procedure, as it is not immediately clear from the data itself where the maximum value of y should occur.
Any help would be appreciated.

Risposta accettata

Matt J
Matt J circa 21 ore fa
Modificato: Matt J circa 13 ore fa
Once you've chosen the coefficients of the first parabola [a1,b1,c1], the breakpoint is determined from,
d=-b1/(2*a1)
Only the leading coefficient of the second parabola is a free parameter:
F=@(x) asymParabola(-2,1,0,-0.6,x);
fplot(F,[-10,10]);axis padded %example plot
ft = fittype(@(a1,b1,c1,a2, x) asymParabola(a1,b1,c1,a2, x) )
ft =
General model: ft(a1,b1,c1,a2,x) = asymParabola(a1,b1,c1,a2,x)
function y=asymParabola(a1,b1,c1,a2, x)
d=-b1/(2*a1);
b2=-d*2*a2;
c2=polyval([a1,b1,c1],d)-polyval([a2,b2,0],d);
left=(x<=d);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(~left)=polyval([a2,b2,c2],x(~left));
end
  4 Commenti
Rahul
Rahul circa 11 ore fa
Thanks a lot Matt, I think this is right; I think there should only be 4 free parameters to be constrained overall. This simplifies things greatly.
Torsten
Torsten circa 5 ore fa
Modificato: Torsten circa 5 ore fa
If the given x,y values have no noise/errors, then the maximum y-value and the maximum of the parabola are one and the same.
Why ? Both parabola can intersect below their respective maxima, and nonetheless the point of intersection can be the maximum y-value of the piecewise function.
But it seems you interpreted the question correctly.

Accedi per commentare.

Più risposte (3)

Walter Roberson
Walter Roberson il 29 Set 2025 alle 21:20
(a1*x.^2 + b1*x + c1) .* (x <= d) + (a2*x.^2 + b2*x + c2) .* (x > d)
Note that for this to work, the coefficients must be constrained to be finite
  2 Commenti
Paul
Paul il 30 Set 2025 alle 0:37
Sounds like both sides of the function should have the same value at x = d, at least that's how interpret the question. If so, then I think the function would look something like
(a1*(x-d).^2 + b1*(x-d) + c) .* (x <= d) + (a2*(x-d).^2 + b2*(x-d) + c) .* (x > d)
Rahul
Rahul circa 11 ore fa
Thanks Paul, I think this would also work, but as Matt pointed out I think some of extra parameters are not needed (as they are actually constrained by the others). I am not sure how Matlab deals with this in the curve fitting/optimisation algorithms.

Accedi per commentare.


Catalytic
Catalytic circa 11 ore fa
Modificato: Catalytic circa 10 ore fa
You can also parametrize the model function directly in terms of the break point coordinates (xbreak, ybreak) and two curvature parameters -
F= @(a1,a2,xbreak,ybreak, x) modelFun(a1,a2,xbreak,ybreak, x);
xbreak=3; ybreak=5;
fplot( @(x) F(-2,-0.6,xbreak,ybreak,x), [1,5]);
xline(xbreak,'--')
fType = fittype(F);
function y=modelFun(a1,a2,xbreak,ybreak, x)
X=x-xbreak;
LHS=(X<=0);
RHS=~LHS;
y=X.^2;
y(LHS)=a1.*y(LHS) + ybreak;
y(RHS)=a2.*y(RHS) + ybreak;
end

Matt J
Matt J circa 4 ore fa
Modificato: Matt J circa 3 ore fa
Why ? Both parabola can intersect below their respective maxima, and nonetheless the point of intersection can be the maximum y-value of the piecewise function.
If I understand @Torsten, that would be a 6-parameter function,
F=@(x) asymParabola(-2,1,0,-6,5,-20 ,x);
fplot(F,[-10,-1]);axis padded %example plot
function y=asymParabola(a1,b1,c1, a2, s, rightSlope, x)
%Requirements: a1<0, a2<0, s>=0, m<=0
d=-b1/(2*a1)-s;
c2=polyval([a1,b1,c1],d);
left=(x<=d);
right=~left;
xright=x(right);
y=x;
y(left)=polyval([a1,b1,c1],x(left));
y(right)=a2*(xright-d).^2 + rightSlope*(xright-d) +c2;
end

Categorie

Scopri di più su Get Started with Curve Fitting Toolbox in Help Center e File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by